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Abstract. Testing in the automotive industry is supposed to guarantee
that vehicles are shipped without any flaw. Respective processes are com-
plex, due to the variety of components and electronic devices in modern
vehicles. To achieve error-free processes, their formal analysis is required.
Specifying and maintaining properties the processes must satisfy in a
user friendly way is a core requirement on any verification system. We
have observed that there are few patterns properties of testing processes
adhere to, and we describe these patterns. They depend on the context
of the processes, e.g., the components of the vehicle or testing stations.
We have developed a framework that instantiate the property patterns
at verification time and then verifies the process against these instances.
Our empirical evaluation with the industrial partner has shown that our
framework does detect property violations in processes. From expert in-
terviews we conclude that our framework is user-friendly and well suited
to operate in a real production environment.

1 Introduction

The systematic testing and configuration of complex products, e.g., vehicles, is
an important step of any production process. To this end, certain tasks need
to be executed, automatically or with the help of a human. So-called commis-
sioning tasks test a component or put it into service, e.g., configure the software
[33]. Workflows called commissioning processes describe the arrangement of these
tasks. Domain experts of the industrial partner develop the commissioning pro-
cesses. Workflow management systems (WfMS) in the production domain that
plan and coordinate the testing and end-of-line manufacturing are referred to as
diagnostic frameworks.

Our overall goal is to verify if a commissioning process given is correct. To
verify a process, one must specify which properties the process must fulfill. We
have collected such properties in cooperation with domain experts by analyz-
ing existing processes, and by closely observing these experts when designing



processes. To illustrate, if a process uses more connections than available, the
process must halt, i.e., process execution time is unnecessarily long. A common
definition of correctness of a process is that it observes all properties required.
Properties typically are formulated as property rules, similarly to compliance
rules [16][18]. For example, a property rule states that before executing Task X
another Task Y has to be executed.

Verification itself is a process that consists of several phases, namely specify-
ing the properties of the commissioning process, verifying them, and presenting
the results to the users. Our concern is the design and realization of a framework
supporting users throughout this entire process. This gives way to the following
questions. First, how must processes as well as the properties be specified to
facilitate the deployment of verification techniques? Second, how to utilize do-
main information to support the users specifying the formal properties? Finally,
how user-friendly are respective solutions? To verify process models given in a
formal representation like Petri nets against properties, there already exist effi-
cient model checking approaches [25][26]. However, deriving and specifying the
properties the model must satisfy is a separate issue. A core question is how a
user-friendly framework for process verification should look like.

Designing such a framework gives way to several challenges: First, the knowl-
edge on which characteristics a process should fulfill is typically distributed
among several employees in different departments. Often a documentation is
missing, and properties merely exist in the minds of the process modelers. Sec-
ond, the properties frequently are context-sensitive, i.e., only hold in specific
contexts of a commissioning process. For example, some tasks need different
protocols to communicate with control units for testing at different factories.
Due to this context-sensitiveness, the number of properties is very large, but
with many variants with only small differences. This causes maintenance prob-
lems [15]. Third, to apply an automatic verification technique, like model check-
ing, it is necessary to specify the properties in a formal language such as a
temporal logic [23]. With vehicle-commissioning processes as well as in other do-
mains, see, e.g., [10], [20], specifying the properties in this way is error-prone and
generally infeasible for domain experts. To allow for an automatic verification,
the process must be formalized in a notation that allows to directly construct
its state space. To this end, it must be easy to let the properties refer to the
processes modeled. Fourth, evaluating an approach such as the one envisioned
is difficult. One issue is that the evaluation criteria must be specified.

