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ABSTRACT
We consider the following data summarization problem. We are
given a dataset including ordinal or numeric explanatory attributes
and an outcome attribute. We want to produce a summary of how
the explanatory attributes affect the outcome attribute. The sum-
mary must be human-interpretable, concise, and informative in
the sense that it can accurately approximate the distribution of
the outcome attribute. We propose a solution that addresses the
fundamental challenge of this problem–handling large numeric
domains–and we experimentally show the effectiveness and effi-
ciency of our approach on real datasets.

CCS CONCEPTS
• Information systems→ Summarization;Datamining;Mul-
tidimensional range search; • Human-centered computing
→ Information visualization.
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1 INTRODUCTION
A common data analysis task is to determine how a set of explana-
tory attributes affects a class or an outcome attribute. However,
before building complex models and making data-driven decisions,
data scientists are often interested in exploring and summarizing
the data. This motivates the problem of summarizing how the ex-
planatory attributes affect an outcome attribute in a given dataset.

Prior work proposed the concept of explanation tables [7–9] to
solve this problem in a concise, interpretable and informative way,
with informativeness defined as the ability to capture the distribu-
tion of the outcome attribute. However, only discrete explanatory
attributes were supported. In this paper, we argue that data sum-
marization is particularly compelling and timely in the presence of
ordinal and numeric explanatory attributes, representing, e.g., time,
measured quantities or locations. Such attributes are common in
machine-generated data produced by the Internet of Things and by
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smart infrastructure. To fill this gap, we propose a method for Light-
weight Extraction of Numeric Summaries (LENS). Numeric domains
can be very large, which makes summarization techniques critical,
but also technically challenging. Addressing these challenges with
LENS is the main contribution of this paper.

Example: Consider the Occupancy dataset [4], an excerpt of
which is shown in Table 1. The dataset includes sensor measure-
ments from a smart building (time, temperature, humidity, light
level, carbon dioxide level) as well as an outcome attribute denot-
ing whether a given room was occupied at the time. Suppose a
data scientist wants to understand how the sensor measurements
inform occupancy status. Table 2 shows the corresponding expla-
nation table [7]. Each row is a pattern that represents a subset of
the data matching the given values of the explanatory attributes,
with “*” matching all values. Each pattern also includes the count
of matching records and the fraction of records within this subset
having a true outcome. The first row indicates that 23 percent of all
records correspond to occupied rooms. The second row, chosen to
provide the most additional information about the distribution of
the outcome attribute, suggests that rooms are not occupied when
the light level is zero. The next two rows similarly suggest that
rooms are not occupied on Saturdays and Sundays. In contrast,
LENS produces the summary shown in Table 3. The use of value
ranges allows LENS summaries to capture patterns such as week-
days (“Mon-Fri”) or evening hours (“15-23”), which would have to
be pieced together from multiple rows of an explanation table. For
example, the second row indicates that 4911 records, i.e., 23 percent
of the data, correspond to occupied rooms on weekdays when the
light level is high, which would require five separate rows without
ranges. Subsequent rows identify additional subsets whose outcome
distribution diverges from the expectation such as occupied rooms
during evening hours with lights on (which, again, would require
a separate pattern for each hour without ranges). The summary
also contains a column specifying the outcome for each row to
enable non-binary nominal outcomes, e.g., distinguishing between
different persons occupying a room.

Challenges: Informative summarization for numeric and ordi-
nal domains faces a technical challenge: the number of possible
patterns is larger compared to nominal domains. In addition to con-
stants and stars, as in Table 2, there are quadratically many possible
ranges (with respect to the domain size) over each ordered attribute,
as in Table 3. This problem is made worse by the large domain sizes
that numeric attributes often have, and unfortunately, discretizing
or binning the domains beforehand can miss semantically mean-
ingful ranges such as Monday-Friday. Effectively addressing this
challenge is the main contribution of this paper.
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Table 1: A fragment of a building Occupancy dataset

Day Hour Temp. Humid. Light CO2 Occupied
Mon 14 23.7 26.27 585.2 749.2 True
Mon 18 22.39 25 0 805.5 False
Wed 10 23.39 25.6 738 1042 True
Thu 15 22.5 27 469 1063 True
Fri 02 21 25 0 440 False
Sun 13 20.5 28.7 265 426.7 False
Tue 11 22.2 27.6 535.7 1137 False
.
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Table 2: An explanation table for the Occupancy dataset

Day Hour Light CO2 Count Occupied
∗ ∗ ∗ ∗ 20560 23.1%
∗ ∗ 0 ∗ 12772 0.01%

Sun ∗ ∗ ∗ 2880 0.00%
Sat ∗ ∗ ∗ 2880 0.00%
Thu 13 ∗ ∗ 122 13.85%
Thu 14 ∗ ∗ 118 41.48%

Table 3: An informative summary for the Occupancy dataset
created by LENS

Day Hour Light Count Occupied Correct
∗ ∗ ∗ 20560 False 76.9%

Mon–Fri ∗ 356–1697 4911 True 96.27%
Mon–Tue ∗ 428–536 2025 True 99.41%
∗ 15–23 429–576 1522 False 0.33%

Thu–Fri 9 ∗ 240 True 99.58%

After discussing related work in Section 2, we present the fol-
lowing contributions.

Conceptual Formalization. We present a framework for informative
summaries in Section 3. It extends information theoretic founda-
tions of explanation tables to ordered explanatory attributes and
arbitrary (not only binary) nominal outcomes.

LENS Framework. Section 4 describes our method for pruning the
pattern space. We leverage existing methods to identify informative
patterns with only stars and constants, and then we “grow” the
constants into intervals of exponentially increasing lengths. This
allows LENS to scale well without discretizing numeric domains
beforehand, as many interval mining techniques do [11, 16, 23].

Speeding up LENS.Measuring informativeness is computationally
costly, even for the moderate numbers of candidate patterns consid-
ered by LENS. Section 4.3 presents a Sparse Cumulative Cube that
stores a small set of useful aggregates for computing the informa-
tion content of the patterns considered by LENS.

Experimental Evaluation. In Section 5, we use several real-world
datasets to compare LENS against methods from related fields in
terms of informativeness and runtime. We also explore the param-
eter sensitivity of LENS and scalability with the number of rows
and columns. Our results show that LENS outperforms competing

Table 4: Subgroups in the Occupancy dataset

Day Hour Temp. Humid. Light CO2

Mon–Fri ∗ ∗ ∗ 389–1697 ∗

Mon–Fri ∗ ∗ ∗ 390–1697 ∗

Mon–Sat ∗ ∗ ∗ 362–1697 450–2076
Mon–Sat ∗ ∗ ∗ 389–1697 ∗

Mon–Sat ∗ ∗ ∗ 362–1697 ∗

approaches and its informativeness has little dependence on param-
eter choices.

Finally, Section 6 concludes the paper with directions for future
work.

2 RELATEDWORK
In this section, we discuss related work that studied the influence
of explanatory attributes on an outcome attribute with a focus on
human interpretability. We defer a discussion of explanation tables
to the next section as part of our formalization.

