
This is a post-peer-review, pre-copyedit version of an article published in International Journal on Digital Libraries. The final
authenticated version is available online at: https://doi.org/10.1007/s00799-019-00271-6.

https://doi.org/10.1007/s00799-019-00271-6


2 Adrian Englhardt et al.

Noname manuscript No.
(will be inserted by the editor)

Improving Semantic Change Analysis by Combining Word
Embeddings and Word Frequencies

Adrian Englhardt · Jens Willkomm · Martin Schäler · Klemens Böhm
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Abstract Language is constantly evolving. As part of

diachronic linguistics, semantic change analysis exam-

ines how the meanings of words evolve over time. Such

semantic awareness is important to retrieve content from

digital libraries. Recent research on semantic change

analysis relying on word embeddings has yielded sig-

nificant improvements over previous work. However, a

recent, but somewhat neglected observation so far is

that the rate of semantic shift negatively correlates with

word-usage frequency. In this article, we therefore pro-

pose SCAF, Semantic Change Analysis with Frequency.

It abstracts from the concrete embeddings and includes

word frequencies as an orthogonal feature. SCAF al-

lows using different combinations of embedding type,

optimization algorithm and alignment method. Addi-

tionally, we leverage existing approaches for time series

analysis, by using change detection methods to iden-

tify semantic shifts. In an evaluation with a realistic

setup, SCAF achieves better detection rates than prior

approaches, 95% instead of 51%. On the Google Books

Ngram data set, our approach detects both known as

well as yet unknown shifts for popular words.

Keywords computational linguistics · semantic

change analysis · change detection · word embeddings

1 Introduction

Language is in constant flux. Humans seek efficiency

when expressing themselves and communicate accord-

ing to the least-effort principle proposed by Zipf [1].

So new words are invented or adapted, while others
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Fig. 1 Example time series for the word “server” with se-
mantic and frequency information. The red series represent
the amount of semantic shift measured in the embeddings
while the blue visualizes the usage of the word.

vanish. To illustrate, “Katrina” as a hurricane name

suddenly started appearing in 2005. In order to sup-

port retrieval of content from digital libraries, sophisti-

cated search mechanisms have become available in the

last decades [2]. Managing the resources of a digital li-

brary requires knowledge of the meaning of words. A

system for search should be aware of semantic changes,

to better support a user. In particular, when searching

in historical corpora, the meanings of words that have

changed must be taken into account.

Diachronic linguistics studies the development of a

language over time. Nowadays, digital content is avail-

able that contains temporal information. Such data of-

fers new research possibilities for that branch of linguis-

tics. A commonly used data set for diachronic anal-

ysis is the Google Books Ngram corpus [3]. Together

with advances in distributional language models, new

methods have recently been proposed to analyze seman-

tic shifts computationally [4–7]. While some methods

only extract the words whose meanings have shifted, di-

achronic linguistics seeks to identify the words together

with the points in time when the shifts occurs [4, 8]. Re-

cent work also has analyzed social media data such as
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the Twitter stream or news articles, in order to identify

semantic shifts [5, 9–11].

Problem Statement Previous work has focused on ex-

tracting words that have changed semantically in lan-

guage models, e.g., in word embedding models. Based

on the models, the words that have changed most have

been computed. Recent results in [4] indicate that the

rate of semantic shifts negatively correlates with fre-

quency. I.e., frequent words change more slowly. When

working with word embedding models, without any fil-

tering of the vocabulary, infrequent words dominate the

top lists of words that change most. This is due to their

frequently changing surrounding context. Additionally,

words that gain or change to new meanings tend to be

used more often. In this article, we study how explicitly

including word frequency information can improve se-

mantic shift analysis. Our evaluation focuses on words

with semantic shifts where the frequency is stable or

increases. We discuss semantic shifts where frequency

decreases only briefly in Section 4.2.2.