We have addressed these challenges based on the real-world use case of
vehicle-commissioning processes. More specifically, we make the following con-
tributions: We have analyzed which properties occur for vehicle commissioning
processes and the respective context information. We have observed that there
are few patterns these properties adhere to. We propose to explicitly represent
these patterns, rather than each individual property. Next, we develop a model of
the context knowledge regarding vehicle-commissioning processes. Here context
is the components of a vehicle, their relationships and the constraints which the
vehicle currently tested and configured must fulfill. We let a relational database



Model

checker

Configure Property 

Pattern

  

Database of 

Context 

Knowledge
Property

Pattern
Pattern

Instances

Transform 

OTX2PetriNet

Commissioning

Process Petri net

Verification
Visualize 

Result

Commissioning

Process

Annotated

Process

(1) (2) (3) (4)

Fig. 1. Steps of the Verification Framework

manage the context information. To populate it, we use several sources, e.g.,
information on the vehicle components from production planning, constraints
from existing commissioning processes, and information provided by the process
designers themselves. Our framework uses this information to generate process-
specific instances of the property patterns, transforms the process to a Petri
net, and verifies it against these properties, see Figure 1. Our evaluation has
shown that the framework does detect rule violations in actual real-world com-
missioning processes. Further, we have evaluated whether our model of the con-
text together with the rules is expressive enough for our domain, in two steps.
First, we have evaluated whether our framework can indeed find property vi-
olations in real-world commissioning processes. Second, we have evaluated the
non-functional requirements on our framework by means of expert interviews, as
part of an established test. Our evaluation is one of only few studies that collect
feedback from domain experts systematically. We conclude that our framework
is operational, sufficiently general and usable in a real production environment.

Section 2 describes our scenario commissioning processes. Section 3 intro-
duces our notation. Section 4 explains how to specify the properties required, and
Section 5 says how to verify them. Section 6 describes our framework. Section 7
features our evaluation. Section 8 reviews related work, Section 9 concludes.

2 Scenario and Requirements

Commissioning processes describe the end-of-line manufacturing and testing of
vehicles. This includes, say, to check for each vehicle produced if all its Electronic
Control Units (ECU) are integrated correctly and to put the ECUs into service.
To check an ECU, several tasks have to be executed. There typically are hundreds
of tasks for each vehicle. For example, for an executive-car series there are more
than 1650 tasks in 13 processes altogether, and it is necessary to check each of
them. Most, but not all tasks communicate with at least one ECU. For instance,
a human task tests if the light in the glove compartment functions correctly. This
task does not need to communicate with an ECU. Diagnostic Frameworks, i.e.,
respective workflow management systems, execute the commissioning processes



at several specific physical stations in the factory called process places. For each
vehicle project and each process place, at least one process exists.

Example 1. A vehicle of the executive-car series (M3) is tested at the process
place VP2, next to other places. To this end, the Diagnostic Framework exe-
cutes the process (M3 VP2). The Diagnostic Framework activates tasks that an
ECU executes automatically, otherwise the task is allocated to a worker. One
task checks if the injection system works properly. For this purpose the task
communicates with the ECU of the engine of the automobile.

Our framework should be able to detect property violations in commissioning
processes. Additionally to this functional criteria, the framework must meet the
needs of the process developers in practice: The number of false positives, i.e., the
number of reported violations that are not problematic, and the number of false
negatives, i.e., the number of undetected rule violations in the processes, should
be small. The framework should be general enough to be used in another factory.
The handling of the framework should be intuitive and not require the help of
a technical person – we have categorized these non-functional requirements into
three categories, namely quality, generality and usability.

3 Notation

In this section we introduce the notations used in this paper, i.e., Petri nets
as formal representation of a process to be verified, and CTL (Computation
Tree Logic) as the language to specify properties. Our framework aims to verify
whether commissioning processes given fulfill certain rules regarding the com-
missioning of vehicles, i.e., properties. We transform our processes to Petri nets
because their execution semantics is unambiguously defined, and established
verification techniques for Petri nets exist. We use CTL because it can express
general properties, and efficient model checking algorithms for CTL exist. For a
more detailed introduction, see the standard literature, e.g., [2] and [8].
A Petri net is a directed bipartite graph with two types of nodes called places
and transitions. It is not allowed to connect two nodes of the same type.