Subgroup Discovery. These methods find subsets of data whose
distribution of outcomes diverges from the overall distribution [1,
12, 13, 24]. This is related to our summarization problem since in-
teresting subgroups may correspond to interesting relationships
between the explanatory attributes and the outcome attribute. How-
ever, each subgroup is individually assigned an interestingness
score without considering other subgroups. This leads to subgroups
such as those in Table 4, which were produced by the Diverse Sub-
group Set Discover algorithm [23] for the Occupancy data. These
subgroups are interesting on their own but redundant (they all
mainly describe weekdays with high illumination) and therefore
not informative as a whole. In Section 5, we compare LENS to two
state-of-the-art subgroup discovery techniques that support ordinal
and numeric explanatory attributes.

The first approach,MergeSD [11], introduces pruning techniques
to reduce the number of candidate subgroups. The interestingness
measure used for subgroups is the difference in likelihood of a true
outcome between the overall data and the subgroup, weighted by
subgroup size. They show an upper bound for this measure under
“refinement” of subgroups. That is, for each subgroup, characterized
as a pattern, they determine the maximum interestingness for any
pattern matching a subset of this subgroup. This upper bound is
then used in a depth-first search to prune the pattern space. Unfor-
tunately, such a bound is not useful for informativeness because
small groups can still be informative if the distribution of their
outcomes is very different from the overall distribution. As a result,
an analogous bound for informativeness would be very loose, even
for small groups, and not suitable for pruning.

The secondmethod isDiverse Subgroup Set Discovery (DSSD) [23],
which aims to find non-redundant subgroups. DSSD uses a three
phase approach to ensure subgroup diversity. First, it uses a greedy
best-first search that maintains a fixed number of candidates to find
a large set of relevant subsets. Next, DSSD diversifies the candidate
set by pruning dominated subgroups. Here, a subgroup dominates
another subgroup if it is formed by a subset of the conditions and
has higher interestingness. Finally, the best subgroups from this
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Figure 1: Fragment of a decision tree for the Occupancy
dataset

diversified set are selected. However, this approach may still select
similar subgroups, as seen in Table 4, if they are not strictly domi-
nated by others, e.g., through slightly different conditions or higher
interestingness.

Classification. Instead of summarizing the relationship between
a class attribute and the remaining attributes, classification uses
these relationships to predict the class. As a result, classifiers are
judged by their accuracy on data outside the initial “training” set
instead of their ability to summarize existing data. Additionally,
human interpretability is often sacrificed for accuracy through
feature engineering, ensembles or neural networks. Rule based
classifiers such as decision trees [20] are an exception as human-
interpretable classification methods that partition the data into
non-overlapping sets. Interpretable Decision Sets [17] are another
exception, which allow a minimal amount of overlap to reduce the
number of decision boundaries. However, these approaches are
not concise, even after applying optimizations such as tree or rule
pruning. For example, Figure 1 shows an excerpt of a decision tree
created by the YaDT implementation [21] with default parameters
for the Occupancy dataset. It is not concise: there are over 50 leaves,
making it difficult to observe any patterns. In Section 5, we will
experimentally compare LENS with YaDT.

3 FUNDAMENTALS AND FORMALIZATION
We now formalize informative summaries as a generalization of ex-
planation tables [7–9] to ordered attributes, patterns with intervals,
and multi-valued outcomes. We then present our problem state-
ment and a greedy framework for building informative summaries.
Table 5 summarizes the notation used in this paper.

3.1 Informative Summaries
Let A1, . . . ,Ad be a set of d explanatory attributes with data space
A = A1 × · · · × Ad and let O be an outcome attribute. For each
attribute domain Ai = {a

1
i , . . . ,a

|Ai |
i }, if Ai is ordered, we assume

that aji is before a
k
i in the ordering if and only if j < k . We assume

finite domains, i.e., we restrict the domains of real values to the val-
ues present in the data. A dataset is a multiset of tuples overA×O .
We represent it as a function f : A×O → N that counts the number
of tuples for specific combinations of attribute and outcome values.
The total number of tuples in the dataset is n =

∑
t ∈A

∑
o∈O f (t,o).

Table 5: Notation

Symbol Meaning
Ai Explanatory attribute
d Number of explanatory attributes
A Data space formed by A1 × · · · × Ad
t A tuple of explanatory attributes (t ∈ A)
O Outcome attribute

o ∈ O An outcome value
f (t , o) A dataset represented by tuple counts
f (o) Count of tuples with outcome o
f (t ) Count of tuples t disregarding outcome
n Total number of tuples
p A pattern

supp(p) Number of tuples matching p
cnt (p, o) Number of tuples matching p with outcome o
r (p, o) A rule formed by a pattern p and outcome o

S An informative summary as set of rules
P (o |t ) Probability for a tuple t to have outcome o
PS (o |t ) Maximum entropy estimate of P (o |t ) by S
дS (p) Maximal gain by including any rule with p

For brevity, we overload f to sum over the omitted parameter, that
is, f (o) =

∑
t ∈A f (t,o) and f (t) =

∑
o∈O f (t,o).

Patterns are compact specifications of subsets of A. For each
attribute Ai , a pattern p specifies a closed interval [pi ,qi ] with
pi ,qi ∈ {1, . . . , |Ai |}. Note that for attribute Ai without ordering,
the only meaningful intervals are single values, [pi ,pi ], and all
values, [1, |Ai |]. A tuple t = (t1, . . . , td ) ∈ A matches a pattern
p = ([p1,q1], . . . , [pd ,qd ]) if a

pi
i ≤ ti ≤ a

qi
i for all i ∈ {1, . . . ,d}.

We also write t ≍ p for “t matches p”. Next, the support of
p is the count of matching tuples regardless of their outcome:
supp(p) =

∑
t ∈A≍p f (t). Additionally, for each outcome value

o ∈ O , cnt(p,o) =
∑
t ∈A≍p f (t,o) is the count of matching tu-

ples with this outcome. A rule r (p,o) is a combination of a pattern
p, outcome o, pattern support supp(p) and outcome percentage
cnt(p,o)/supp(p). An informative summary S is a set of such rules.

We use the following notation for patterns. Intervals [pi ,qi ] that
cover all values, i.e., pi = 1 and qi = |Ai |, are called wildcards
and are represented by “∗”. If an interval covers exactly one value,
i.e. pi = qi , it is a constant, represented by apii . All other intervals
include both endpoints: [apii ,aqii ]. Additionally, we say a pattern is
simple if it consists of only constants or wildcards.

Let P(o |t) be the conditional distribution of outcome value o for
a given combination of explanatory attribute values t . For a given
dataset, we can calculate P(o |t) emprically from f . Formally, for all
o ∈ O and t ∈ A, P(o |t) = f (t ,o)

f (t ) if f (t) > 0 and zero otherwise.
While the set of all these probability distributions is informative,
it is too large for human interpretation, i.e., it is not concise. We
consider informative summaries as compact representations of
these conditional probabilities.

