
Towards Meaningful Distance-Preserving Encryption
Christine Tex

Karlsruhe Institute of Technology

christine.tex@kit.edu

Martin Schäler

Karlsruhe Institute of Technology

martin.schaeler@kit.edu

Klemens Böhm

Karlsruhe Institute of Technology

klemens.boehm@kit.edu

ABSTRACT
Mining complex data is an essential and at the same time chal-

lenging task. Therefore, organizations pass on their encrypted data

to service providers carrying out such analyses. Thus, encryption

must preserve the mining results. Many mining algorithms are

distance-based. Thus, we investigate how to preserve the results

for such algorithms upon encryption. To this end, we propose the

notion of distance-preserving encryption (DPE). This notion has

just the right strictness – we show that we cannot relax it, using

formal arguments as well as experiments. Designing a DPE scheme

is challenging, as it depends both on the data set and the specific

distance measure in use. We propose a procedure to engineer DPE-
schemes, dubbed DisPE. In a case study, we instantiate DisPE for

SQL query logs, a type of data containing valuable information

about user interests. In this study, we design DPE schemes for all

SQL query distance measures from the scientific literature. We

formally show that one can use a combination of existing secure

property-preserving encryption schemes to this end. Finally, we

discuss on the generalizability of our findings using two other data

sets as examples.

CCS CONCEPTS
• Information systems→ Data encryption; Data mining; Re-
lational database query languages; Relational database model; XML

query languages;
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1 INTRODUCTION
Today it is common practice for organizations to pass on their

data to service providers, with the data being encrypted. An im-

portant service which organizations would like to benefit from is

data mining. However, data mining on encrypted data generally

does not yield meaningful results. To overcome this, encryption

must preserve service-specific properties of the data [25]. Exam-

ples are equality-preserving, i.e., deterministic, or order-preserving

encryption [2]. An important property of a data set are the pair-

wise distances between the data items. A wide spectrum of data-

analysis algorithms, so called distance-based algorithms, relies on
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these distances only. For instance, think of distance-based cluster-

ing [14, 16, 26] or outlier detection [20], which are frequently used.

If encryption preserves the pairwise distances between the data

items, the mining results on the encrypted and the plain-text data

are the same. However, to our knowledge, distance-preserving en-

cryption has not been investigated systematically in the literature

before. For instance, CryptDB [27] addresses only one specific case

which we are about to discuss.

This paper examines how to design distance-preserving encryp-

tion (DPE) schemes for data of arbitrary types. For data sets con-

sisting of items with a complex inner structure, such as graphs or

query logs, this is challenging, for the following reasons: (1) unclear

subject of encryption and (2) distance-measure variety. We now

illustrate these points using SQL query logs as a use case; this will

also be our running example in the paper. Query logs contain valu-

able information about user interests [6, 23] and therefore are an

important resource for data mining. Since SQL query log mining is

far from trivial, it is reasonable to outsource it to a service provider

or an external researchers. We now illustrate the challenges. First,

SQL queries have a complex inner structure. For data items with a

complex structure, it tends to be unclear what “encryption of the

data items” actually means, cf. Example 1.1.

Example 1.1 (Unclear Subject of Encryption). Consider a set of
SQL queries, i.e., an SQL query log. Which parts of the query should
be encrypted? For example, one may encrypt the query string as a
whole or only the tokens within the query string.

Thus, when designing a DPE scheme, one must specify a secu-

rity model tailored to the type of data considered and an encryp-

tion scheme in line with this model. Second, for any type of data,

there exist different distance measures. Example 1.2 illustrates that

distance-preserving encryption depends on the measure in use.

Example 1.2 (Distance-Measure Variety). For distance-based data
mining over an SQL query log, one needs a distance measure. Differ-
ent such measures exist. For instance, we can use a string distance
measure like the Levenshtein distance or a measure that depends on
the overlap of the tuples in the results of the queries. These measures
are conceptually different: For example, two queries may lead to the
same result even if the query string is different. Therefore, different
distance-preserving encryption schemes are needed: For string dis-
tance, it might be reasonable to encrypt every character in the query
string. In contrast, for distance measures depending on the result tu-
ples of the queries, a fundamental requirement is the executability of
the encrypted query. This is because the result tuples and their overlap
cannot be computed otherwise.

Thus, when designing aDPE scheme, onemust differentiate between

the different distance measures.
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Contributions
In this paper, we examine how to design distance-preserving en-

cryption schemes for complex-structured data. To this end, we split

our paper in two parts: (1) An abstract part, in which we introduce

the general concepts, and (2) a case-study part, in which we study

how to instantiate the concepts using the example of SQL logs. First,

in the abstract part, we define distance-preserving encryption for

arbitrary data sets and distance measures. Using formal arguments

and experiments, we show that it would not make sense to work

with a notion that is less strict. In addition, we specify a general

procedure for designing distance-preserving encryption named

DisPE. This procedure describes the steps necessary to arrive at a

distance-preserving encryption scheme for a certain data set. We

review well-known property-preserving encryption schemes from

literature to illustrate (a) that one can apply them to instantiate our

DisPE procedure (b) to assess the security of the resulting distance-

preserving encryption scheme. In our study, that is the second part

of this paper, we examine which property-preserving encryption

schemes one can apply when implementing distance-preserving

encryption schemes for SQL logs. As result, we find DPE schemes

for four well-known SQL query distance measures. The schemes

have a higher security level than the ones CryptDB [27] would

generate, i.e., shield against more attacks. Finally, by means of two

further use cases, namely XQuery and relational data, we say to

which extent our results can be leveraged and what remains to be

done.

This paper is an extended version of an earlier publication [32],

with the following extensions: We prove that one cannot mean-

ingfully relax our notion of distance-preserving encryption, using

formal arguments (Section 3.2) and experiments (Section 7). We also

describe generalizations of the results of our case study (Section 6).

2 BACKGROUND AND RELATEDWORK
In this section, we introduce background knowledge on encryption

schemes together with notation and relate it to distance-preserving

encryption. In addition, we review related work on property-preser-

ving encryption schemes, since we leverage them to implement

distance-preserving encryption. We also leverage other results from

literature [27, 29] for substeps of our procedure. We explain them

in the corresponding section in the body of this paper as far as

needed.

2.1 Encryption Schemes and Their Attributes
An encryption scheme consists of three algorithms, cf. Defini-

tion 2.1. We refer to unencrypted data as plain-text data and to

encrypted data as cipher-text data. Now, we discuss specifications

and security of encryption schemes and relate them to distance-

preserving encryption.

Definition 2.1 (Encryption Scheme). An encryption scheme is a
Tuple (Gen, Enc, Dec) where
• Gen is a key-generation algorithm that outputs a tuple consisting
of two Keys (KE ,KD ),
• EncKE (P) is an encryption algorithm that encrypts a Plain-Text
Value P using Key KE ,
• DecKD (C) is a decryption algorithm that decrypts Cipher-Text
Value C using Key KD .
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Figure 1: Taxonomy of Property-Preserving Encryption.

2.1.1 Specifications of Encryption Schemes. Encryption sche-

mes form groups with the same specification. An example for a

specification is being asymmetric or symmetric. It is application-

dependent which encryption schemeswithwhich specifications one

should use. In the following, we review the relevant specifications

from literature and relate them to distance-preserving encryption.