Example 1 The word “server” did describe the role of

an assistant at the start of the 20th century. In the

1950s it appeared in queue theory [12], until it shifted to-

wards its current meaning mixture in the late 20th cen-

tury. This is in line with the red line in Figure 1. Later,

the popularity of the word has increased considerably,

as is evident from the increasing relative frequency, the

blue line in Figure 1. Most existing methods for seman-

tic shift analysis would only return the word “server”,

because of the fluctuations of the red curve, but with-

out points in time. Next, a method featuring change de-

tection but leaving aside frequencies would for instance

return the point in time of the second local maximum

of the red curve. However, observe the steep increase

of the blue curve shortly before the year 2000. It occurs

because, with its new meaning, the word is used more

often. Inspecting the actual data reveals that ”server”

is indeed used in this way. At the same time, the new

meaning needs some time to gain momentum, so the

relevant actual point in time is after the maximum of

the red curve. Our method indeed positions the point in

time there.

Challenges The problem is challenging in several ways:

A core question is how frequency information can actu-

ally be used for semantic shift detection. Plain filtering

of the vocabulary a priori is insufficient to handle the

different degrees of semantic shifts. Instead, semantic

and frequency information must be considered simulta-

neously. Deploying approaches from time series analy-

sis seems to be more promising, but this is not trivial.

This is because it requires a time series representation

that covers both kinds of information. Working with

word embeddings for diachronic linguistics is challeng-

ing as well: Due to the nonlinear optimization, the use

of approximation approaches and random initialization

of the learning process, different runs of the training

algorithm on a corpus can result in different word vec-

tors. When applying transformations [4, 5, 13], or when

training incrementally [4, 6, 14], the models need to

be aligned, to enable comparisons. However, the influ-

ence of the different alignment approaches has not yet

been studied, and this increases the parameter space

for word embeddings even further. Another challenge is

the lack of a ground truth of words that have shifted

semantically in a language. To allow for a quantitative

evaluation, synthetic corpora are needed that reflect the

gradual nature of semantic shifts. This is different from

abrupt changes, as for instance modeled in [5].

Contributions In this work, we propose an abstraction

from the concrete embeddings that takes word frequency

information into account: SCAF, Semantic Change Anal-

ysis with Frequency. We combine information on the

movement of a word in the embedded space over time

and its occurrence count to a two-dimensional time se-

ries model. This allows to apply any multidimensional

change detection algorithm, to detect and quantify se-

mantic shifts. Our extension of the time series model

with frequency is orthogonal to specifics of the em-

beddings. Put differently, our approach is universal,

meaning that it works with any combination of word-

embedding type, approximation algorithm and align-

ment. This allows to benchmark all combinations. We

show that our method is superior in several ways: Our

method benefits from the inclusion of frequency and

outperforms existing approaches. In a realistic setup,

the detection rate improves by more than 40%, and

change detection run time is in the order of seconds in-

stead of hours. We compensate for popular words shift-

ing more slowly and identify yet unknown shifts in the

Google Books Ngram data set.

SCAF can be applied to any temporal data, e.g.,

to the Google Books Ngram data set or to web crawls.

While granularity obviously is different, the patterns,

e.g., 5-year periods over two centuries versus monthly

data over 5 years, are very similar. In this article, the

main focus is on the Google Books Ngram data for our

experiments. Previous approaches have focused on this

data as well. So this allows for comparisons of results.

This data set is one of the most comprehensive his-

torical corpora and has over 1 TB uncompressed. Ad-

ditionally, we apply our approach on Twitter data in

Section 5.4.
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We publish all material and refer to our website1

for a description of the data. The material includes all

trained word embedding models which have had a to-

tal training time of several weeks on modern machines.

The material should reduce the technical effort of other

researchers analyzing semantic shifts as well.

2 Change detection

We now briefly review change detection and its prop-

erties that are relevant for our approach. We present

the requirements on the change-detection method and

the change-detection method of our choice. The change-

detection method is an integral part of our approach.

So we present it right here and not as part of the section

on related work, in order to highlight its importance.