Following previous work on data summarization and explo-
ration [7, 9, 18, 22], we use information theoretic methods to quan-
tify informativeness. Let PS = {PS (o |t) : o ∈ O, t ∈ A} be a model
of the conditional probabilities based on the information contained
in a summary S . By the maximum-entropy principle, a preferred
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distribution is one with the highest entropy, i.e., the most uniform
distribution that agrees with the numbers reported in S without
making any other assumptions. Formally, this is PS that maximizes

H (PS ) = −
∑
t ∈A

∑
o∈O

f (t)

n
PS (o |t) log

(
PS (o |t)

)
(1)

with the constraints that 0 ≤ PS (o |t) ≤ 1, and for all rules r (p,o) ∈ S ,
that cnt(p,o) =

∑
t≍p f (t)·PS (o |t). ComputingPS is non-trivial as it

has no closed form and requires numeric methods such as iterative
scaling [2]. We omit the technical details of iterative scaling as
these are orthogonal to our contributions, and instead give a brief
example of calculating PS below.

Example 3.1. Consider the Occupancy dataset from Table 1 and
an informative summary S containing the first two patterns from Ta-
ble 2, call them p1 and p2. Since p1 matches all tuples, the maximum-
entropy model for PS distinguishes only between tuples that match
p2 and those that do not. Thus, we have to find x1 = PS (true|t) for
t ≍ p2 and x2 = PS (true|t ′) for t ′ - p2. Since the outcome is binary,
the complementary probabilities are PS (false|t) = 1 − PS (true|t)
and PS (false|t ′) = 1 − PS (true|t ′). Based on S , the restrictions are
20560 · 0.231 = 12772 · x1 + 7788 · x2 and 12772 · 0.01 = 12772 · x1,
which yields x1 = 0.01 and x2 = 0.59. Naturally, this becomes
harder when there are more probabilities to determine than con-
straints, as induced by overlapping patterns [9].

We use the Kullback-Leibler (KL) Divergence between P(o |t) and
PS (o |t) to measure the accuracy of S in estimating P(o |t). For each
tuple t , this divergence is defined as

KLt
(
P
����PS ) = ∑

o∈O
P(o |t) log

(
P(o |t)

PS (o |t)

)
. (2)

Since this yields one divergence value per tuple, we aggregate the
divergences and weigh them by tuple frequency to obtain the total
error of a summary S :

div
(
P
����PS ) = ∑

t ∈A
f (t)KLt

(
P
����PS ) . (3)

The informativeness of a summary is measured as the reduction in
error compared to only knowing the overall outcome distribution
in the entire dataset. That is, we compare the divergence of the
maximum-entropy estimate to a baseline model that uses only the
total outcome distribution. For all o ∈ O and t ∈ A, the baseline
is PB (o |t) =

f (o)
n . The information gain based on an informative

summary S is then

gain(S) = div
(
P
����PB )

− div
(
P
����PS ) (4)

Our formal problem statement is as follows.

Informative Summarization Problem. Given a dataset represented
as function f counting entries for each attribute and outcome com-
bination and a desired number of rules s , compute an informative
summary S with |S | = s that maximizes gain(S).

3.2 Constructing Informative Summaries
Since informative summaries generalize explanation tables, the
NP-hardness to construct optimal explanation tables [7] extends
to optimal informative summaries. As a result, exact solutions are

Algorithm1:Greedy Construction of Informative Summaries
1 S ← ∅
2 while |S | < s do
3 PS ← iterative_scaling(S )
4 R ← candidate rule set
5 r (p, o) ← argmaxq∈R gain(S ∪ {q })
6 S ← S ∪ {r (p, o)}

7 return S

infeasible assuming P , NP . Instead, a common approach [7, 9, 18]
for this and similar problems is a greedy approach, as shown in
Algorithm 1. Starting with an empty summary S , the rules are
selected one at a time until |S | = s1. For each selection, iterative
scaling is performed to obtain the current model PS . Then, a set of
candidate rules R is considered and a rule r (p,o) ∈ R that maximizes
gain(S ∪ {r (p,o)}) is selected.

Since R can be very large, even if only simple patterns are consid-
ered, one way to speed up Algorithm 1 is to prune R. For example,
the Flashlight [7] and SIRUM [9] techniques perform sample-based
pruning as follows. In each iteration of the while loop, a random
sample is drawn from the dataset, and R is populated with only
those simple patterns that match at least one sampled tuple. The
intuition is that informative patterns are likely to have high support
and therefore should match at least one sampled tuple.

Even after pruning the candidate rule set, Algorithm 1 may be
too expensive because line 5 requires gain calculations for each
candidate. For efficiency, prior work uses the following approxima-
tion for binary outcomes [7, 18, 22]. Let r (p,o) be a candidate rule
and S+ = S ∪ {r (p,o)}. It is assumed that PS+ (o |t) ≈

cnt (p,o)
supp(p) for

t ≍ p and PS+ (o |t) ≈ PS (o |t) otherwise. That is, when computing
gain, it is assumed that adding r (p,o) only refines the outcome
distribution estimates for tuples matching p, without recomputing
the estimates for any other tuples (which would require iterative
scaling). Additionally, in the current model based on S without
the new candidate, all tuples matching p are given the same prob-
ability PS (o |t) ≈

∑
t≍p f (t )·PS (o |t )

supp(p) . With this approximation, the
improvement in gain by adding rule r (p,o) is [7]:

gain(S+) − gain(S) (5)

≈ cnt(p,o) · log

(
cnt(p,o)∑

t≍p f (t) · PS (o |t)

)
+ (supp(p) − cnt(p,o)) · log

(
supp(p) − cnt(p,o)∑
t≍p f (t) · (1 − PS (o |t))

)
.

Call the two possible outcome values o and o′. Note that the sec-
ond term above accounts for the gain due to refining the proba-
bility estimates for the complementary outcome value o′ because
supp(p) − cnt(p,o) = cnt(p,o′) and 1 − PS (o |t) = PS (o

′ |t).
We now extend the above approximation to non-binary out-

comes. A rule r (p,o) describes the frequency of one particular out-
come value o within its matching tuples. With binary outcomes,
we can immediately infer the frequency of the other value o′. With

1In the unlikely case that no rule yields additional gain, we stop the algorithm early.
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non-binary outcomes, the question is how to adjust the probability
estimates due to r (p,o) for all the other outcome values besides o.
Formally, Equation 5 becomes

gain(S+) − gain(S) ≈ cnt(p,o) log

(
cnt(p,o)∑

t≍p f (t) · PS (o |t)

)
+

∑
o′∈O\{o }

cnt(p,o′) log

(∑
t≍p f (t) · PS+ (o

′ |t)∑
t≍p f (t) · PS (o′ |t)

)
. (6)

To approximate PS+ without iterative scaling, we again appeal
to the maximum-entropy principle. When computing gain due to
r (p,o), we adjust the probabilities P(o′ |t) for each o′ , o proportion-
ally to the adjustment for P(o |t). This approximates the necessary
adjustments to PS+ without introducing any assumptions beyond
r (p,o). Formally this is

PS+ (o
′ |t) ≈ PS (o

′ |t)
1 − PS+ (o |t)
1 − PS (o |t)

(7)

≈ PS (o
′ |t)

supp(p) − cnt(p,o)

supp(p) −
∑
t ′≍p f (t ′) · PS (o |t ′)

.

With this equation, we can now substitute PS+ in Equation 6.
Cancelling

∑
t≍p f (t) · PS (o

′ |t) from the fraction within the loga-
rithm of the sum yields

cnt(p,o) log

(
cnt(p,o)∑

t≍p f (t) · PS (o |t)

)
(8)

+
∑

o′∈O\{o }

cnt(p,o′) log

(
supp(p) − cnt(p,o)

supp(p) −
∑
t ′≍p f (t ′) · PS (o |t ′)

)
as an approximation of gain(S+) − gain(S).