Asymmetric vs. Symmetric. In symmetric key encryption schemes,

there is one key for encryption and decryption (i.e., KE = KD ),

while in asymmetric (or public key) schemes, KE , KD . Symmet-

ric key encryption schemes are more efficient than asymmetric

ones [1], but have the disadvantage that a key exchange is needed.

In our scenario, symmetric schemes are suitable, since encryption

and decryption is done by the same party (the organization), i.e., no

key exchange is needed. However, using a more powerful asymmet-

ric scheme is possible as well. Our considerations in the remainder

hold for both, and we do not differentiate between them.

Stateful vs. Stateless. In stateful encryption schemes, the encryp-

tion algorithm has, next to the plain-text value and the encryption

key, an additional input and output parameter – the state of the

scheme [7]. For instance, when considering stateful encryption in

combination with property-preserving encryption, the state often

is the set of all values that have been encrypted so far [2]. In most

scenarios, for instance in database encryption [27], the values to be

encrypted are not known in advance. Stateful schemes are unprac-

tical there. In our scenario however, the data set to be encrypted is

fixed, as the organization shares an already existing data set with

the service provider. Therefore, we can rely on stateful schemes.

2.1.2 Security of Encryption Schemes. Different encryption sche-
mes provide different levels of security, i.e., shield against different

attacks. In cryptography, we differentiate between active and passive
attacks. In an active attack, the attacker has access to a decryption

oracle, i.e., can decrypt certain cipher-texts to some extent. A pas-

sive attacker does not have this ability. In our context, we see the

service provider as a passive attacker. Namely, it is not intended that

he asks the organization for the decryption of cipher-text values.

There typically are three types of passive attacks [29]:

• Cipher-Text-Only Attack: The attacker has access to several

cipher-texts someone else has selected. The attacker is success-

ful if he can decrypt (any) randomly selected cipher-text.
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• Known-Plain-Text Attack: The attacker has access to several

cipher-texts someone else has selected and the correspond-

ing plain-texts. He is successful if, given one cipher- and two

possible plain-texts, he can determine the correct plain-text.

• Chosen-Plain-Text Attack: The only difference between known-

plain-text attacks and chosen-plain-text attacks is that the at-

tacker can select which pairs of cipher text and corresponding

plain-text he has access to.

We come back to these attacks in Section 5.1.1, when turning them

to attacks on SQL query logs, our running example. The maximum

security level for passive attacks is semantic security [15], which is

security against the chosen-plain-text attack described above.

2.2 Property-Preserving Encryption
Preserving properties of a data set (e.g., the order of the data items)

upon encryption is a common requirement. Property-preserving

encryption schemes are classified by the plain-text properties they

preserve. For such a scheme, “perfect security” against passive

attacks, i.e., semantic security, cannot be guaranteed for most prop-

erties. This is because the scheme intentionally leaks (at least) the

property of the plain-text preserved. Since different classes pre-

serve and leak different properties, different classes provide differ-

ent security. In the following, we briefly explain different classes of

property-preserving encryption schemes, to apply them to distance-

preserving encryption. Figure 1 depicts a taxonomy showing the

relationships and the security levels of the various classes, inspired

by [21, 27]. The rows stand for the security levels, higher is better.

For classes in the same row, because of incomparable, class-specific

security notions, a security ranking is not possible.

Probabilistic Encryption (PROB). Encryption schemes are prob-
abilistic if, in general, two equal values are mapped to different

cipher-texts. PROB schemes without any additional assumption

do not preserve any property of the data. But they feature se-

mantic security and even security against active attacks.

Homomorphic Encryption (HOM) [17]. Homomorphic schemes

are probabilistic schemes allowing for arithmetic aggregate func-

tions, e.g., sums, over encrypted data. As this property opens a

way for active attacks, the security level is lower than for PROB
schemes. However, beside probabilistic encryption, HOM is the

only class that provides semantic security. The reason is that the

leaked property is the homomorphism (e.g., regarding addition),

but no information on the semantics of the actual values.

Searchable Encryption (SEARCH) [10, 31]. Searchable encryp-

tion allows for keyword search on encrypted data (e.g., LIKE
’%unicorn%’). Thus, the property leaked is the occurrence of

keywords in the plain-text.

Deterministic Encryption (DET). A scheme is deterministic if

two equal values are mapped to the same cipher-text. There-

fore, DET schemes allow for equality checks over encrypted data.

Order-Preserving Encryption (OPE) [2]. Order-preserving en-

cryption schemes are deterministic and preserve the order of the

data. Thus, one is able to perform range queries.

Join-Preserving Encryption (JOIN/JOIN-OPE) [27]. JOIN is a spe-

cial usage mode of a DET scheme (JOIN-OPE of OPE, respectively),
to allow for joins over encrypted databases. Particularly, the same

encryption scheme and key encrypt the primary and foreign key.

Table 1: Common Encryption Schemes [21, 27].

Class Stateless Schemes Stateful Schemes

PROB randomized AES [13] -

HOM Paillier [24] -

SEARCH Song et. al [31] -

DET block cipher, e.g., AES [13] -

OPE Boldyreva et. al [8] OPES [2]

Encryption Schemes for Encryption Classes. For every encryp-

tion class, different encryption schemes exist. See Table 1 for the

commonly used schemes. For every class, the associated schemes

preserve the properties the class preserves. As mentioned in Sec-

tion 2.1, we can use stateful schemes in this paper. To our knowledge,

except for the OPE-class, no meaningful stateful scheme exists.

Implications. This section states which property-preserving en-

cryption classes are known. However, so far, it is unknown how

to realize distance-preserving encryption for complex data using

these classes. On the one hand, this is challenging as one usually has

to consider different distance measures. On the other hand, using

known classes and schemes has the advantage that their security

is well-studied. Thus, in the remainder of this paper, we focus on

how to realize distance-preserving encryption using these classes.

3 DISTANCE-PRESERVING ENCRYPTION
In this section, we first define distance-preserving encryption for

arbitrary data sets and distance measures. Then we discuss why

our definition is reasonable.

3.1 Definition
With distance-preserving encryption (DPE), the pairwise distances
for the plain-text and the cipher-text data items must be the same.

Definition 3.1 (Distance-Preserving Encryption (DPE)). Let D be
a data set, d be a distance measure and Enc an encryption algorithm
for data items in D. Then, Enc is d-distance preserving if

∀x ,y ∈ D : d(Enc(x), Enc(y)) = d(x ,y).

Distance-preserving encryption enables distance-based data mining

on encrypted data sets. This means that the mining results on

cipher-text and plain-text data are the same. For instance, the same

data items are assigned to clusters. To justify our definition, we

explain its usefulness with the help of the k-medoids clustering

algorithm [26], a very common distance-based clustering algorithm.

Algorithm 1 is the k-medoids clustering algorithm. It works as the

k-means algorithm [18], with the difference that the cluster centers

always are objects occurring in the data set.