Different approaches exist to identify changes in tem-

poral data. One option is to encode the detection di-

rectly as part of a “larger”, domain-specific analysis. In

our case, this would be the detection of words that have

shifted. For instance, work in [4, 6] uses the summed

vector movement to sort the vocabulary where the real

shift time remains unknown. The alternative is to lever-

age existing approaches and implementations for time

series analysis, i.e., use so-called change detection algo-

rithms. This, i.e., factoring out common functionality

in order to be able to focus on the application-specific

one, is common practice in computer science. We now

give a definition of the general change-detection prob-

lem for an arbitrary time series. We follow this defini-

tion when including change detection into our analysis

pipeline later on.

Definition 1 (Change detection) Given a time se-

ries with values xt ∈ Rn with points in time t ∈ T as in-

put, change-detection is a function which maps Rn×|T |

to a set of changes c ∈ T × R.

Executing change-detection(ts) on a time series ts yields

a set of changes as tuples (t̂, ŝ). Here, t̂ is the point in

time of the change, and ŝ is an optional score.

One can categorize change detection methods along

different dimensions: One is the dimensionality of the

time series, i.e., one- or multi-dimensional. Another one

is the type of change the method detects, e.g., shift in

mean or variance. One more distinction is that meth-

ods may or may not rely on assumptions regarding the

value distribution and properties of a time series. Next,

a time series is homogeneous when the n dimensions

of each value xt are at exactly the same point in time.

Distinguishing whether a method works on inhomoge-

neous time series is another dimension. See [15] for an

overview.

1 https://dbis.ipd.kit.edu/2601.php

Our case has the following requirements on change

detection:

(a) Fast run time, to facilitate execution on a full vo-

cabulary

(b) Multi-dimensional, to allow the combination of se-

mantic and frequency information

(c) Detect a shift in mean when a context of a word or

a frequency shifts

(d) Work on short time series: The time series from,

say, the Google Books Ngram data set for 1800–

1999 only have 40 values with 5-year periods

A study of different change detection methods in

terms of performance or quality in this current con-

text is beyond our scope and is not the focus of this

work. Instead, we study how good approaches based on

a conventional method actually are (with very positive

results, as we will see). We select a well-known change

detection approach based on cumulative sums, known

as CUSUM [15, 16]. CUSUM fulfills the above require-

ments: Regarding (a), the calculation only requires two

passes over the time series. Its parallelization is triv-

ial, by calculating changes for several series at once.

CUSUM can work with multi-dimensional time series

(b). With an appropriate time series model, the cumu-

lative sum captures changes in mean (c). It also does

so when the series are short (d).

A key characteristic of CUSUM is that the summed

time series must only contain change information, e.g.,

a time series xt ∈ Rn of differences. Formally, the equa-

tions for the sum St are the following ones, when all

dimensions j ∈ [1, . . . , n] are treated equally:

S0 = 0, St = St−1 +

n∑
j=1

xt,j (1)

Then one can identify the time of the most significant

shift and score (t̂, ŝ) in the series by computing:

(t̂, ŝ) =
(

arg max
t

(St),max(St)
)

(2)

CUSUM can be adapted to work with inhomoge-

neous time series. But we want to preserve the flexibil-

ity to apply other change detection methods and hence

build a homogeneous model.

3 Related Work

We now review word embedding models to study the

evolution of a language, then semantic change analysis.

Finally, we present change detection methods used for

semantic shift detection.

https://dbis.ipd.kit.edu/2601.php
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Word embeddings in diachronic linguistics Distribution-

al models are used for tasks in NLP, e.g., examining

probability distributions [17, 18], generating video de-

scriptions [19] or grammar/spell checking [20, 21]. Word

embedding models build low-dimensional, real-valued

representation of a vocabulary where similar words are

close to each other. Several approaches to learn embed-

dings exist, such as Positive Pointwise Mutual Infor-

mation (PPMI), Singular Value Decomposition (SVD),

Latent Semantic Analysis (LSA), Skip-gram (SG) and

Continuous Bag of Words (CB), published in the word2-

vec toolkit [22], or GloVe [23]. CB and SG optimize

the embeddings by looking at pairs of words that oc-

cur together and some that do not. Since using the full

vocabulary for negative pairs is infeasible, so-called ap-

proximation algorithms are in use for the optimization.