Note that with non-binary outcomes, we need to make two
decisions when seeking the next rule with the highest gain: its
pattern p and its outcome value o. We use дS (p) to denote the
highest gain of any rule with patternp over all the possible outcome
values, i.e., дS (p) = maxo∈O gain(S ∪ {r (p,o)}) − gain(S).

Finally, we note that some existing techniques that use similar
information-theoretic methods [9, 22] are compatible with numeric
outcomes. The idea is to scale each outcome value by the sum of
all the outcomes, which means that the scaled outcomes add up to
one and can be thought of as a probability distribution. We omit
the details and remark that this transformation is compatible with
our summarization method for numeric explanatory attributes.

4 LENS APPROACH
We now present the Lightweight Extraction of Numeric Summaries
(LENS) approach for informative summaries with numeric at-
tributes. We motivate our approach and present an overview (Sec-
tion 4.1), followed by a discussion of candidate rule generation
(Section 4.2) and how we speed up the gain computation of the
selected candidates (Section 4.3). We end with a discussion of com-
putational complexity (Section 4.4).

1
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Figure 2: Summary of LENS

4.1 Motivation and Overview
Numeric and ordinal explanatory attributes produce a much larger
pattern space that cannot be handled effectively by existing meth-
ods. For example, a straightforward extension of the sample-based
pruning method used by Flashlight and SIRUM is to consider all
patterns with all possible intervals that match at least one sampled
tuple. However, when we tested the extension on the Occupancy
dataset, this modified version of Flashlight did not produce a single
rule within 3 hours. This means that the candidate rule space is too
large even after sample-based pruning.

Another straightforward optimization that is used in many in-
terval pattern mining techniques is to discretize or bin numeric
domains. However, this leads to information loss, and minimizing
the impact of this loss requires careful selection of the discretizing
technique depending on both the application and the data [3, 10].
Alternatively, one can discretize the data manually. However, this
requires domain knowledge for meaningful intervals, and even then,
it may not be clear which intervals are informative. For example, in
the Occupancy dataset, one would have to know that days of the
week can be binned into weekdays and weekends, but even then,
we would lose interesting patterns if, e.g., the building was occupied
differently at the beginning of a workweek than at the end. Since
informative summaries are meant to provide insights for users who
may not be familiar with the data, requiring domain knowledge be-
forehand defeats their purpose. This means that we need a solution
that is data driven and does not perform any discretization apriori.

Figure 2 summarizes the ideas behind LENS. Instead of aban-
doning existing methods completely, we leverage their strengths
(finding simple informative patterns) while avoiding their weak-
nesses (inability to scale to large ordered domains). In each iteration,
LENS first uses an existing method (shown at the top of the figure)
to find top k simple informative patterns. Notably, LENS is compati-
ble with any greedy method for finding simple informative patterns
such as Flashlight, SIRUM or SURPRISE [22]. LENS then “grows”
the (presumably informative) constants in the ordered attributes
of these patterns in a principled way to form informative intervals.
Furthermore, the intervals considered by LENS are deterministic
for each underlying simple pattern, and therefore benefit from pre-
computations. To do this, we present a data structure called Sparse
Cumulative Cube (SCC) that stores intermediate sums required by
Equation 8 to estimate gain.

Algorithm 2 provides the details. Starting with an empty sum-
mary (Line 1), LENS performs iterative scaling (Line 3) and selects
the next best rule (Lines 3-14) s times (Line 2). For each rule, LENS
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Algorithm 2: LENS
Input: Data f , summary size s , number of simple patterns k
Output: Informative summary S

1 S ← ∅
2 while |S | < s do
3 PS ← iterative_scaling(S )
4 maxGain← 0
5 Candidates← top k simple patterns
6 foreach p = ([p1, q1], . . . , [pd , qd ]) ∈ Candidates do
7 if | {i ∈ {1, . . . , d } : pi = qi } | < 5 then
8 foreach o ∈ O do
9 Build Co and CSo c.f. Section 4.3

10 q ← IntervalExploration(p) c.f. Algorithm 3
11 if дS (q) > maxGain then
12 rbest ← argmaxr ∈{r (q ,o):o∈O } gain(S ∪ {r })
13 maxGain← gain(S ∪ {rbest })

14 S ← S ∪ {rbest }

15 return S

first obtains k simple patterns using some existing method (Line 5).
For each of these patterns (Line 6), LENS explores patterns with
intervals over ordered attributes (Line 10), as will be described
in Section 4.2, with q being the best pattern in terms of gain. To
speed up the gain computation, we build sparse cumulative cubes
(Lines 8-9), as will be described in Section 4.3. While q is the most
informative pattern based on a particular simple pattern p, rbest
stores the rule with highest gain across all patterns (Lines 11-13),
which is added to the summary (Line 14). We restrict the search to
simple patterns with fewer than five constants (Line 7) for inter-
pretability and efficiency. Patterns with many constants or intervals
are harder to interpret [17], and, as we discuss in Section 4.3, the
size of the sparse cumulative cube grows exponentially with the
number of constants.

4.2 Interval Exploration
This section describes how LENS creates intervals based on a simple
pattern p. Intervals are created only over ordered attributes that
have a constant inp; unordered attributes or ordered attributes with
a wildcard in p are not considered. However, the number of possible
intervals over the considered attributes can still be prohibitively
large. Take an ordered attributeAi and a constant ai ∈ Ai . There are
up to |Ai |2 values before and after ai in the ordering as valid interval
endpoints. This gives up to

( |Ai |
2

)2 intervals on Ai containing ai .
If a simple pattern has more than one constant, the set of potential
patterns is the Cartesian product of the intervals for each attribute.

To reduce the set of candidate rules, we consider exponen-
tially increasing intervals. For an attribute Ai with ordered values
a1i , . . . ,a

|Ai |
i and a constant pi occurring in a simple pattern, we

consider starting pointspi ,pi −1,pi −3,pi −7, . . . and ending points
pi ,pi + 1,pi + 3,pi + 7, . . . , bounded by 1 and |Ai |, respectively.
Note that these exponential steps are based on the rank order of
attribute values and not the values themselves, meaning that all
pairs of consecutive values are treated as equidistant. Also, note
that the considered intervals are more fine grained close to pi . This

Algorithm 3: IntervalExploration
Input: Simple pattern ([p1, q1], . . . , [pd , qd ])

1 List← {(([p1, q1], . . . , [pd , qd ]), 0)}
2 bestGain← 0
3 while List , ∅ do
4 NextList← ∅
5 foreach (([p′1, q

′
1], . . . , [p

′
d , q

′
d ]), prevGain) ∈ List do

6 thisGain← дS (([p′1, q
′
1], . . . , [p

′
d , q

′
d ]))

7 if thisGain > bestGain then
8 bestGain← thisGain
9 bestPattern← ([p′1, q

′
1], . . . , [p

′
d , q

′
d ])

10 if thisGain > prevGain then
11 forall 1 ≤ i ≤ d do
12 if p′i > 1 then
13 nextLim←max(1, p′i − (2 · |pi − p

′
i |) + 1)