Lemma 3.1. If Enc is d-distance-preserving, given the same ini-
tialization in Line 2, it holds that

Enc(k-medoids(d,k,D)) = k-medoids(d,k, Enc(D)).
Proof. In the k-medoids algorithm in Algorithm 1, the only

information extracted from the data set are the pairwise distances

of the data items (Line 1). �

As the argumentation of Lemma 3.1 holds for all distance-based

data mining algorithms, Lemma 3.1 holds for any of them.
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Algorithm 1 k-medoids(d , k , D)

1: D← ∀x, y ∈ D: pairwise distance d (x, y)
2: select k data items as medoids

3: for x ∈ D do
4: associate x with the closest medoid

5: end for
6: cost =

∑
{Medoid M }

∑
{all Items x associated toM }

d (M, x )

7: while cost decreases do
8: forMedoid M and Associated Item x do
9: swap the role of M and x
10: recompute cost

11: if cost increased then
12: redo swap

13: end if
14: end for
15: end while

3.2 Inadequacy of Relaxed Notions
The equality condition regarding all pairwise distances in Def-

inition 3.1 is a strict requirement. One may ask whether an ϵ-
approximation of the distance value such as

|d(Enc(x), Enc(y)) − d(x ,y)| ≤ ϵ · d(x ,y),

or preserving the relative ordering such as

d(x ,y) < d(x , z)
⇐⇒ d(Enc(x), Enc(y)) < d(Enc(x), Enc(z)),

is sufficient. This is not the case. We illustrate this with two exam-

ples in this section, as well as with experiments in Section 7. First,

to understand that using an approximate value is not sufficient,

consider Example 3.1.

Example 3.1 (Approximative Distance-Values). Consider a Data
Set D = {w,x ,y, z} where the pairwise distance between the data
items is given by the following distance matrix:

D =
©­­­«

w x y z

w 0 0.1 0.11 0.11

x 0.1 0 0.11 0.11

y 0.11 0.11 0 0.1

z 0.11 0.11 0.1 0

ª®®®¬
A k-medoids clustering with k = 2 will result in the following clus-

ters: {w,x} and {y, z}. If we have an approximation of the distances
with ϵ = 0.1, this may result in a distance matrix where the distance
between all data items is given by:

D =
©­­­«

w x y z

w 0 0.11 0.1 0.1

x 0.11 0 0.1 0.1

y 0.1 0.1 0 0.11

z 0.1 0.1 0.11 0

ª®®®¬
The Itemsw and x will not be in the same cluster, as well as y and z,
because their pairwise distances are higher than the other pairwise
distances. Thus, the result of the clustering on encrypted data is dif-
ferent.

To understand why preserving the order of the pairwise distance is

not sufficient, see Example 3.2.

Table 2: Example of Preserving theOrder of the PairwiseDis-
tances upon Encryption; Distances in Ascending Order.

Item-Pair Distance on Distance on

Plain-Text Data Cipher-Text Data

(w,x) 0.1 0.1

(y, z) 0.11 0.95

(y,w) 0.5 0.96

(y,x) 0.51 0.97

(w, z) 0.52 0.98

(x , z) 0.53 0.99

Example 3.2 (Preserving Relative Order). Consider the example
distances in Table 2. Again, we perform a k-medoids clustering with
k = 2 on the plain-text data. This results in the following clusters:
{w,x} and {y, z}. Now we encrypt the data set. As we see in Table 2,
the order of the distances is the same for the plain-text and the en-
crypted items. Now consider a variant of the k-medoids algorithm
having a threshold for increasing the outlier robustness: If a Data
Item x has, say, a distance ≥ 0.9 to all medoids, x is deemed an outlier
and not assigned to a cluster. As we see, this is the case for Itemy in the
cipher-text data, but not in the plain-text data, as d(y, z) differs. Thus,
the result of the k-medoids algorithm differs, because it outputs an
outlier when performed on cipher-text data, but not on the plain-text
data.

To conclude, the pathological examples in this section indicate

that ensuring the equality of the distances upon encryption is neces-

sary to guarantee that mining results on plain-text and cipher-text

data are the same. In Section 7, we also show this for real data with

experiments.

4 DISTANCE-PRESERVING ENCRYPTION
WITH DISPE

In this paper, we aim at finding secure distance-preserving en-

cryption schemes for complex data. To this end, we introduce the

general procedure for designing distance-preserving encryption

DisPE for complex data sets. We will instantiate it for SQL queries

in Section 5. Now, in turn, we remain on an abstract level. The four

steps of DisPE are as follows:

(1) Definition of the Security Model: In the first step, one has to

specify the security goals one wants to achieve with encryption,

e.g., “the SQL log should not reveal information on the content

of the database”. To this end, one has to (1) specify the threat

model, i.e., the attacks to shield against, and (2) define a high-

level encryption scheme for the type of data considered, e.g.,

“encrypt all constants in the query”.

(2) Finding a Suitable Equivalence Notion: Our aim is to implement

the high-level encryption scheme defined in the first step so

that it is distance-preserving. The distance between data items

is defined for pairs of items, but encryption is done item-wise.

Therefore, we introduce an intermediate notion defined for

single date items: For a given distance measure, an equivalence
notion captures the characteristics of a single data item that

should be preserved upon encryption, cf. Definition 4.1. For

instance, when encrypting graph data, i.e, S is the set of all
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valid graphs, a Characteristic c to be preserved could be the

number of incoming edges of vertices in the graph.

Definition 4.1 (c-Equivalence). Let D ⊆ S be a data set and
c : S → S a function (characteristic). In addition, let Enc be
an encryption algorithm for data items in S. Then Enc ensures
c-equivalence if

∀x ∈ D : Enc(c(x)) = c(Enc(x)).

(3) Ensuring the Equivalence Notions: In this step, one has to im-

plement the high-level encryption scheme defined in Step 1 so

that it ensures the equivalence notion defined in the second

step. To this end, we deploy property-preserving encryption

classes introduced in Section 2.2. Instead of specifying concrete

schemes, we specify the corresponding encryption class, as the

property to preserve is defined at class level and holds for all

schemes belonging to the class. A user then selects a scheme in

the class (cf. Table 1). In general, there are several encryption

classes which can ensure an equivalence notion. We always se-

lect the appropriate encryption class according to Definition 4.2.

As encryption-class taxonomy, we use the one from Figure 1.

Definition 4.2 (Appropriate Encryption Class). For a given
equivalence notion and encryption algorithm in {EncA.Const ,
EncAttr , EncRel }, an encryption class is appropriate according to
an encryption-class taxonomy if
(a) it ensures the equivalence notion and
(b) provides the highest security possible.

(4) Security Assessment: Finally, we have to assess the security of

the encryption scheme implemented. If one uses only schemes

whose security is known from the literature, the security as-

sessment is given; this is the desired case. Otherwise, a security

analysis as in [9] is needed.

5 CASE STUDY: DISTANCE-PRESERVING
ENCRYPTION OF SQL QUERY LOGS

In this section, we instantiate our DisPE procedure with SQL query

logs as our use case. After this, we explain which parts of our

instantiation of DisPE one can reuse when dealing with types of

data other than SQL logs.

5.1 Security Model
In this section, we introduce the threat model for attacks on SQL

query logs considered in this paper and a high-level encryption

scheme for SQL queries.

5.1.1 Threat Model. In this section, we (1) explain a general

threat model and (2) instantiate it for SQL query logs. For the instan-

tiation, we leverage the solution in [29]. In the scenario addressed

here, an organization and a service provider share an encrypted

SQL log. The service provider has the opportunity to perform cer-

tain attacks on the encrypted log. Our goal is to ensure security in

the form of confidentiality for the underlying database. This means

that we want to limit the information one can infer from the log

about (1) names of relations occurring in the database, (2) names

of attributes of the relations and (3) the content of the database.