Definition 1 (Petri net). A Petri net is a triple (P, T, F )

– P is a set of places
– T is a set of transitions (P ∩ T = ∅)
– F ⊆ (P × T ) ∪ (T × P ) is a set of arcs

p ∈ P is an input place of t ∈ T if (p, t) ∈ F and an output place if (t, p) ∈ F .
•t denotes the set of input places of t and t• the set of output places. A mapping
M : P → N0 maps each p ∈ P to a positive number of tokens. The distribution
of tokens over places (M) represents a state of the Petri net. A transition t ∈ T
is activated in a state M if ∀p ∈ •t : M(p) ≥ 1. A transition t ∈ T in M can fire,



leading to a new state M ′ with:

M ′(p) =


M(p)− 1 if p ∈ •t
M(p) + 1 if p ∈ t•
M(p) else

The set of states reachable from a start state M0 of a Petri net is its state space.
CTL is a temporal logic to specify properties. Model checking algorithms

exist to efficiently verify CTL properties [7]. The CTL syntax is as follows:

Definition 2 (Computation Tree Logic:). Every atomic proposition p ∈
AP is a CTL formula. If φ1 and φ2 are CTL formulas then ¬φ1, φ1 ∨ φ2,
φ1 ∧ φ2, AXφ1, EXφ1, AGφ1, EGφ1, AFφ1, EFφ1, A[φ1 U φ2], E[φ1 U φ2] are
CTL formulas.

In our domain, AP is a state M of a Petri net. The operators always occur in
pairs: a path operator (A or E) and a temporal operator (X,G,F or U). A means
that the formula holds in all succeeding execution paths, E means that at least
one execution path exists. X means that the formula holds in the next state, G
means that it holds in all succeeding states, F means that it holds in at least one
succeeding state, and [φ1 U φ2] means that φ1 holds until φ2 is reached.

4 Property Specification

Our overall goal is to develop a verification framework for vehicle commissioning
processes which is easy to use, easily adaptable to new vehicle variants and
adequate for flexible commissioning process execution. Before verification takes
place, it is usually required to specify the properties for a process. To support
this step, we have collected so-called property patterns together with engineers
who develop diagnostic programs, see Section 4.1. As part of the verification,
our framework determines the context of the process first. For instance, the
context consists of the process place, the vehicle project and the list of tasks and
ECUs used. This concrete process context is used to query a database for the
information required to dynamically generate instances of the property patterns.
Section 4.2 identifies recurring characteristics of such patterns and proposes a
respective database representation. Section 4.3 says how to use the patterns to
generate process-specific instances of the patterns.

4.1 Properties and Property Patterns for Commissioning Processes

We have identified typical properties of commissioning processes and character-
istics of processes, as follows.

P1 Syntactical Correctness: The commissioning process must be syntacti-
cally correct and comply with the naming conventions of the company for tasks.



P2 Resources of the ECUs: Some ECUs require specific resources at the
process place for their testing. When a task requires a resource not available at
the current process place the process is blocked.

P3 Connections of the ECUs: Each ECU opens a connection to one of two
transport protocols supported (UDS or KWP2000). Each transport protocol
can handle a certain number of open connections, in our environment 10 at the
same time. In total, 14 connections altogether can be open at the same time. To
avoid blocking of a process, the process must not open more connections. Table
1 shows the respective property patterns.

P4 Task Conditions: Some tasks depend on the occurrence of other tasks
in the process, e.g., they cannot run in parallel or need to occur in a certain
sequential order. Table 1 contains the different property patterns for commis-
sioning processes. They are the result of a comprehensive survey of ours to detect
all dependencies that are conceivable.

P5 ECU Conditions: Additionally to the conditions on tasks, conditions spe-
cific to certain ECUs exist, see Table 1. These conditions hold for any task that
communicates with the respective ECU.

Given this list, we conclude that for some properties a model-checking approach
is feasible, while for others an algorithmic approach is more efficient. Properties
that refer to structural constraints like the occurrence and arrangement of tasks
can be expressed in temporal logic and thus call for a model-checking verifica-
tion. Violations of those properties can result in undesirable characteristics of
the process execution, subsequently referred to as major disturbance. An exam-
ple is that it may block the execution of the process. This holds for properties
P3, P4 and P5. Our approach is to define patterns for these properties. Table 1
shows the patterns and the respective CTL formulas. The atomic propositions
are inequations referring to states of a Petri net. For instance, (run-A > 0)
refers to all states where the place run-A contains more than zero tokens, i.e., A
is currently running. We use the term minor disturbance accordingly. This holds
for properties P1 and P2. They are on a representational level, i.e., the syntax
and the environment of the processes. Examples are violations of conventions
or deviation from best practice or from guidelines. We use a syntax check and
a query-based verification to check these properties, see Data Reconciliation in
Section 5.