14 nextPat←([p′1, q
′
1], . . . ,[nextLim,q′i ], . . . ,[p

′
d , q

′
d ])

15 NextList.insert(nextPat, thisGain)

16 if q′i < |Ai | then
17 nextLim←min( |Ai |, q′i + (2 · |qi − q

′
i |+1))

18 nextPat←([p′1, q
′
1], . . . ,[p

′
i ,nextLim], . . . ,[p

′
d , q

′
d ])

19 NextList.insert(nextPat, thisGain)

20 List← NextList

21 return bestPattern

is desirable because pi was chosen to be an informative constant
in the simple pattern, so values close to pi could also be informa-
tive. Additionally, for any interval [p′i ,q

′
i ] on Ai containing ai , we

consider starting and ending points that are similar to p′i and q
′
i in

distance to ai . This exponential strategy reduces the number of in-
tervals over an attributeAi to at most

(
log2

( |Ai |
2

) )2. Overall, there
are up to Πd

i=1
(
log2

( |Ai |
2

) )2 patterns with intervals for each simple
pattern. Note that our approach for interval selection is adaptive to
the data and to the rules included into the summary so far as it is
centered around constants from a pattern that is informative in this
context. This is different than other interval selection schemes such
as those using quantiles, which are similar to apriori discretization.

To further reduce the candidate search space, we use a greedy
breadth-first search (BFS) that prunes some intervals along the
way. We say that a pattern p is incremented if it is extended by
moving its starting or ending point by one position in the allowed
set of positions listed above. For any pattern p′ resulting from an
increment of p, we further explore the increments of p′ only if p′
has higher gain than p. Starting with p, the BFS considers patterns
with the same number of increments from p during each iteration.
As a result, duplicate patterns during the search could only occur
within one iteration of the BFS. Keeping track of the candidates
in each iteration via a hash table therefore prevents redundant
computations during the interval exploration of a simple pattern p
without explicitly listing all the previously considered patterns.

Algorithm 3 shows the interval exploration for one simple pat-
tern, assuming for simplicity that all d attributes are ordered. Un-
ordered attributes do not change; that is, they keep the same con-
stant or wildcard as in the original simple pattern. For multiple
simple patterns, the algorithm runs separately for each one, as seen
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in Algorithm 2. List is the set of patterns considered during the
current iteration of the BFS, together with the gain thresholds used
to test whether the increment producing the pattern increases gain.
Starting with the simple pattern itself and zero as the threshold
(Line 1), the algorithm considers all patterns in List (Line 5) and
evaluates their gain (Line 6). If it is the highest gaining pattern
so far, we store it as bestPattern (Lines 7-9). If the gain is higher
than the accompanying threshold in List, the increment producing
this pattern improves gain, and we include further increments in
the next BFS iteration (Lines 10-19). Specifically, for each attribute
(Line 11), we determine the next smaller starting point (Line 13)
if it is not the smallest value, i.e. 1 (Line 12). The new pattern ob-
tained by replacing this starting point (Line 14) is then inserted
with the gain of the current pattern into nextList. nextList collects
patterns for the next BFS iteration (Line 20). Analogously, a pattern
with the next ending point, if possible, is inserted (Lines 16-19).
Note that attributes with wildcards in the original simple pattern
are never altered because their intervals already span from 1 to
|Ai |. Finally, the algorithm returns the best pattern (Line 21) when
there is no pattern left for another BFS iteration (Line 3). While
this termination can happen early if no increment has resulted in a
higher gain, there are at most

∑d
i=1 2 · log2

( |Ai |
2

)
increments to any

pattern before it consists entirely of wildcards. Similarly, since no
pattern is considered twice, the inner loop (Lines 6-19) is executed
at most Πd

i=1
(
log2

( |Ai |
2

) )2 times.
We illustrate our interval search with an example and the accom-

panying Figure 3. Note that the gain values depend on the current
model PS and are just used for illustrative purposes. The figure
shows each iteration of the BFS as one block of patterns. Increment-
ing a pattern for the next BFS iteration is displayed as an arrow
from the original pattern towards the incremented one. For brevity,
we refer to increments as p′i → X . This means that the pattern is
the same except for the starting or an ending point p′i of one of the
attributes being replaced by X .

Example 4.1. Consider the Occupancy dataset in Table 1
and the simple pattern p = (Thu, 13, ∗, ∗), which, in our
notation, is ([p1,q1], [p2,q2], [p3,q3], [p4,q4]) = ([4, 4], [13, 13],
[1, |Light|], [1, |CO2 |]), with gain дS (p) = 355.3. Since this pattern
already covers the full range for Light and CO2, the available incre-
ments are p′1 → p1 − 1, q′1 → q1 + 1, p′2 → p2 − 1 and q′2 → q2 + 1.
As shown in Figure 3, only q′2 → 14 and p′1 → 3 result in higher
gain, of 357.2 and 365.1 respectively. Next, we consider the patterns
obtained through increments of these two patterns. We then check
which of these patterns increase the gain over their predecessor.
This process is repeated until no improvements are found or all the
intervals become wildcards.

4.3 Efficient Gain Estimation
Even though we have reduced the number of patterns to consider, it
is inefficient to evaluate the gain of each candidate (Equation 8) us-
ing a separate linear scan of the data. We introduce a data structure
to quickly provide cnt(p,o) and

∑
t≍p f (t) ·PS (o |t) for all outcomes

o ∈ O . With f : A×O → N for ordered attributes being integers in
a (d + 1)−dimensional space, cnt(p,o) becomes a range-sum query.
Similarly, the expected number of tuples

∑
t≍p f (t) · PS (o |t) based

Weekday Hour Light CO2 Gain

Thu 13 ∗ ∗ 355.3

Thu 12–13 ∗ ∗ 354.7
Thu 13–14 ∗ ∗ 357.2

Wed–Thu 13 ∗ ∗ 365.1
Thu–Fri 13 ∗ ∗ 328.9

Mon–Thu 13 ∗ ∗ 368.2
Wed–Fri 13 ∗ ∗ 348.9
Wed–Thu 12–13 ∗ ∗ 365.1
Wed–Thu 13–14 ∗ ∗ 366.4
Thu–Fri 13–14 ∗ ∗ 331.7
Thu 12–14 ∗ ∗ 356.8
Thu 13–16 ∗ ∗ 360.5

Figure 3: BFS Pattern Exploration

on the current summary S is a range-sum query on similar data
with fS (t,o) = f (t) · PS (o |t).

For a simple example, consider an ordered attribute A =

(a1, . . . ,a15). One way to count the number of records matching
pattern [a3,a8] is to sequentially scan the dataset. However, if we
precompute an array C where C[i] stores the count of records with
A ≤ ai , then the number of records matching our pattern is simply
C[8] −C[2].

There exists a data structure for such range-sum queries called
Prefix-Sum Array [14]. It precomputes cumulative sums across all
data dimensions and answers range-sum queries in time O(2d+1),
i.e., independently of n and of attribute-domain sizes. However,
these cumulative sums are stored for all attribute combinations,
leading to excessive memory consumption. In our case, this data
structure has |O | · Π1≤i≤d |Ai | sums, and we need two data struc-
tures, one for f and one for fS . Since numeric attributes can have
very large domains, this memory footprint is too large, even with
few attributes. Even for the smallest real-world dataset that we
use in our experiments, it is Π1≤i≤d |Ai | ≥ 1019, i.e., at least 1010
gigabytes of memory.