As stated in Section 2.1.2, one has to shield against passive attacks

only. Hence, it is necessary to transform the abstract passive attacks

explained in Section 2.1.2 to query logs. Literature already features

this [29], and the transformations are as follows:

• Cipher-Text Only Attack→ Query-Only Attack: In a Query-

Only Attack, the attacker only has access to the encrypted

query log and tries to infer the plain-text values of constants,

relation names as well as attribute names
1
of a given encrypted

query. For instance, the attacker has access to an encrypted

query log and tries to learn information from this that helps

him to decrypt a constant in a specific query.

• Known-Plain-Text Attack→Known-QueryAttack: In a Known-

Query Attack, the attacker has access to a number of plain-

text/cipher-text query pairs, and has to distinguish between

two new cipher-text queries.

• Chosen-Plain-Text Attack→Chosen-QueryAttack: In a Chosen-

Query Attack, the attacker has black-box access to an encryp-

tion oracle, i.e., the ability to encrypt queries, and has to distin-

guish between two cipher-text queries that he must not encrypt

by using the oracle.

5.1.2 Encryption of SQLQueries. Intuitively, SQL queries can

be encrypted in various ways, for instance by encrypting the query

string as awhole. However, if wewant to hide the names of relations,

attributes and values of the attributes in the database only, it is

sufficient to encrypt only these parts of the queries. This encryption

technique for SQL queries is also known as “encryption-aware

query rewriting” and has the feature that it even hides the fact

that the log is encrypted [28]. While the idea of encryption-aware

query rewriting has been around, it has not been studied so far how

to instantiate it so that the encryption scheme for SQL queries is

distance preserving. – In the following, Attr is the set of database
attributes occurring in the SQL log.

Definition 5.1 (Encryption Scheme for SQL Queries). For

i ∈ {Rel,Attr} ∪ {A.Const | A ∈ Attr},

let the Tuple Si = (Geni , Enci , Deci ) be an encryption scheme. An
encryption scheme for SQL queries is a Tuple (Gen, Enc, Dec) where
• Gen = (GenRel, GenAttr, {GenA.Const | A ∈ Attr})
• Dec = (DecRel, DecAttr, {DecA.Const | A ∈ Attr}) and
• Enc = (EncRel, EncAttr, {EncA.Const | A ∈ Attr}).

The Scheme Si in Definition 5.1 is used to encrypt i ∈ {Rel,Attr} ∪
{A.Const | A ∈ Attr}, i.e., the names of relations, attributes and the

constants belonging to different attributes in an SQL string.

Example 5.1. For Q = ’SELECT A1 FROM R WHERE A2 > 5’
the encrypted query is

Enc(Q) =’SELECT EncAttr(A1)

FROM EncRel(R)

WHERE EncAttr(A2) > EncA2.Const(5)’.

Observe that an encryption scheme for SQL queries as in Defini-

tion 5.1 is not limited to SQL strings, but works on any string. We

will use this generalization to encrypt query results.

1
Strictly speaking, the thread model in [29] is only defined for constants, but the model

can be generalized to relation and attribute names.
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5.2 Suitable Equivalence Notions
In this section, we define suitable equivalence notions (cf. Defini-

tion 4.1) for different SQL query distance measures. We first define

all notions, before we investigate how to implement encryption

schemes for SQL queries that fulfill the notions in Section 5.3. By do-

ing so, we follow the DisPE procedure. Table 3 gives an overview of

query distance measures from literature and the core results of this

and the following section. The measures follow a natural ordering:

Within query-string distance, an SQL query is considered simply

as a string. Query-structure distance then takes the structure of

the query into account. Finally, query-result and query-access-area

distance are based on the semantics, i.e., result and execution, of

the query. To compute the latter two measures, it is not sufficient

to only share the query log. For instance, to calculate query-result

distance, the content of the database is needed as well (cf. Table 3).

We discuss this issue when introducing the measures.

5.2.1 Token-BasedQuery-String Distance. In this subsection, we

introduce token-based query-string distance and its underlying

equivalence notion called token equivalence.

Definition. To define query-string distance, one interprets an SQL
query as a string and uses a String-Distance Measure string_dist to
calculate the distance, cf. Definition 5.2.

Definition 5.2 (Query-String Distance). Let Q1 and Q2 be SQL
queries. The query-string distance of Q1 and Q2 is

dString(Q1,Q2) = string_dist(Q1,Q2).

There are different types of string-distance measures [12], but not

all of them are adequate for SQL queries:

Edit Distance. The edit distance d
edit
(s1, s2) is the minimum num-

ber of edit operations (insert, delete, substitute) needed to trans-

form s1 in s2. However, intuitively, the edit distance is not appro-
priate for SQL strings. For example, the edit distance of two SQL

queries which only differ in the ordering of the relations in the

FROM-clause may be very high. Therefore, we exclude the edit

distance from our further considerations.

Token-Based. Token-based distance measures divide a string into

tokens (words). Thus, every Query Q is represented as a set of

tokens, short tokens(Q), cf. Example 5.2. We summarized predi-

cates of the form A Θ B to one token to avoid the intuitive issue

that predicates like A < B and A > B results in the same token

set. Then set distance measures such as the Jaccard coefficient

or cosine distance (via text-to-vector) are used.

Example 5.2. The token set of the Query

Q = ’SELECT A FROM R WHERE B > 5’

is given by

tokens(Q) = {SELECT,A, FROM,R, WHERE,B > 5}.

In the remainder of this paper, we focus on token-based query-

string distance as stated in Definition 5.3.

Definition 5.3 (Token-Based Query-String Distance). Let Q1, Q2
be SQL queries. Then the token-based query-string distance between
Q1 and Q2 is

dToken(Q1,Q2) = 1 −
|tokens(Q1)∩tokens(Q2) |

|tokens(Q1)∪tokens(Q2) |
.

Obviously, to calculate this distance, only the queries itself (i.e., the

log file) must be shared.

Token Equivalence. For token-based query-string distance, the

characteristic to be preserved is the token set of the queries, i.e., c =
tokens. Note that in Definition 5.4, the encryption algorithm Enc for
SQL queries is used to encrypt a token set. Token-wise encryption

using the corresponding scheme according to Definition 5.1 imple-

ments this. For instance, in Example 5.4, the Token A is encrypted

using EncRel.

Definition 5.4 (Token Equivalence). Let Q be a query. Then Enc
ensures token equivalence for Q if the following holds:

Enc(tokens(Q)) = tokens(Enc(Q)).

Lemma 5.1. Let Enc be an encryption algorithm for SQL queries.
If Enc ensures token equivalence, then it is token-based query-string
distance-preserving.

Proof. Let Q1 and Q2 be SQL queries. If token equivalence

holds, we get the same (encrypted) token set if we compute it on

the plain-text or on cipher-text queries. Obviously, the cardinalities

|tokens(Q1)∩ tokens(Q2)| and |tokens(Q1)∪ tokens(Q2)| remain the

same. Hence, d
Token

remains the same. �

5.2.2 Query-Structure Distance. The next distance measure for

SQL queries is query-structure distance.

Definition. In [19], the authors extract semantically important

features from a query, dubbed features(Q). A feature of a query is

a tuple representing a part of its structure. Table 4 is a complete

list of features an SQL query can have and Example 5.3 shows an

example.

Example 5.3. Consider the Query Q from Example 5.2. The feature
set of Q is given by

features(Q) = {(SELECT,A), (FROM,R), (WHERE,B >)}.

Now, query-structure distance is defined as stated in Definition 5.5.