4.2 Database of Context Knowledge

Our goal is to generate properties for checking commissioning processes automat-
ically, based on the information collected a priori. To this end, we have developed
a model of the context knowledge on commissioning processes in the automo-
tive industry which supports generating the properties. We then have designed
a relational database to manage this context information. The rationale is that
the context information is represented in a user-friendly manner. The database
needs to fulfill the following requirements:



Table 1. Property Patterns for Task and ECU Conditions

Prop. Name Description CTL
P3.1 Maximal UDS

Connections
The number of connections to UDS
should not exceed 10.

AG(¬(UDS > 10))

P3.2 Maximal KWP-
2000 Connections

The number of connections to
KWP2000 should not exceed 10.

AG(¬(KWP2000 >
10))

P3.3 Maximal Connec-
tions

The number of connections UDS and
KWP2000 should not exceed 14.

AG(¬(UDS +
KWP2000 > 14))

P4.1 Sequential before If a task A is in the commissioning pro-
cess a task B has to occur before A.

A [¬(run-A > 0)
W (run-B > 0)]

P4.2 Optional Sequen-
tial before

If both A and B occur in the commis-
sioning process, B has to occur before
A. B can completely be missing.

A [¬(run-A > 0) ∨
AG (¬run-B > 0))
W run-B > 0]

P4.3 Sequential after The occurrence of task A leads to the
occurrence of task B.

AG (run-A > 0 →
AF (run-B > 0))

P4.4 Non-Parallel Tasks A and B are not allowed to occur
in parallel.

AG (¬((run-A > 0)
∧ (run-B > 0)))

P5.1 Restricted access Only one task at the same time can
access/test each ECU C.

AG (¬(C > 1))

P5.3 Non-Parallel Some ECU C must never be tested in
parallel with an ECU C2.

AG (¬((C > 0)
∧(C2> 0)))

P5.4 Close Connection Task close-C must close the connection
to an ECU C.

AG ((C > 0) →
AF (close-C > 0))

DB-R1 Representing Contextual Information: The database should con-
tain the contextual information of the commissioning processes. First, the prop-
erties of the processes depend on the vehicle, i.e., on the components built into it
which have to be tested, mostly ECUs. The type of the vehicle and its concrete
configuration determine the ECUs required. Second, the properties of the pro-
cesses depend on the process places the component is tested at. The assembly
lines for testing and configuring consist of these places. They vary in different
factories. Third, there exist dependencies between the commissioning tasks, see
Subsection 4.1.

DB-R2 User-Friendly Specification of the Properties: Engineers should
be able to specify the properties in a comfortable way. To this end, the structure
of the database should support the perspective of these experts and not require
extensive experience with formal modeling.

DB-R3 Use of Existing Documents and Information: Defining the prop-
erties should use as much information from previous steps of the production life
cycle as is available. Information on the vehicle and its components which have
to be tested arises during the production design and production planning. The
database should contain this information.

Figure 2 shows an excerpt of our database model illustrating the overall struc-
ture. Appendix A shows the complete diagram, see [27] for more details. Our
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Fig. 2. Excerpt of the Database Schema for Context Knowledge

model consists of three parts, in line with DB-R2. One part comprises the ve-
hicle components (e.g., the ECUs), including variants of the component con-
figurations, so-called options of the vehicle. The product planning step delivers
such information, which we use to populate the respective part of the database,
cf. DB-R3. Another part contains the commissioning task objects, dependencies
between tasks, and constraints on the tasks, specified as CTL formulas. A third
part describes the assembly lines with process places and resources available
there. Dependencies between the parts complete the model, e.g., the resources
required to perform a testing task. The structure of the context knowledge given
as database model allows to define and maintain the context in a form expert
users are familiar with, cf. DB-R1, DB-R2.

4.3 Pattern Instances

As part of the verification, our framework determines the context of the process
first. It is used to query the database for the information required to dynamically
generate instances of the property patterns of Table 1.