Our solution is to create compact versions of this data structure
for each simple pattern tailored to our pattern exploration scheme.
That is, they are built for each simple pattern LENS explores and
used only to speed up gain evaluation of increments from that sim-
ple pattern, which is Line 6 in Algorithm 3. We use two properties
of our exploration scheme, namely that wildcards are never reduced
to smaller intervals and that intervals grow exponentially. The first
property allows us to ignore attributes with a wildcard in the simple
pattern in the sense that we only store the sum of all values of these
attributes. Second, the predefined interval limits indicate which
subset sums will be required. For instance, if a simple pattern p has
a constant value pi for an attributeAi , our exploration does not con-
sider any pattern with an ending point of pi + 2. Since prefix-sum
arrays store cumulative sums, this aggregation is implicit and only
the following upper bounds of aggregatable intervals are relevant

Bi (pi ) = (pi − 2 ⌊log(pi−1)⌋, . . . ,pi − 8,pi − 4,pi − 2,pi − 1,
pi ,pi + 1,pi + 3,pi + 7, . . . , |Ai |) (9)
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Figure 4: Aggregation thresholds for attribute A1 =

(a11, . . . ,a
13
1 ) and constantp1 = 8. The brackets represent start-

ing and ending points considered by Algorithm 3 during in-
terval exploration.

as illustrated in Figure 4. Note that these upper bounds are equal to
the interval ending points we consider during pattern exploration,
while they are shifted by one for the starting points. This is because
range-sum queries on these cumulative sums subtract the sum up
to the lower bound from the sum at the upper bound. As a result,
we reduce both the dimensionality of our data structure and the
domain size per dimension.

Additionally, note that we use this data structure to compute
cnt(p,o) and

∑
t≍p f (t)·PS (o |t), respectively, whichmeans that each

query covers exactly one outcome value. Therefore, we can build the
data structure separately for each outcome value instead of treating
the outcome value as an additional dimension. In contrast to the
previous optimizations, this does not reduce memory consumption
as we need the same number of cells, which are simply spread
across multiple instances. However, since the time complexity of
range-sum queries is exponential in the dimensionality of the data
structure, this optimization halves the query time, i.e.,O(2d ) instead
of O(2d+1).

To improve readability, and without loss of generality, suppose
that the attributes are ordered so that the x attributes where a
simple pattern p = ([p1,q1], . . . , [pd ,qd ]) uses a constant are at
the front. Thus, there exists an integer 1 ≤ x ≤ d with pi =
qi for i ≤ x and pi , qi for i > x . Our sparse cumulative cube
(SCC) is an x-dimensional array, where each cell with i1, . . . , id in
B1(p1), . . . ,Bd (pd ), respectively, is defined as

Co [i1] · · · [ix ]=
i1∑
j1=1
· · ·

ix∑
jx=1

|Ax+1 |∑
jx+1=1

· · ·

|Ad |∑
jd=1

f ((a
j1
1 , . . . ,a

jd
d ),o) (10)

Analogously to [14], a range-sum query, in our case cnt(p,o), is

cnt(p,o) =
∑

i1∈{p1−1,q1 }
· · ·

∑
ix ∈{px−1,qx }

Co [i1] · · · [ix ]·(−1)
∑x
j=1 I(i j ,pj−1) (11)

where I(i j ,pj − 1) is the identity function, i.e., it is 1 if i j = pj − 1
and 0 otherwise. Note that Co only includes range sums for the first
x attributes (with constants in the simple pattern) and implicitly
aggregates all values of the remaining attributes (with wildcards in
the simple pattern). Similarly, we build a SCC CSo by substituting
f (t,o) with fS (t,o) = f (t) · PS (o |t) in Equation 10. This allows
us to compute

∑
t≍p f (t) · PS (o |t). Note that both of our SCCs

can be constructed in a single pass over the data for each simple
pattern considered for interval exploration: the interval endpoints
are known beforehand because they depend on the constants in
the simple pattern.

Example 4.2. Consider a dataset with attributes A1 =

(a11, . . . ,a
11
1 ), A2 = (a12, . . . ,a

5
2) and A3 = (a13, . . . ,a

4
3), and two

outcomes o and o′. Figure 5(a) shows the tuple counts f for one
fixed outcome o as a cube. Further, let p = ([8, 8], [4, 4], [1, 4])
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Figure 5: (a) Illustration of f as cube displaying the count of
tuples with outcome o. (b) Projection of A3, i.e. summation,
to a 2-dimensional matrix. (c) Sparse cumulative cube Co .

be a simple pattern, i.e., (8, 4, ∗). All patterns considered in
IntervalExploration(p) therefore cover the full range ofA3. This
means that the SCC is two dimensional to accommodate queries
with different ranges forA1 andA2. To provide all the relevant num-
bers for this example, Figure 5(b) shows the counts of items with
outcome o summed up over different values for A3, which may not
be visible in (a). As 8 and 4 are the constants of p, the relevant aggre-
gation thresholds for our data structures are B1(8) = (4, 6, 7, 8, 9, 10)
and B2(4) = (2, 3, 4, 5). The SCC Co is thus a 6 × 4−matrix with
accumulated item counts up to the thresholds B1(8) and B2(4) as
shown in Figure 5(c).

One pattern that may be considered is p′ = ([5, 11], [3, 4], [1, 4]).
Without Co , evaluating cnt(p′,o) would require a linear scan of all
entries of f , or at least a summation of 40 cells if f is stored with
random access such as the cube in Figure 5 (a). With Co , we can
determine cnt(p′,o) with 4 cells by Equation 11:

cnt(p,o) =
∑

ai ∈{4,11}

∑
a2∈{2,4}

Co [a1][a2] · (−1)I(a1,a
4
1)+I(a2,a

2
2)

= Co [4][2] · (−1)2 + Co [11][2] · (−1)1

+ Co [4][4] · (−1)1 + Co [11][4] · (−1)0

= 9 − 31 − 22 + 86 = 42.
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4.4 Time Complexity
We now study the worst-case time complexity of LENS. Since LENS
can use anymethod for simple pattern generation and since iterative
scaling runs until convergence without bounded complexity, our
analysis focuses on the complexity of our contribution, which is
Lines 6-14 in Algorithm 2.

In Lines 8-9, we build two SCCs for each outcome, which repeat
for each of the k simple patterns and s rules generated. The size
of an SCC depends on the domain size of the attributes, which
is generally only bounded by n since every record could have a
different value. As LENS limits the maximum number of constants
of simple patterns to five in Line 7, each SCC has a maximal size
of (2 · log(n2 ))

5. Since a single scan of the data suffices to build an
SCC, each construction takes time O(n + log5(n)) = O(n).

Next, the worst case for our interval exploration scheme is that
there is no pruning. As a result, for each simple pattern, all patterns
obtainable through our increments would be considered once. For
each attribute Ai , we would consider up to 2 · log2(|Ai |) intervals.
Since the attribute domain sizes can still only be bounded by n,
up to ((log2(

n
2 ))

2)5 ≤ log102 (n) patterns with intervals would be
considered for each simple pattern. Note that the only operation in
Algorithm 3 that is not an elementary assignment or set insertion
is the computation of gain in Line 6. By Equation 8, gain can be
computed for a pattern p with cnt(p,o) and

∑
t≍p f (t) · PS (o |t)

for each o ∈ O . These intermediate values can be computed each
using 25 cells of our SSCs by Equation 11. In total, this step can be
performed in time O(1), and thus Line 10 in Algorithm 2 takes time
O(log102 (n)) to build an informative summary with s rules.