Definition 5.5 (Query-Structure Distance). Let Q1, Q2 be SQL
queries. Then the query-structure distance between Q1 and Q2 is

dStruc(Q1,Q2) = 1 −
|features(Q1)∩features(Q2) |

|features(Q1)∪features(Q2) |
.

To calculate query-structure distance, only the queries themselves

(i.e., the log file) must be shared between the organization and the

service provider.

Structural Equivalence. Structural equivalence ensures that there
is no difference if we first compute the features of a query and

then encrypt the feature set or vice versa. In Definition 5.6, we

encrypt features of queries, which is realized as explained for token

equivalence in Section 5.2.1.

Definition 5.6 (Structural Equivalence). Let Q be a query. Enc
ensures structural equivalence for Q if the following holds:

Enc(features(Q)) = features(Enc(Q)).

Lemma 5.2. Let Enc be an encryption algorithm for SQL queries.
If Enc ensures structural equivalence, then Enc is query-structure
distance-preserving.

Proof. Analogously to the proof of Lemma 5.1, as the same

arguments regarding set cardinalities hold. �
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Table 3: Overview of Query-Distance Measures.

Distance Measure Shared Information Equivalence Notion c EncRel EncAttr EncA.Const

Log DB-Content Domains

Token-Based Query-String Distance ✓ ✗ ✗ Token Equivalence tokens DET DET DET
Query-Structure Distance ✓ ✗ ✗ Structural Equivalence features DET DET PROB
Query-Result Distance ✓ ✓ ✗ Result Equivalence result_tuples DET DET via CryptDB [27]

Query-Access-Area Distance ✓ ✗ ✓ Access-Area Equivalence accessA DET DET via CryptDB, excp. HOM

Table 4: Features of an SQL Query [19].

Feature Explanation

(FROM, R) for every Relation, View and Relation-Valued Aggregate Function R in the FROM-clause
(C, A) for every Attribute A in the Clause C ∈ {SELECT, WHERE, GROUP BY}
(SELECT, aggr(A1, ..,An ) for every Aggregate Function aggr and list of Attributes A1, ..,An in the SELECT-clause
(WHERE, A1ΘA2) for every pair of Attributes A1,A2 and Operator Θ that appears in the WHERE-clause
(WHERE, AΘ) for every Attributes A and Operator Θ in the WHERE-clause (representing predicates of the form A Θ const)

(subquery, o) for every Subquery subquery that appears in WHERE-clause in combination with a Set Operator

o ∈ {All, Any, Some, In, Exists} in a predicate

5.2.3 Query-Result Distance. The third SQL query distance mea-

sure proposed in the literature is query-result distance.

Definition. An SQL Query Q can be represented as the set of

tuples in its result, result_tuples(Q) [3]. A result tuple is defined by

the unique combination of attribute values. Since result_tuples(Q) is

a set, there are no duplicates. Every query is interpreted as a query

with the DISTINCT-operator. Query-result distance is defined as

stated in Definition 5.7.

Definition 5.7 (Query-Result Distance). Let Q1, and Q2 be two
SQL queries. Then the query-result distance between Q1 and Q2 is

dRes(Q1,Q2) = 1 −
|result_tuples(Q1)∩result_tuples(Q2) |

|result_tuples(Q1)∪result_tuples(Q2) |
.

It is important that the tuples in result_tuples(Q) depend on the state
of the database. To calculate them, we must requery the database.

Thus, besides the query log itself, it is necessary to share parts of

the encrypted database as well. In particular, one needs to share the

content of all attributes that are accessed by at least one query in the

log. I.e., indices and constraints are not needed. In Table 3, we refer

to the part of the database that needs to be shared as DB-Content.

Result Equivalence. For query-result distance, the Characteristic c
to be preserved is c = result_tuples.

Definition 5.8 (Result Equivalence). Let Q be a query. Then Enc
ensures result equivalence for Q if

Enc(result_tuples(Q)) = result_tuples(Enc(Q)).

Lemma 5.3. Let Enc be an encryption algorithm for SQL queries.
If Enc ensures result equivalence, it is result distance-preserving.

Proof. Intuitively, in case result equivalence holds, the num-

ber of tuples in the Sets result_tuples(Q1) ∩ result_tuples(Q2) and
result_tuples(Q1) ∪ result_tuples(Q2) is the same for plain-text and

cipher-text queries. Thus, the analogous argumentation as stated

in Lemma 5.1 holds here as well. �

5.2.4 Query-Access-Area Distance. The last query-distance mea-

sure from literature is query-access-area distance, which is based

on the part of the data space accessed by a query.

Definition. The access area of a Query Q is the part of the data

space accessed by Q . Hence, it is a generalization of the result of a

query that is independent from the current state of the database.

Definition 5.9 (Access Area [23]). Let Q be a query. The access
area of Q , acccess(Q), contains all tuples that (1) might exist in at
least one state allowed by the database, and (2) whose removal from
at least one state would change the result of Q .

Definition 5.10 (Attribute-Access Set of a Query [23]). An At-
tributeA is in the Attribute-Access Set AttrQ of a QueryQ ifA occurs
in the FROM-(as join attribute), WHERE-, GROUP BY-, HAVING- or ORDER
BY-clause of Q .

Definition 5.9 defines the access area of one query. With the query-

access-area distance, we want to compare the access areas of two
queries. According to [23], this comparison takes place attribute-

wise, and every attribute that is in the attribute-access set of one

query is considered. Note that Definition 5.10 leaves aside attributes

that occur only in the SELECT-clause of a query. Next, we compare

access areas regarding the attributes in the access sets.

Definition 5.11 (Access Area Regarding Attribute). For a QueryQ ,
the access area regarding an Attribute A, acccessA(Q), is the part of
the domain of A accessed by Q .

To compare the access areas regarding attributes, we distinguish

between three cases, as given in Definition 5.12, with an overlap-

quantification Value x , which is a design parameter.

Definition 5.12 (Query-Access-Area Distance). LetQ1,Q2 be SQL
queries and AttrQ1,Q2 the set of attributes accessed byQ1 orQ2. Then
the access-area distance of Q1 and Q2 is

dAE(Q1,Q2) =
1

|AttrQ1,Q2 |
·

∑
A∈AttrQ1,Q2

δA(Q1,Q2)
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where

δA(Q1,Q2) =


0 if acccessA(Q1) = acccessA(Q2)

x if acccessA(Q1) ∩ acccessA(Q2) , ∅
1 otherwise

for x ∈ (0, 1) with a default value of 0.5.

To calculate access-area distance, in contrast to result distance, the

content of the underlying database is not needed, but the constraints

defining the domain of the attributes. See Table 3 and Example 5.4.

Example 5.4. Consider the Queries Q1 and Q2 defined as follows:
Q1 =’SELECT * FROM R WHERE A > 5’,
Q2 =’SELECT * FROM R WHERE A > 3’.

If the domain of Attribute A in the database is given by dom(A) =
[0, 100], then dAE (Q1,Q2) = δA(Q1,Q2) = x . In case dom(A) =
[10, 100], it is dAE(Q1,Q2) = δA(Q1,Q2) = 0.

Access-Area Equivalence. With access-area equivalence, it does

matter whether we first encrypt the query and then compute its

access area regarding all attributes or vice versa.

Definition 5.13 (Access-Area Equivalence). Let Q be a query and
acccessQ its attribute-access set. Then Enc ensures access-area equiv-
alence for Q if the following holds:

∀A ∈ AttrQ : Enc(acccessA(Q)) = acccessA(Enc(Q)).