Hierarchical softmax (HS) and negative sampling (NS)

[24] are well-known approaches that solve the optimiza-

tion problem.

Another common problem of all embedding mod-

els just presented is that the embeddings for different

time periods are not directly comparable. Learning two

embedding models from exactly the same data can re-

sult in completely different word vectors. The vectors

can be shifted and rotated. Related work therefore sug-

gests alignment transformations based on linear prob-

lems [5, 25], on orthogonal Procrustes [4, 9] or training

incrementally [4, 6]. For the latter, the word vectors of

time period t are initialized with the ones of the pre-

vious time period t − 1. Only the first time period is

initialized randomly. While new embedding approaches

exist that try to overcome the alignment issue directly

such as Temporal Random Indexing (TRI) [8] or oth-

ers [11, 26], we focus on the well-established methods

of the word2vec toolkit, i.e., combinations of SG/CB

and HS/NS. The respective abbreviations are SGHS,

SGNS, CBHS and CBNS in the following. Nevertheless,

our approach is universal in that it works with any un-

derlying word embedding model, as we will describe in

Section 4.1.

Previous work suggests that measuring model qual-

ity solely with commonly used word sense or analogy

test sets is error-prone and does not always identify the

best combination for down-stream NLP tasks [27, 28].

This problem often also is referred to as intrinsic versus

extrinsic evaluation. “Intrinsic” corresponds to the di-

rect syntactic or semantic relationships between words

in the models and relies on intellectual assessment [9].

“Extrinsic” evaluation can, in our case, take place by

testing the performance on the semantic shift detec-

tion task in a quantitative manner. By doing so, one

can select the best possible combination without being

misguided by individual model quality.

Hellrich et al. have tried to answer the combina-

tion problem of different word embedding types and

approximation algorithms, but with a focus on short

time periods (1900–1904) and only with intrinsic eval-

uations [29]. Another issue is the parameterization of

the embedding models. Various parameters must be

configured before training an embedding model such as

SGNS, e.g., the vocabulary size, embedding dimension-

ality or window size. Previous work exists that studies

the influence of the parameters on the models used in

this current article [30, 31]. Next, we ourselves have al-

ready studied the training of embedding models from

ngrammed contemporary corpora in [32]. In this arti-

cle, we use findings from this previous work in order to

shrink the parameter space. However, all those studies

focus on embedding models trained on contemporary

language and not on historical corpora. This article in

turn features an exhaustive intrinsic and extrinsic study

of training embeddings from historical corpora for se-

mantic shift analyses, see Section 5.1 and Section 5.2.

Semantic shift analysis A prominent research topic in

NLP is the evolution of language. Early work has fo-

cused on smaller case studies of a few words and has

often required linguistic knowledge [33–39]. Together

with the advances in distributional language models,

efficient implementations and the publication of the

Google Books Ngram corpus [3, 40], others have de-

signed methods to compute semantic shifts. While an

early approach is based on co-occurrence matrices [41],

work has then relied on word embeddings to extract the

evolution of word semantics [5, 6].

Kim et al. have extracted words with the largest
movement in incrementally trained SGNS models [6].

Kulkarni et al. have used change detection to identify

change points on linearly aligned SGNS embeddings [5].

The law of conformity has been presented by Hamilton

et al. in [4] with an analysis of the correlation between

the movement of words in vector space compared to

frequency or polysemy. Most recent work includes ex-

ternal resources such as WordNet [42] or has performed

refined analysis for other languages [25, 43–45]. We are

the first to use the results of [4] to improve the detection

quality for popular words that shift more slowly.

Named entity evolution is another research direc-

tion that studies the evolution of language. Here, the

objective is different from what we have previously in-

troduced as semantic shift: For named entity evolution,

the context remains similar, and the names of an entity

change. On the other hand, in semantic shift analysis

as we see it, the term itself is fixed, and it is the con-

text that changes. Named entity evolution relies on the

comparison of context words. Doing so for the cross
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Table 1 Existing time series models for shift analysis.