The remaining lines in Algorithm 2, except for the simple pattern
generation and iterative scaling, consist of assignments and gain
computations, which take constant time with our SCCs. Let TI S
and TSP be the time complexity of iterative scaling and the method
used to select simple patterns. The total complexity of LENS is then
O(s · (TI S +TSP +k ·n)). Since our pattern exploration scales linearly,
it is unlikely to dominate the total complexity of LENS.

5 EXPERIMENTS
In this section, we experimentally evaluate the performance of
LENS on real datasets. We analyze the informativeness and runtime
of LENS against related methods, parameter choices and scalability.

5.1 Setup
We implemented LENS in C++ and compiled it using the Microsoft®
C/C++ Optimizing Compiler Version 19.00. We use Flashlight [7]
as the simple pattern generation subroutine. All experiments are
conducted on Windows 10 using a single core of an Intel® Core™
i5-6300U processor clocked at 2.4 GHz and 20GB RAM. Unless
otherwise noted, all presented results are arithmetic means over
100 runs. We use the following datasets.

Occupancy measures room temperature, humidity, lighting and
CO2 concentration, and includes a binary outcome indicating
whether the room was occupied. This dataset is described
in [4] and is available in the UCI repository2. Splitting the

2https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+

Table 6: Dataset characteristics

Name Rows Columns Outcomes Data space size
Occupancy 20560 7 2 1.9 · 1019
Wine 6497 12 2 1.1 · 1025
Electricity 45312 7 2 1.4 · 1020
Gas 928991 10 3 8.3 · 1053
Appliance 19735 25 2 5.7 · 1079

available timestamps into “Day of the week” and “Hour of
the day”, this dataset has 7 attributes and 20560 entries.

Wine described in [6] and available in the UCI repository3,
measures chemical wine properties and includes a quality
score as an outcome. Merging the red wine and white wine
parts of the data and using colour as an additional attribute
yields 6497 entries with 12 attributes. Although there are 10
scores as outcome, we discretize them into “good” ( scores 6
and higher) and “bad” to enable a comparison with subgroup
discovery approaches.

Electricity presents data from the Australian New South
Wales energy market. Each of the 45312 entries has the ris-
ing or falling price trend as outcome and 7 attributes such
as energy price and demand in new South Wales and the
neighboring Victoria region, excluding dates. The data is in
the openML repository4.

Gas measures the effect of two stimuli, bananas and wine, on
an array of 8 gas sensors. The data is provided by Huerta
et al. [15] and is available in the UCI repository5. There are
928991 entries with 10 attributes after adding temperature
and humidity to the gas sensors, and one of three outcomes
(no stimulus, wine and banana).

Appliance measures power consumption of household appli-
ances with temperature and humidity per room as well as
local weather measurements. The data was described in [5]
and is available via Github6. The outcome in our experiments
is the total power consumption, discretized into two values
of equal frequency. Each entry has 25 other measurement
attributes.

Table 6 contains statistics for these data sets. Most of our ex-
periments use Occupancy, Electricity and Wine because they
have similar size and all competing approaches produce summaries
in reasonable time. These datasets represent tall (Electricity),
wide (Wine) and balanced (Occupancy) data. To evaluate scalability,
we use Gas and Appliance as these datasets have many rows and
columns, respectively.

5.2 Parameter Sensitivity
Before comparing LENS to its competitors, we explore parameter
choices and sensitivity. Our approach has two parameters: the sam-
ple size FLS for Flashlight’s sample-based pruning, and the number
k of simple patterns for exploration by LENS. To establish sensi-
tivity, we evaluate the impact on gain and runtime for informative

3http://archive.ics.uci.edu/ml/datasets/Wine+Quality
4https://www.openml.org/d/151
5http://archive.ics.uci.edu/ml/datasets/Gas+sensors+for+home+activity+monitoring
6https://github.com/LuisM78/Appliances-energy-prediction-data/

https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+
http://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://www.openml.org/d/151
http://archive.ics.uci.edu/ml/datasets/Gas+sensors+for+home+activity+monitoring
https://github.com/LuisM78/Appliances-energy-prediction-data/
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Figure 6: Impact of FLS on runtime of LENS and informa-
tiveness for Occupancy (top), Wine (middle) and Electricity
(bottom)

summaries of size 20 for our datasets, with the other parameter
being fixed to FLS = 8 or k = 16, respectively.

The impact of the sample size FLS is graphed in Figure 6 with a
logarithmic x-axis. These graphs show that larger samples increase
the runtime without a clear benefit in terms of informativeness. For
consistent results and to avoid outliers, we omit extremely small
sample sizes. These results are in line with the conclusion of the
authors of Flashlight that small samples suffice to find the highest
gaining (simple) patterns [7].

For the number k of explored simple patterns for each rule, the
impact is shown in Figure 7 with a logarithmic x-axis. As one might
expect, k represents a classic time-quality tradeoff, as it directly
controls how many (non-simple) patterns are considered. Based on
these experiments, runtime increases significantly for large k while
the gain stagnates.

Our conclusion regarding parameter sensitivity is that moderate
choices for k and FLS suffice, as larger values increase runtime
without a significant gain improvement. Specifically, we use FLS =
8 and k = 16 in all further experiments.

5.3 Competing Approaches
Since neither Subgroup Discovery nor Decision Trees are intended
for informative summarization, we now describe how we adapted
these methods to produce informative summaries comparable to
those produced by LENS.

Subgroup discovery algorithms produce subgroups without a
specified outcome value or model for the outcome distribution. To
compare their informativeness with LENS, we use datasets with a bi-
nary outcome. For each subgroup, a comparable summary contains
one rule with the subgroup as the pattern and an arbitrary outcome

Figure 7: Impact of k on runtime of LENS and informative-
ness for the Occupancy (top), Wine (middle) and Electricity
(bottom) datasets

value (recall that for binary outcomes, we can easily infer the distri-
bution of the other outcome value). We then use iterative scaling,
as in LENS, to compute the maximum-entropy estimates. However,
the time for iterative scaling is not included in the reported run-
time of subgroup discovery methods as it is only necessary for our
calculation of gain for comparison with LENS.

As mentioned in Section 2, we use DSSD [23] and mergeSD [11]
due to their focus on subgroup diversity and numeric data, respec-
tively. While we use the official C++ implementation of DSSD7, we
reimplemented mergeSD as no C++ implementation was available.
Due to the abundance of parameters for DSSD, we use mostly de-
fault settings, e.g., beamWidth=100, qualMeasure=WKL, beamStrat-
egy=cover and minCoverage=10. The parameters maxDepth (maxi-
mum number of non-wildcard intervals of a pattern), floatNumSplits
(number of bins for discretization) and beamVarWidth (dynamic
adaption of beam width) all appear to show time-quality-tradeoffs.
MergeSD also uses the parameters maxDepth and floatNumSplits
but no other parameters. We found that the parameter choices
mostly affect runtime but not gain in our experiments. As such,
we use the following parameters with low runtime. For DSSD we
use maxDepth=1 and floatNumSplits=10 and beamVarWidth=false,
and for MergeSD we use maxDepth=1 and floatNumSplits=5. We
suspect that gain does not increase because these methods focus
on different quality criteria, not informativeness.