Example 2. The process to be verified contains the ECUs = [GWA, KEL, FBE ].
For the process place VP2 and vehicle series M3, an ECU dependency exists
that KEL and FBE must not be used in parallel. For Property Pattern P5.3 our
framework generates the following property: AG(¬((KEL>0) ∧ (FBE>0))).

The dynamic generation of properties from the database has several benefits
compared to their direct specification in, say, CTL. First, for a process given we
only consider the properties relevant for it. Second, the maintenance of the prop-
erties is simplified. For example, if a new ECU is available for a process place,
one only needs to add the information into the database, i.e., to Relation ECU.
With a direct specification in turn, one might have to specify several hundred



properties. The database stores the contextual knowledge in a centralized and
non-redundant form, instead of managing all properties specified in CTL. For
example, the Pattern ”A leads to B” has a few hundred instances. If, for exam-
ple, the need to change the pattern to ”The first occurrence of A leads to B”
arose, updating would be avoided. Third, domain experts only need to specify
properties in CTL when there is a new property type, so the number of these
error-prone and complicated tasks is reduced.

5 Verification

We now describe the architecture of our verification framework and how it ver-
ifies if a commissioning process fulfills a set of property instances. The indus-
trial partner uses several different process notations, depending on the factory
and vehicle project. OTX is an ISO-Standard [13] that is planned as a vendor-
independent standard for commissioning processes. A preprocessing step trans-
forms a process file in another format into OTX (Figure 3.1). Next, the context
information regarding the process place and the vehicle project are extracted
from the commissioning process (Figure 3.2). Not all properties can be verified
with one paradigm. Therefore, our program consists of two modules: the Data-
Reconciliation (Figure 3, Step 3) and the Model Checker (Figure 3 Steps 4-6).
In the past, researchers have developed efficient tools for model checking with
Petri nets [24][14]. Hence, model checking in the narrow sense of the word is
not a topic of this article. Our framework contains an established framework for
model checking [24].

5.1 Data Reconciliation
First, our framework tests the syntactical correctness of the OTX process. To
do so, the module validates the commissioning process against the XML schema
of OTX. Additionally, we check for each task if it complies with the naming
conventions of the company. Then, the module checks if the resources are avail-
able at the process place of the commissioning process (P2). To this end, our
framework queries the database to evaluate if the resources at the process place
match the resources used in the process.

5.2 Model Checking
Model Checking is the problem of finding all states s such that the state machine
M has a given property φ in s. The commissioning processes are given in OTX,
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Fig. 3. The Verification Steps
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a block-based language [17] similar to WS-BPEL [33]. OTX does not allow for a
direct construction of the state space. Therefore, we transform the OTX process
model into a Petri net and can then analyze its state space.

Transformation: OTX describes the process as tree structure (cf. RPST [31]).
Each leaf node corresponds to a task, and each inner node represents a control
structure, e.g., parallel execution, exclusive execution or sequential execution of
the child nodes. For each type of nodes we define a template. A template is a Petri
net with an input In and an output place Out. Figure 4 shows the templates for a
task, a parallel node, a branch node and a sequence node. The control structure
nodes have specific regions, where to include the child elements (dotted boxes in
Figure 4). To transform the OTX process, we parse the process tree in a breadth-
first manner and include for each node the respective Petri net template into the
net. Our approach is similar to the one of [12] and [29]. Figure 4 a) shows the
Petri net template for a task, i.e., a commissioning routine. The place In marks
that Task A is activated and ready for execution. If a task execution starts, the
transition start fires and creates a token in each of the places run-A, C-A and
P-A. run-A represents the actual execution of the task. C-A is the place of the
ECU A communicates with, and P-A gives the bus protocol that A uses, either
UDS or KWP2000 [33]. Several tasks use the same place for C-A and P-A.

Verification: For model checking we have included the LoLA-Framework [24]
into our framework. It generates the state space for the Petri net and uses a
model-checking algorithm to verify the properties. Note that our framework is
not specifically tailored to this concrete model checker. We do not foresee any
major difficulties when including other frameworks for state-space generation or
model checking.