Embed. Alignment Measure Analysis focus

LSA - cos-sim similar word pairs [7]
SGNS incremental cos-sim most changed words [6]
SGNS local-linear cos-dist change detection [5]
SGNS incremental cos-dist most changed words [4]
SVD Procrustes cos-dist most changed words [4]
TRI - cos-sim change detection [44]

product of all words is computationally expensive [46].

Tahmasebi et al. solve this problem by filtering with a

burst detection [46]. Only time windows and words are

analyzed where word frequency has increased by much.

This filtering technique however misses shifts where fre-

quency only changes slowly or not at all. Our method in

turn is able to detect such changes, by always analyzing

the full dictionary and the full time span.

Change detection for semantic shift analysis Kulkarni

et al. used a method based on a mean shift model that

estimates the change probability by pivoting the series

at each element and calculating the mean for both parts

[5]. Since the method relies on random permutations for

the estimation, it is computationally expensive. Never-

theless, we will include it for comparison, since it is the

state-of-the-art change detection method for semantic

shift analysis. Work in [44] also has applied this change

detection approach. In this article, we propose an ap-

proach with a better detection rate as well as a shorter

run time.

We see [5] as our main competitor, and our approach

consists of similar building blocks. However, it features

several new contributions. In this current article, we
propose a new two-dimensional time-series model that

directly includes the frequency information. We use a

different change-detection method that can process mul-

tidimensional time series. In Section 5.1 we assess the

quality of the word embeddings trained on historical

corpora which to this extent is missing in related work.

Finally, our approach detects more plausible change

points than previous work in a realistic setup, as we

will see in Section 5.2.

4 Our Abstract Time Series Model

As introduced in Section 3, previous work has used dif-

ferent approaches to perform semantic shift analysis

with word embedding models. Table 1 is a summary

of some existing time series models. It should become

evident that the parameter space is enormous, and that

research has followed a variety of directions. Our con-

tribution starts by unifying these approaches and by

Table 2 Notation used in this article

Explanation

T time periods
V vocabulary
wi word i in V
Ct corpus for time period t
φt embedding model trained for time period t

φt(wi) word vector for wi at time t
aft absolute frequency of a word at time t
ft relative frequency of a word at time t
st cos-dist between the vectors of a word at t− 1 and t

proposing an abstracted model. We then continue with

an orthogonal extension by including frequency infor-

mation. The notation used in this article is featured

in Table 2.

4.1 Abstraction

The following abstraction is the basis for our approach.

Structural Aspects: Given a vocabulary V and tem-

porally consecutive corpora Ct, one learns word em-

beddings φt : V, Ct 7→ Rd that map each word to a

d-dimensional vector. Depending on the training pro-

cedure, the embeddings are not always directly com-

parable when learning different models for each time

period. Nevertheless, we assume that the models φt are

aligned, e.g., with approaches presented in Section 3.

But we do not have any restriction on how the actual

alignment is performed. We compare several alignment

approaches in Section 5.2.

Measuring Semantics: Given a sequence of word em-

beddings, it is possible to compute values

st = cos-dist(φt−1(wi), φt(wi))

= 1− φt−1(wi) · φt(wi)

||φt−1(wi)|| · ||φt(wi)||

for each word wi ∈ V. They represent the movement of

a word in the space. The values st form a time series,

which allows for semantic shift analysis.

The relevant word embedding parameters in this ar-

ticle are:

– word embedding model (e.g., CB, SG, SVD, PPMI,

LSA, etc.)

– approximation algorithm (e.g., HS, NS)

– alignment approach (e.g., incremental training, lin-

ear or Procrustes based transformation, etc.)