Lemma 5.4. Let Enc be an encryption algorithm for SQL queries.
If Enc ensures access-area equivalence, then Enc is query-access-area
distance-preserving.

Proof. Definition 5.12 states that Enc is query-access-area dis-
tance-preserving if δA(Q1,Q2) = δA(Enc(Q1), Enc(Q2)) for every
Attribute A. If Enc ensures access-area equivalence, this equality is

given, with the analogous arguments as in Lemma 5.1. �

5.3 Ensuring Equivalence Notions
In this section, we show how to select the appropriate property-

preserving encryption class (cf. Definition 4.2) to ensure all equiva-

lence notions. To this end, we implement the encryption algorithms

EncA.Const, EncAttr and EncRel for each equivalence notion.

5.3.1 Token Equivalence. For token-based string-distance-preser-
ving encryption, we must ensure token equivalence. Lemma 5.5

lists the appropriate encryption classes.

Lemma 5.5 (Appropriate EncryptionClasses for Token Eqiv-

alence). To ensure token equivalence, the following encryption classes
are appropriate:
• EncA.Const = DET,
• EncAttr = DET and
• EncRel = DET.

Proof. For every encryption algorithm, according to Defini-

tion 4.2, we have to show that (1) the class ensures token equiva-

lence, and that (2) we cannot use an encryption class with a higher

security level. We show this as follows:

Algorithm EncA.Const. A constant in a query is an element of the

token set of the query, as illustrated in Example 5.2. To facilitate

token equivalence, which is an equality check of two sets, we

cannot rely on the most secure probabilistic classes (i.e., PROB,
SEARCH or HOM), because two constants with the same value

will have different cipher-texts. Thus, the constants must be

encrypted with a deterministic scheme, and EncA.Const = DET
for every Attribute A is appropriate.

Algorithm EncAttr. With analogous arguments as for EncA.Const,
EncAttr = DET is appropriate.

Algorithm EncRel. With analogous arguments as for EncA.Const

and EncAttr, EncRel = DET is appropriate. �

To conclude, we can find appropriate classes for all three algorithms.

5.3.2 Structural Equivalence. Lemma 5.6 states the appropriate

encryption classes for structural equivalence.

Lemma 5.6 (Appropriate Encryption Classes for Structural

Eqivalence). To ensure structural equivalence, the following en-
cryption classes are appropriate:
• EncA.Const = PROB,
• EncAttr = DET and
• EncRel = DET.

Proof. For the three algorithms, the following arguments hold:

Algorithm EncA.Const. As Table 4 shows, features of queries do
not contain constants. In particular, feature extraction removes

the constants from the predicates. Thus, since constants are

irrelevant for feature sets of queries, the choice of EncA.Const =
PROB for any AttributeA is appropriate, which is the encryption

class with the highest level of security.

Algorithm EncAttr and Algorithm EncRel. Attribute and relation
names are part of features (cf. Table 4). Analogously to token

equivalence, deterministic schemes appropriate. �

To conclude, we can find appropriate classes for all three algorithms.

5.3.3 Result Equivalence. A recent proposal dubbed CryptDB

proposed in [27] already ensures result equivalence. A core ob-

servation in [27] is that the selection of the encryption class of

EncA.Const depends on Attribute A and its use in query predicates.

Example 5.5 (Ensuring Result Equivalence). Consider the Predi-
cate ’A = 5’. Here, a deterministic encryption scheme for EncA.Const

is sufficient. Next, consider the Predicate ’A ≤ 5’. Now, an order-
preserving scheme is needed. If A is used within the SUM-aggregate
function, i.e., SUM(A), and in a range query, a homomorphic and an
order-preserving scheme is needed. In this case, EncA.Const consists
of two schemes. I.e., in the database, the attribute is encrypted with
both encryption schemes, and during encrypting the query, the correct
scheme depending on the predicate is used.

To conclude, we can use CryptDB to find appropriate encryption

classes for EncA.Const. However, CryptDB is a database encryption
approach and supports ad-hoc queries over encrypted data. As

we encrypt fixed SQL logs, we can modify CryptDB’s approach,

resulting in a higher level of security, as we will describe later on.

For instance, we can use stateful schemes to instantiate the classes.

Lemma 5.7 (Appropriate EncryptionClasses for Result Eqiv-

alence). To ensure result equivalence, the following encryption classes
are appropriate:
• EncA.Const as stated in CryptDB [27],

• EncAttr = DET and
• EncRel = DET.
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Proof. For the three algorithms, the following arguments hold:

Algorithm EncA.Const. Acording to the occurrences of AttributeA
in predicates, as described in CryptDB [27].

Algorithms EncAttr and EncRel. To ensure result equivalence, one
must preserve the names of relations and attributes, to ensure

that query execution accesses the correct relations and attributes.

Thus, a deterministic scheme is appropriate. �

Query-result distance differs from the previous measures: For the

previous ones, one only has to share the log. For result distance in

turn, the encrypted content of the database must be shared as well.

To this end, it is necessary to encrypt not only the log, but also the

database. Thus, we use EncA.Const, EncAttr and EncRel for database
encryption as well. As we will see in Section 5.4, our security model

captures the security of the log file and the database.

Differences to CryptDB. We see two differences to our approach

that give way to achieve a higher level of security:

• As stated in Section 2.1.1, we can use stateful or stateless en-

cryption schemes. In turn, CryptDB cannot rely on stateful

encryption schemes. For attributes encrypted with an OPE
scheme, this yields a higher security level. Experimental results

in [27] indicate that up to 15.4% of the attributes occurring in

real-world logs are encrypted with an OPE scheme.

• In our setting, the organization does not have to encrypt/share

the whole database, but only the relations/attributes accessed

by queries in the log.

Discussion. In contrast to token and structural equivalence, not all

SQL queries allowed by the SQL standard can be encrypted in a way

that ensures result equivalence [27]. This is an inherent issue we

must be aware of. For instance, queries containing arbitrary pattern-

matching LIKE predicates besides keyword search, i.e., predicates

that SEARCH schemes can handle, are not supported. However, the

results in [27] suggest that this affects only a small share of queries

occurring in a real-world log. Experiments conducted there show

that, except for a query log over a calendar database containing

many string operations, atmost 1.2% of the attributes in the database

cannot be encrypted, over five data sets.

5.3.4 Access-Area Equivalence. In contrast to result equivalence,

to ensure access-area equivalence, one has to preserve the result

tuples of every query with regard to every possible state of the

database. Nevertheless, we can choose nearly the same encryption

classes as for result equivalence, see Lemma 5.8. The only special

cases are attributes that occur only in the arithmetic aggregate

functions SUM and AVG in the SELECT-clause, i.e., not anywhere else
in a query in the log. Hence, this generally leads to a higher security

level. However, as described in Section 2.2, the difference is only

relevant when considering active attacks.

Lemma 5.8 (Appropriate EncryptionClasses forAccess-Area

Eqivalence). To ensure access-area equivalence, the following en-
cryption classes are appropriate:

• EncA.Const =

{
PROB if A occurs in SUM/AVG in SELECT only

as stated in CryptDB [27] otherwise

• EncAttr = DET and
• EncRel = DET.