For decision trees, each leaf is equivalent to a rule. For each
leaf, we represent the collection of decisions leading to this leaf
as a pattern and the dominant class of the leaf as the outcome.
Different than production rules from decision trees [19], we also
consider the precision of the dominant class for the data repre-
sented by the leaf. Since these leaves form a partition of the data

7Available at http://www.patternsthatmatter.org/software.php#dssd
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and the outcome is binary, the decision tree therefore provides
a well-defined model for P(o |t). This enables a comparison of in-
formativeness, where the summary size is the number of leaves
in the decision tree. For this comparison, we use the C++ imple-
mentation8 of “Yet another Decision Tree builder” (YaDT) [21],
version 2.2.0, with several optimizations to reduce runtime and
memory consumption. However, a problem with decision tree algo-
rithms, including YaDT, is that we cannot build a tree of a particular
size. For instance, using the default parameter values, the decision
trees have 51, 477 and 1427 leaves for the Occupancy, Wine and
Electricity data, respectively. This means that we have to per-
form a parameter search for every requested summary size and
dataset in order to find an appropriate tree. As a result, we perform
a grid search on the parameters confidence ∈ {0.01, 0.04, 0.16, 0.64},
minCasesToSplit ∈ {2, 8, 32, . . . , 2048} and maxDepth ∈ {1, 2, 4, 8}.
As in previous work [7], the reported time is the total time for the
grid search.

In contrast, explanation tables are informative summaries by
design. We used our C++ implementation of Flashlight [7] that is
also used as part of LENS. Note that this is the original version of
Flashlight using only patterns without intervals. For fairness, we
also use FLS = 8 when evaluating stand-alone Flashlight.

Finally, note that some approaches, such as mergeSD, assume
that the global distribution of outcomes is known and only present
subgroups whose distributions are significantly different. Others,
like Flashlight, explicitly report the global distribution through an
all-wildcard first rule (recall Table 2). To level the playing field, each
informative summary and subgroup collection is allowed to contain
an all-wildcard rule or subgroup without counting it towards the
summary size.

5.4 Conciseness and Efficiency
We use a single plot that shows runtime and gain of summaries of
various sizes for each method. In Figure 8, each datapoint represents
the average gain and runtime for summaries of a certain size, noted
by a small text label, for each method. Note that YaDT cannot
produce decision trees of size one, so the corresponding datapoints
are missing. Overall, the figure shows that LENS is the best overall
choice in terms of gain per unit time.

Next, we zoom in on the time required to build informative
summaries of certain sizes. For up to ten rules, LENS is a close
second to unmodified Flashlight, whose explanation tables contain
no intervals. Since LENS uses Flashlight as a subroutine, LENS
cannot be faster if both are using the same sample size FLS . Beyond
ten rules, DSSD is usually faster, as its runtime does not depend on
the summary size. In contrast, MergeSD and YaDT are significantly
slower.

Figure 8 also shows that LENS provides the highest gain per
summary size with the exception of very small summaries on the
Electricity dataset. Subgroup discovery algorithms are very in-
consistent across datasets: while there is sometimes significant gain
between summaries of size 1 and 2 and no gain from rules 11–20,
it may also be the other way around. On the Occupancy and Wine
datasets, this phenomenon manifests itself differently for MergeSD
and DSSD. The reason for this erratic behavior is most likely the

8Available at http://pages.di.unipi.it/ruggieri/software.html

Figure 8: Runtime and gain for all methods and vari-
ous summary sizes on Occupancy (top), Wine (middle) and
Electricity (bottom)

Figure 9: Scalability of LENS and Flashlight with the number
of attributes using Appliance

different optimization goals of subgroup discovery which may or
may not coincide with information gain. As a final note, LENS
shows highest consistency of improvement of gain as the number
of rules increases.

5.5 Scalability
To evaluate how well LENS scales with the number of columns,
we use the Appliance dataset. For any number d of attributes, we
use the first d columns in the dataset. Figure 9 shows the runtime
to build informative summaries of size 20 on a logarithmic scale
depending on the number of columns, averaged over 10 runs. Run-
time increases superlinearly with the number of columns for both
Flashlight and LENS. Given that the runtime of Flashlight gets
closer to the runtime of LENS as the number of columns increases,
we conclude that Flashlight dominates the runtime of LENS. This
means that any speedup to the process of selecting simple patterns
would directly speed up LENS, be it an improvement to Flashlight
like SIRUM [9], or an entirely different method. Given this result,
we defer the speedup of simple pattern generation to future work.

http://pages.di.unipi.it/ruggieri/software.html
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Figure 10: Scalability of LENS and Flashlight depending on
the number of rows using Gas

For the Gas dataset, Figure 10 shows the row scalability of LENS
and Flashlight as a double log plot. Here, we create smaller datasets
by randomly sampling from Gas, to obtain unbiased subsets of
the original attribute domains. LENS and Flashlight scale roughly
linearly with the number of rows. While LENS requires nearly an
order of magnitude more time than Flashlight for a smaller number
of rows, it requires only twice as much time as Flashlight on the
full dataset. This observation is also consistent with Figure 8. One
explanation for the relatively high runtimes of LENS on small data
is that small samples contained a number of columns with very
few duplicates. As a result, many simple patterns matched only
one tuple and therefore many patterns were pruned away during
sample-based pruning. In contrast, LENS considered patterns with
various intervals that matched at least one sampled tuple.

5.6 Summary of Results
Our main experimental findings are that LENS generally produces
the most informative summaries of a given desired size and excels
at informativeness per unit of runtime. In terms of scalability, LENS
scales linearly with the number of rows and exponentially with the
number of columns in the data. However, this exponential scaling
is due to using Flashlight as subroutine and could be improved with
existing parallel techniques for Flashlight [9] or with different algo-
rithms for simple pattern selection. Finally, we find that the choices
for the parameters sample size FLS and number of candidates k
influence the runtime significantly, while FLS does not impact gain
and k influences gain only moderately. As a result, small values,
i.e., FLS = 8 and k = 16, lead to low runtimes without sacrificing
information gain.

6 CONCLUSIONS
In this paper, we studied a generalized version of the informative
summarization problem, whose goal is to summarize the effects of
explanatory attributes (whichmay be ordered or numeric) on an out-
come attribute (which may be binary, non-binary or numeric). We
focused on handling numeric and ordered explanatory attributes,
which greatly increase the search space of possible summaries.
Our solution, LENS, leverages the strengths of existing techniques
for unordered domains and adds new optimizations for ordered
domains. Experiments on real datasets showed the efficiency and
effectiveness of our solution compared to existing approaches that
can be adapted to solve our problem. A possible direction for future
work is to consider more than one outcome per row, e.g., responses

of the same patient to different types of drugs in a pharmaceutical
dataset.
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