For brevity, we speak of “combination” when we talk

about combining different word embedding types, ap-

proximation algorithms, and alignment methods. Algo-

rithm 1 represents the full analysis pipeline from the
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Algorithm 1: Analysis Pipeline

1

SCAF

Input: Data set D, change-detection, embedding
type embtype, approximation algorithm
embapprox, alignment approach embalign

Result: changes = [(w, t, s), . . . ] for each word
2 C1, . . . , Ck = split-and-clean(D)
3 V = vocabulary(D)
4 for Ci ∈ C1, . . . , Ck do
5 φi = train-embedding(embtype, embapprox, Ci)
6 end

7 φ̃1, . . . , φ̃k = align-embeddings(embalign, [φ1, . . . , φk])
8 for wi ∈ V do

9 ts = build-time-series(wi, [φ̃1, . . . , φ̃k], [C1, . . . , Ck])

10 (t̂, ŝ) = change-detection(ts)

11 changes. append(wi, t̂, ŝ)

12 end

raw data set, training and aligning the embeddings, to

the changes. First, function split-and-clean preprocesses

the data set; we will discuss it in Section 5. Function

train-embedding then trains an embedding model. We

use align-embeddings when aligning the embeddings.

Function build-time-series builds our new time series

model, which we introduce in the following section.

Based on it, we then detect changes in Line 10 and

retrieve the most significant change for each word, to-

gether with a score.

SCAF can work with arbitrary word embedding mod-

els as long as they are aligned. If the aligned embedding

models are given externally, we can skip the first part

of the analysis pipeline. Put differently, one can hot-

start our method in Line 8 with the following input:

aligned embedding models φ̃i, vocabulary V, and cor-

pora Ci. This also includes the case when working with

a joint embedding and alignment model like the ones

mentioned in Section 3. We describe this straightfor-

ward abstraction explicitly since previous work has fo-

cused on individual combinations and does not feature

any comprehensive comparison.

4.2 Universal Extension

We use the abstraction just presented to extend the

time series model with word frequency information. In

general, the extension yields a two-dimensional time se-

ries where the first dimension contains semantic infor-

mation and the second one frequency data. As we will

explain later, the extension is not just an obvious com-

bination. This is because homogenizing the dimensions

is not trivial.

From the abstracted model, we retrieve the values

st which quantify the movement of a word in the vector

space over time. For the second dimension, we first col-

lect the absolute frequencies aft(wi), by counting the

T ime 1 2 3 4 5

Semantics s2 s3 s4 s5

Frequency f1 f2 f3 f4 f5

Fig. 2 Time series model with dimension combination.

occurrences for each wi ∈ V per corpus Ct. In order

to extract information from these raw frequency val-

ues, they need to be comparable over time. Word oc-

currence fluctuates in the Google Books Ngram data

set, since the numbers of digitized books per year dif-

fer. Additionally, the data set contains an exponentially

increasing number of words, for the latest 50 years in

particular [3]. So we follow the creators of the data set

and use the relative frequency [40]. Each occurrence

count is divided by the total count of words in the cor-

responding time period |Ct|, and we retrieve the value

ft = aft(wi)/|Ct| per word wi.

We now go over remaining open issues. Afterwards,

we present our model that combines semantic and fre-

quency information.

4.2.1 Dimension Combination Problem

The modeled values st and ft correspond to different

positions in time, as Figure 2 shows. The semantic value

st of a word represents how the word vector moves from

time period t − 1 to period t. The frequency values

ft in turn directly correspond to period t. To preserve

the flexibility to apply other standard change detec-

tion methods, the time series must be homogeneous.

Therefore, the dimensions must be adjusted, i.e., for

each time period there should be one value for seman-

tic and one for frequency information. This is not yet

the case in our setting. Additionally, we have to con-

sider the different value ranges for st and ft−1,t when

combining changes in both dimensions. Formally de-

fined, the homogenization required is the following one:

Given the semantic values SV = (s2, . . . , st) and fre-

quency values FV = (f1, . . . , ft), we seek a homoge-

nization hom(SV, FV ) = (x2, . . . , xt) with xi ∈ R for

all i ∈ [2, . . . t]. The models presented in the following

section will follow this scheme.

4.2.2 Models

We have decided to use the CUSUM change detection to

extract the most significant change point in each series.

We also experimented with a CUSUM version where a

change is only detected when a certain threshold pa-

rameter is exceeded. Due to value fluctuations in the

series, the choice of this value proved to be difficult, and

it does not generalize when switching to other corpora.
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T ime 1 2 3 4 5

Semantics s2 s3 s4 s5

Frequency ∆f2 ∆f3 ∆f4 ∆f5

Fig. 3 Time series model A.