Proof. The same arguments as in Lemma 5.7 apply, as the proof

is based on the semantics of the operators of the relational algebra

(e.g., selections) whose access space is independent from the state

of the database. The only exception from Lemma 5.7 is the first case

of EncA.Const. The reason is as follows: For result equivalence, we

must choose the HOM-class, if an arithmetic aggregate function

is used in a query in the log. For access-area equivalence, we do

not have to and can use (the most secure) PROB-class, because the
semantics of the aggregate function in the SELECT-clause does not
have any influence on the access area. This area only depends on

the grouping applied. This also holds if there is no grouping. Thus,

in case of an attribute to which only queries with an aggregate

function in the SELECT-clause refer to, we use the PROB class. �

As for result equivalence, we can use stateful encryption to

instantiate the encryption classes. In contrast to result equivalence,

we do not have to encrypt the content of the database, but only

need to include the minimum and maximum values of the attribute

domains of the attributes, cf. Example 5.4.

5.4 Security Assessment
As we have used known property-preserving encryption schemes

from literature, their level of security is known, and we can re-

duce the security of the schemes to the security of the encryption

schemes for SQL queries we have just specified.

Example 5.6 (Security Assessment). As the Tables 1 and 3 show,
we often use the DET-class for encryption and recommend the AES
scheme to instantiate it. As mentioned in Section 2.2, DET schemes are
not secure against chosen-plain-text attacks. But so far, there does not
exist any successful Known-Plain-Text or Cipher-Text-Only Attack
against AES2 that is executable in reasonable time, so we can use the
scheme here without any disadvantage.

In particular, as shown in [29] and stated once more in Lemma 5.9,

an encrypted database is as least as secure against a query log

attack as our SQL query encryption schemes are against attacks on

the database. In other words, if the same encryption schemes are

used, an attacker cannot infer more information from the encrypted

query log than from an encrypted database.

Lemma 5.9 (Security Ass of Query Log Attacks [29]). Let
A ∈ {Cipher-Text-Only Attack, Known-Plain-Text Attack, Chosen-
Plain-Text Attack}. Then a database is at least as secure against A in
terms of query-log attacks as against A in terms of database attacks.

Aswe have used property-preserving encryption schemes known

from literature, their level of security is known. Thus, we can re-

duce the security of the schemes to the security of the encryption

schemes for SQL queries we have just specified [29]. In particu-

lar, one can adapt the results from [22] analyzing the security of

databases encrypted with property-preserving encryption schemes.

This is intended – executing a full security analysis for organiza-

tions that want to outsource data analysis is practically impossible.

To conclude, we have achieved distance-preserving encryption

for every distance measure with the highest security level possible.

2
https://www.schneier.com/blog/archives/2012/03/can_the_nsa_bre.html (accessed

09/2017)

https://www.schneier.com/blog/archives/2012/03/can_the_nsa_bre.html
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6 GENERALIZATION OF OUR STUDY
Now, we examine how to reuse our concepts when designing

distance-preserving encryption schemes for data different from

SQL logs. Our main objective is to see which parts of the proof are

generally applicable, and which extra effort is necessary to apply

DisPE. We illustrate our thoughts by strictly following the steps of

DisPE with two example data sets. The first one are logs of queries

in another language, namely XQuery, and the second one is data

stored in a database relation, called relational data in the remainder.

6.1 Security Model
As mentioned, the security model definition step consists of two

parts: (1) specifying the threat model, and (2) definition of a high-

level encryption scheme containing all algorithms one has to im-

plement. Regarding the first part, the justification why we consider

passive attackers only is independent of the data and only depends

on the scenario. Hence, it is generally valid.

The high-level encryption highly depends on the type of data

considered. However, a complex data item consists of two parts:

(a) a complex type consisting of several elements, which in turn

may have a complex or atomic type and is formed according to a

grammar and (b) the data associated with the atomic elements. In

most settings, it is sufficient to encrypt (b), e.g., the relation and

attribute names and the constants in an SQL query, as they contain

the confidential information. Examples 6.1 and 6.2 illustrate this.

Example 6.1 (High-Level Encryption Scheme for XQuery). An
XQuery statement contains names of XML-elements and attributes
as well as attribute values that are confidential. Thus, we define the
high-level encryption scheme for (1) XML-element names, (2) attribute
names and (3) attribute values for all attributes. As a result, we have
a tuple of encryption schemes with three components, the same as for
SQL queries.

Example 6.2 (High-Level Encryption Scheme for Relational Data).
Think of customer data stored in a table with relation and attribute
names as well as attribute values that are confidential. Thus, we
specify the high-level encryption scheme consisting of an encryption
scheme for (1) relation names, (2) attribute names and (3) values of
every attribute. As a result we have a tuple of encryption schemes
with three components, very similar to the one for SQL queries.

6.2 Suitable Equivalence Notions
An equivalence notion is always defined for a specific distance

measure. However, as Examples 6.3 and 6.4 illustrate, the distance

measures for SQL queries may be useful for other data sets as well

in many cases, or variations are used, as Example 6.5 illustrates. In

other words, the equivalence notions introduced earlier are mean-

ingful in broader contexts.

Example 6.3 (Equivalence Notions for XQuery.). Token-based
string distance, structure and result distance also are suitable distance
measures for XQuery logs. Therefore, we can leverage the respective
equivalence notions. Access-area distance in turn is not suitable here:
In general, there is no underlying schema. Hence, it is not obvious
at all how to generalize the notion of “access area” for the XQuery
setting.

Example 6.4 (Equivalence Notions for Relational Data – Same Dis-

tance Measures). For relational data, token and structure equivalence
are applicable, while result and access-area equivalence are specific
for query languages.

Example 6.5 (Equivalence Notions for Relational Data – New Dis-

tance Measure). Suppose that one wants to use the token-based dis-
tance to analyze the data, but Attribute A should be excluded, i.e., is
not part of the token set. Thus, we have a variant of the token-based
distance measure and need a variant of token equivalence.

6.3 Ensuring Equivalence Notions
We cover three cases, describing the relationship of the equivalence

notions defined in Step 2 to our SQL equivalence notions, ordered

by the extent of reuse options, in a decreasing manner:

a) Same Equivalence Notions. If the token or structural equiva-

lence is used, one can use the same encryption schemes as in our

case study in Section 5. For instance, this is the case for all distance

measures or equivalence notions for the customer data. For result

and access-area equivalence, one cannot directly adapt the schemes

for EncA.Const for SQL queries, i.e., the CryptDB-approach, because
of different execution semantics.

Example 6.6 (Ensuring Equivalence Notions for XQuery). A core
difference between SQL and XQuery is the use of path expressions, i.e.,
XPath. For result equivalence, one must ensure that the evaluation of
XPath location steps is the same on plain-text and on cipher-text data.
As we preserve the tree structure of the XML-trees (cf. Example 6.1),
“preserving the locations steps” only implies the usage of deterministic
schemes for relation and attribute names and ensuring the correct
evaluation of predicates, as for SQL.

b) Variants of the Equivalence Notions. As Example 6.5 illustrates,

one tends to use variants of the equivalence notions introduced in

our study. In this case, one can reuse parts the encryption schemes

the high-level scheme consists of.

Example 6.7 (Ensuring Equivalence for Relational Data). Consider
the equivalence notion from Example 6.5. It differs from token equiva-
lence in that the distance measure does not use Attribute A. Thus, we
can encrypt the attribute values of the AttributeAwith a probabilistic
scheme, i.e., EncA.Const = PROB, and the other encryption algorithms
are the same as for SQL queries.

c) Other Equivalence Notions. In case other equivalence notions

are used, one must implement the encryption scheme anew. To this

end, one can rely on our notions of appropriateness (Definition 4.2)

and encryption-class taxonomy.