Fig. 5. Screenshot of the Verification Framework

6 Implementation

We have implemented concepts described so far in our framework called AAAFT
(Automatic Arrangement of Working Steps in Production and Testing). The
database for context knowledge is a MySQL database. We also have implemented
a graphical front-end that can load an OTX process, visualize it, verify the
process and highlight any task that relates to the violations detected.

Example 3. Figure 5 shows a screenshot of our framework. The program has
loaded an OTX process and has verified it against the database. Dark (red)
boxes highlight tasks that cause a rule violation, e.g., the component IEL is not
closed at the end of the process. On the left-hand side, the framework lists the
violations detected.

7 Empirical Evaluation

In Subsection 7.1 we say how we have evaluated that our framework can identify
rule violations in real processes. Additionally to this criterion we want to evaluate
that the framework does meet the requirements of the process developers in
practice, see Subsection 7.2.

7.1 Functional Evaluation

We have used our prototype to verify 60 commissioning processes, newly gen-
erated or modified ones, before their execution. These processes refer to four
vehicle series: the middle class car M1, the upper-middle class car M2, the ex-
ecutive car M3, and the sports car M4. They are executed at 34 stations. We
have discussed the verification results and have categorized the processes into
three categories: correct, with minor process disturbance and with major process
disturbance. Figure 6 shows the number of processes in the three categories for



each vehicle series. Most of the minor disturbances result from incorrect labels
of tasks and missing values in the database. For few processes, the verification
framework has reported false positives, due to the fact that we do not consider
guard conditions. These false positives have also been categorized as minor. In a
significant share of the processes (≈ 23%), we could detect a major disturbance.

7.2 Expert Interviews

To evaluate our approach we have held semi-structured expert interviews. We
aim to test the three characteristics: process quality, generality and usability, as
explained next. The interview guide is available on our website:
http://dbis.ipd.kit.edu/2027.php.

Process Quality: Has the framework increased the quality of the commission-
ing processes? This criterion includes the change in the development time of
processes, the number of false positives and the number of false negatives.

Generality: Can the framework be used in a different context within the com-
pany? For instance, is the framework general enough to be used in another
factory? We have also asked how well the framework can be integrated into the
tool chain.

Usability: Can the framework be used in an intuitive way? Is the help of a
technical person needed to use the framework? For usability we have used the
Standard System Usability Test (SUS) [5]. SUS is a 10 item test that is scored
on a 5-point scale of strength of agreement or disagreement. The SUS has the
advantage that it is technology-agnostic, i.e, it can be used in different applica-
tion domains. Due to its wide usage, a meta-test and guidelines exist to interpret
the results [5].

M1 M2 M3 M4
0

10

20

30

Vehicle Series

N
r.

of
P

ro
ce

ss
es

M1 M2 M3 M4
Nr. of Processes 13 17 25 5

Correct 3 3 0 0
Minor Disturbance 9 8 18 5
Major Disturbance 1 6 7 0

Correct
Minor
Major

Legend)

Fig. 6. Process Disturbances Found in the Processes Evaluated



Participants: Participants in our study are domain experts, i.e., employees
who have developed commissioning processes. We have limited our interviews to
experts who had used our framework intensively and had enough expertise to give
feedback. We have been able to gain four experts who met these requirements for
a qualitative interview. Their experience in developing commissioning processes
range between 1 and 14 years, with an average of 7 years.

Results and Discussion: Figure 7 shows the results of our qualified interviews.
The experts do not think that our framework will influence the development time
negatively. The number of false positives and false negatives are acceptable but
should be improved. Our framework detected slightly more false positives than
false negatives. The experts saw a great potential of our framework to be used
in other testing environments as well. The rating of how well the framework can
be integrated into the tool chains varies between the experts. The SUS score (a
measure for the usability) ranges between 65 and 85 with an average of 71.67.
This is slightly above the average (69.69) and median (70.91) of reported studies
using the SUS score [5]. All experts see great potential in improving the quality
of the commissioning processes by means of our framework.