This is why we choose the non-parametric CUSUM ver-

sion presented in Section 2. Applying CUSUM to our

time series model yields a ranked list of the words from

the vocabulary where the scores indicate potential se-

mantic shifts.

The choice of CUSUM as the change detection al-

gorithm imposes two conditions on the dimension and

value adjustment: Our time series model must only con-

tain change information, and both dimensions must have

similar value ranges. For a homogeneous time series, a

two-dimensional value xt per time period t is required

that combines the semantic information values st and

frequency ft.

To ease presentation, we now present a first model

to carve out the requirements a model indeed has to

meet. In what follows, the word “model” always stands

for the time series model envisioned for semantic shift

analysis including word frequency.

Model A The first model uses the raw cosine distances

st in the first dimension. With the cosine distance, we

sum over the movement of a word in the vector space,

and a high movement indicates a semantic change. For

the second dimension, taking the actual relative fre-

quency values is not an option. This is because they

do not reflect any change information, and summing

them up is meaningless. Instead we use the differences,

by computing ∆ft = ft − ft−1. Figure 3 visualizes the

model. The values for the final time series are xt =

st +∆ft.

This model comes with several problems: In the first

dimension, the values st generally are greater than zero

and range at about 0.01–0.15. The word vectors are

not perfectly stable even without any semantic shift.

Experimentally this can be explained by the sampling

bias and noise in the data sets. When computing a cu-

mulative sum over the values st, it is not possible to ex-

tract a change point. This is because the sum is steadily

increasing. Normalization is difficult as well. This is be-

cause the value distribution depends on the word, e.g.,

the values for “the” hover around 0.015 and for the

word “car” around 0.035 with incrementally trained

SGNS embeddings. Applying a normalization such as

the z-normalization on each series individually is not

an option. This is because the change detection is sen-

sitive to deviating values. A global z-normalization of

T ime 1 2 3 4 5

φ1 φ2 φ3 φ4 φ5

s2 s3 s4 s5Semantics

∆̃s3 ∆̃s4 ∆̃s5

Frequency
f1 f2 f3 f4 f5

∆̃f2 ∆̃f3 ∆̃f4 ∆̃f5

Fig. 4 Time series model B.

all series at once does not fix the issue either, as seen

from the example words “the” and “car”.

Regarding the second dimension, the deltas for the

frequency reflect increasing or decreasing popularity of

a word. This may indicate a semantic shift. But the

value ranges of st and ∆ft are too different and require

additional weighting when computing the sum per time

period. While st commonly ranges between 0.05–0.2, ft
is a lot smaller, e.g., 0.0001–0.05. By additionally com-

puting deltas ∆ft for the latter, the difference between

the ranges further increases, and the values are at least

a magnitude smaller.

Model B We now present a second model which copes

with these problems. Instead of using the raw cosine

distance value st, we also calculate differences ∆st =

st−st−1. To illustrate, the value ∆s3 indicates whether

the vector of a word moved more or less from time point

2 to 3, as compared to time points 1 and 2. By doing

so, we cope with the instability of the word vectors.

We get rid of continuous movement caused by noise in

the data set. At the same time, we are sensitive to a

word suddenly moving more. For the second dimension
we keep using the deltas for the frequency ∆ft. While

one might consider a formula similar to the one for the

cosine distances to compute a second order delta, this

is not meaningful. This is because a constant positive

value for ∆ft already indicates that a word is gaining

more and more popularity, i.e., these values already are

meaningful input for a change detection algorithm.

In order to balance the value range discrepancy for

the two dimensions, we modify the delta calculation

slightly and compute the percentage difference. Based

on the cosine distance values st and frequency values

ft, the percentage deltas then are as follows:

∆̃st =
st
st−1

− 1, ∆̃ft =
ft
ft−1

− 1 (3)

If the goal is to search for semantic shifts where fre-

quency decreases, we can modify the formula for the

frequency change to ∆̃ft = ft−1

ft
− 1, i.e., the inverted

fraction. The model then is sensitive to frequency de-

creases with ft−1 > ft. In this article however, the focus
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of the evaluation is on semantic shifts where frequency

is stable or increases. So we stick to the formula given

in Equation 3.