6.4 Security Assessment
As long as one uses well-known security schemes to ensure the

equivalence notions, such as the ones in our taxonomy in Figure 1,

the assessment of the security is known. In particular, one can adapt

the reduction of Lemma 5.9 to other types of data. Otherwise, a

full-fledged security analysis is needed, as, for instance, in [9] for

order-preserving encryption.



Distance-Preserving Encryption SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy

7 EXPERIMENTS
Section 3.2 shows with pathological examples that ensuring the

equality of distances upon encryption is necessary to guarantee that

we have the same mining results on plain-text and cipher-text data.

In this section, we substantiate these findings with experiments

on real data. We show that preserving the exact distances upon

encryption is necessary to deploy encryption schemes independent

of the specific data-mining algorithm in use. In the following, we

first describe our experimental setup, then the results.

7.1 Experimental Setup
We describe the experiments, the data and algorithms used.

Experiments. To substantiate our findings from Section 3.2, we

conduct two Experiments E1 and E2 on both alternative notions:

(E1) We quantify how much preserving an ϵ-approximation of the

distances upon encryption falsifies the results of distance-based

data mining.

(E2) We quantify how much preserving the relative order of dis-

tances upon encryption falsifies the results of distance-based

data mining.

Both experiments follow the following procedure: First, we deter-

mine the distance matrix of the items of our data sets. We name this

matrix the reference matrix. Then we generate distorted matrices
as follows: In E1, we distort the values in the reference matrix by

adding noise so that we have approximations of the distances, for

different approximation values ϵ . In E2, inspired by [33], we dis-

tort the values by using the i-stretching Function si (v) = v
i
. Since

d(x ,y) ≥ 0, the Function si (d(x ,y)) increases monotonically, thus,

distortion preserves the relative order of the distances. Finally, we

compare the results of different distance-based mining algorithms

on (a) the reference matrix and (b) distorted matrices. We always

use the same parameter settings of the algorithms for (a) and (b).

Data Sets. In total, we conduct both experiments on three data

sets. We use two synthetic data sets – a Uniform and a Gaussian-

distributed data set – as well as one real-world data set [5, 30]. All

three have Dimensionality dim = 16 and consist of 10,992 data items.

We normalize the distances with min/max normalization to the

interval [0,1]. Figure 2a graphs the distribution of the distances in

the reference matrices. We see that this distribution in the reference

matrices are different for our three data sets. This indicates that

our results will be somewhat general. To get an intuition regarding

the influence of the distortion in our experiments, see Figure 2b for

Experiment E1 and 2c for Experiment E2. The distortion in E1 leads
to a uniformer distribution of the distances, the one in E2 to denser
distribution of the data items. The Figures 2b and 2c only graph

the distributions for the real world data set, but the distributions

of the distorted distance matrices for the Uniform and Gaussian

distributed data set are similar.

Data-Mining Algorithms. We conduct the experiments with two

types of distance-based data mining algorithms: clustering and out-

lier detection. For clustering, we use the k-medoids [26] algorithm

with Euclidean distance and Parameter k = 10. For outlier detection,

we use the OPTICS-OF [11] algorithm. We select the parameters of

OPTICS-OF so that they are optimal for the original data.

7.2 Results
Figure 3 graphs the results of our experiments for all algorithms

and data sets. We use the following error measures: For k-medoids

algorithm, we determine the fraction of data items assigned to the

wrong cluster. For OPTICS-OF algorithm, we use the false negative

rate (FNR), i.e., the rate of outlier classified as inlier. – We now

describe the results of both experiments, followed by a discussion.

Experiment E1. Figure 3a graphs the results of E1. As expected,
for almost all data sets and algorithms, the error increases with

increasing distortion, i.e., ϵ-values, from 0 until (nearly) 1. An error

value of 1 is the highest possible error value. Thus, even for small

values of ϵ , the falsification of the clustering result is high.

Experiment E2. Figure 3b shows the results of E2. Again, the
error increases with higher distortion. Differently from E1, the
error values do not exploit the full range of [0,1]. In particular, the

error of k-medoids clustering remains small, i.e., ≤ 0.3. In contrast,

the error with OPTICS-OF is nearly constantly 1, i.e., maximal. The

reason is that stretching leads to smaller distances (cf. Figure 2c),

i.e., denser regions. The data items are moving closer together, and

the outliers move inwards as well.

Discussion. Preserving approximation distances or the relative

ordering of the distances upon encryption falsifies the results of

distance-based data mining algorithms, but to very different extents.

While preserving approximation distances leads to high falsification

for both algorithms, the falsification while preserving the relative

ordering depends on the specific algorithm. This implies that, if one

does not preserve the exact distances upon encryption, finding an

appropriate encryption scheme not only depends on the distance

measure, but also on the specific algorithm in use. This is undesir-
able: Organizations typically need different analyses, with different

algorithms, from a service provider, and the necessity of transmit-

ting several encrypted variants of the data would be difficult to

impossible to convey. Our conclusion is that distance-preserving

encryption is the only feasible option.

8 CONCLUSIONS
Many organizations have data that contains valuable information,

but cannot analyze it themselves. Therefore, they outsource the

analysis to a service provider. To ensure confidentiality, they are

willing to transfer their data only if it is encrypted. To this end, it is

important that the encryption preserves the mining results. Popular

distance-based data mining algorithms such as k-medoids [26] are

particularly relevant. Therefore, it is important to preserve the

mining results for them. To overcome this issue, we introduce

distance-preserving encryption (DPE). With formal arguments, as

well as experiments, we prove that preserving the exact distances is

the only feasible option. To deploy (DPE) schemes, we present the

DisPE-procedure. It says how to design a DPE scheme for arbitrary

data and distance measures. The procedure involves defining and

ensuring equivalence notions, which capture a characteristic of data

that should be preserved upon encryption. We then instantiate this

procedure for SQL query logs. In this study, we find appropriate DPE
schemes for all four prominent distance measures from literature.

In any case, we use well-known property-preserving encryption

classes to implement the DPE schemes and assess their security.
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Figure 2: Distribution of the Distances in the Reference Matrices, and the Distorted Matrices for the Real-World Data Set.

1 10 100

0

0.2

0.4

0.6

0.8

1

Approximation Value ϵ

k-
m
ed

oi
ds

·10−3 2 3 4

0

0.1

0.2

0.3

Exponent i

F
r
a
c
t
i
o
n
o
f
P
o
i
n
t
s

1 10 100

0

0.2

0.4

0.6

0.8

1

O
PT

IC
S-
O
F

·10−3

(a) Experiment E1.

2 3 4

0

0.2

0.4

0.6

0.8

1

F
N
R

(b) Experiment E2.

Figure 3: Results of our Experiments.

This is different from approaches supporting ad-hoc queries like

CryptDB [27] and gives a way to higher security levels. Finally, we

demonstrate how to reuse of parts of our study by the examples

of XQuery and of relational data. Furthermore, we can even reuse

the equivalence notions defined and their DPE schemes beyond

DisPE when mining encrypted data according to other paradigms.

For instance, result equivalence for SQL queries is also useful for

association-rule mining over encrypted SQL logs [4]. Studying the

applicability of equivalence notions in different contexts also offers

interesting opportunities for future work. For example, ensuring

token equivalence is appropriate for cleaning SQL antipatterns over

encrypted data [6].
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