Conclusion: The evaluation has shown that the experts deem our framework
very useful and with high potential to enhance process quality. A minor issue is
that they have criticized the amount of information presented by our framework.
To this end, we plan to have two modes. A debug mode that presents detailed
information on the model checking process, and a normal mode that only shows
the information required by the domain experts. To improve usability further,
the experts had suggested presenting the results in more than one language.
Some experts doubt that our framework can be easily integrated into the tool
chain. To this end, we currently are reimplementing it in C#. The framework
currently is implemented in Java.

Process Quality Generality Usability

Process
Quality

Time Red.
str. disagree

disagree

neutral

agree

strong agree

False
Positiv

e

False
Negative

very few

few

neutral

often

very often

Differen
t Contex

t

Integration
str. disagree

disagree

neutral

agree

strong agree

SUS Score
0

50

100

Fig. 7. Results of the Empirical Evaluation



8 Related Work

Related work includes the user-friendly specification of properties, their man-
agement and the property-specific verification of processes.

Specification: The direct specification of properties in a formalism like CTL is
error-prone and not feasible for a user without experience in formal specification.
To this end, different approaches have been developed. Most business processes
are modeled in a graph-based modeling language like BPMN [32], YAWL [3] or
Petri nets [1]. [6] extends the BPMN notation with new elements that directly
represent LTL operators. BPMN-Q [4] extends BPMN with new edge types that
represent sequential ordering, between tasks. Compliance Rule Graphs [20] al-
low a specification of requirements in a graph-based formal language. Another
approach is the use of specification patterns. [10] introduces the property pat-
terns to specify concurrent systems. [28] extends the pattern system to PROPEL
(PROPerty ELucidation) to cover variations of the property patterns. [9] uses a
question tree to allow specifying PROPEL patterns. In our domain, only a few
different property patterns exist. Dependent on the context, many instances are
generated. Because of the small number of patterns but many similar instances,
we have not found any of the approaches to be very helpful in our specific case.

Management of Properties: [30] builds an ontology for the domain of com-
pliance management. However, it is not sufficient to capture the domain-specific
information needed for the instantiation of our patterns. Managing compliance
properties includes allocating the properties to the business processes. [15] al-
locates the compliance properties to the processes using potentially relevant
activities. We in turn dynamically generate only the properties relevant for the
commissioning process, using the context knowledge directly before verification.

Verification: We aim to check if a business process complies with the properties
given. [22] uses an approach that checks if the event log L (a set of execution
traces) complies with properties. In our case, there exist violations of properties
that are not related to an event during process execution. For example, we do
not see how to recognize a violation of a non-parallel property from the log of a
process. Further, we use model checking to verify the processes. Most high-level
process languages lack the direct construction of the state space required for
model checking. To this end, a transformation to a formal language like Petri
nets is required. [19] gives an overview of transformations from BPMN, YAWL
and WS-BPEL to Petri nets. Our approach is similar to [12]. [21] empirically eval-
uates different approaches for soundness verification. The criteria include error
rates, process size and verification time. [11] evaluates three techniques (Partial-
Order-Reduction, Woflan and SESE-Decomposition) to verify the soundness of
over 700 industrial processes. Our verification technique is more general than
just verifying soundness as in [21] and [11]. It is however interesting to see that
some insights at an abstract level are similar to ours. In particular, the size of the
processes correlates with the number of rule violations, and a significant share
of processes in industrial settings contains rule violations.



9 Conclusions

To avoid property violations in commissioning processes, a framework to verify
if a process is correct clearly is helpful. With verification, an important step is
specifying which properties a process must fulfill. Given that verification algo-
rithms already exist, a core question is how to arrive at a user-friendly framework
for process verification that supports collecting and maintaining the properties.

We have analyzed which properties vehicle commissioning processes in the
automotive industry must fulfill and have identified the context information rel-
evant for verification. An important insight has been that there exist only a
few types of properties, but the number of properties may be very large. Thus,
an important design decision has been to develop a database with contextual
information and to focus on property patterns covering all properties relevant
for vehicle-commissioning processes. Consequently, we have proposed a trans-
formation of patterns to properties tailored to a certain process model. Our
framework then verifies these properties on the commissioning processes. An
interview-based evaluation together with domain experts has shown that the
framework does enhance the process quality. Ongoing work addresses an even
tighter integration of the framework and its database into the tool chain.
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