The last open question is how to handle the dimen-

sional displacement. Starting with the second time pe-

riod, we assign ∆̃st and ∆̃ft to period t. The resulting

time series is xt = ∆̃st + ∆̃ft. This allows to directly

sum the new deltas and to perform a change detection

based on cumulative sums. Figure 4 graphs the model.

5 Evaluation

The evaluation chapter is structured in a bottom-up

manner:

– Intrinsic evaluation of training word embedding mod-

els from the Books data set

– Extrinsic evaluation on the task of detecting seman-

tic shifts on a synthetic corpus

– Exploration of the Books and Twitter data set

In Section 5.1, we perform experiments on the perfor-

mance of word embeddings on the Google Books Ngram

data set. Previous work has only tested this superficially

[29]. To this end, we first target at the best combina-

tion for the Books corpus. In Section 5.2, we construct

a synthetic corpus and show that our method extracts

the manually induced shifts and outperforms existing

approaches. With this knowledge we turn to the Books

corpus in Section 5.3 and Twitter corpus in Section 5.4

and apply our model.

Google Books Ngram data set As part of Google’s Books

initiative to provide a searchable resource, the Google

Books Ngram data set has been published [3]. In this

article, we focus on the revised second version and its

English 5gram part. To decrease the number of models

required to train, we group the data to 5-year periods,

as a trade-off between yearly analysis [6] and decade-

wise [4]. With this aggregation, the match count values

are summed. We use the time period from 1750–1799

as initialization when training incrementally and focus

our analysis on 1800–2008. We clean the raw data by

ignoring the part of speech annotation of Ngrams and

by removing any punctuation or numbers, followed by

lower casing. The splitting to 5-year periods and the

data cleaning is the split-and-clean function in Algo-

rithm 1. The resulting corpus is still of enormous size,

with over 100 GB compressed.

Twitter data set As an additional data set, we use the

1% sample of the Twitter stream available in the reposi-

tories of the Internet Archive2. Twitter data is a second

2 https://archive.org/details/twitterstream

data set with properties different from the ones of the

Google Books data . This is because the data is from a

social network, and tweets have been limited to the 140

characters at that time. In this work, we use the data

from Januar 2016 until June 2017. We aggregate the

data by month and filter all non English tweets with

the help of the available language tag. We then remove

any punctuation, URLs and other special characters.

We only remove the “#” symbol in hashtags. By doing

so, we preserve the general semantics because hashtags

are often used in the middle of sentences. Finally, we

lower case the text. These steps are the split-and-clean

function in Algorithm 1. The resulting corpus is around

15 GB compressed.

For both real world corpora we follow related work

to clean and filter the raw text, in order to achieve

comparability of results. To illustrate, the Books cor-

pus is additionally filtered with the word list provided

in [4] during the exploration in Section 5.3.2. We note

that words that appear as proper nouns later are still

part of the analysis. To our knowledge, no word lists

are available to filter such words. Managing such a list

would be cumbersome for the very recent Twitter data

in particular.

5.1 Intrinsic Embedding Parameter Evaluation

To analyze semantic shifts with word embeddings, mod-

els are required that correctly represent the language.

Therefore, we first investigate how to train good distri-

butional language models on the Google Books Ngram

data set. This kind of evaluation is often referred to as

part of synchronic linguistics that inspects the language

at a given point in time. It is opposed to diachronic

linguistics which investigates how and why a language

changes over time. We seek answers to the following

questions:

1. Match count: How to use the frequency (i.e., match

count in the Books data format) of the Ngrams during

model training?

Rationale behind the question: Previous work on seman-

tic shift analysis on the Google Books Ngram data set

does not state how the match count of each Ngram is

used.

2. Corpus size: Is the commonly used number of

1 billion words [24] enough when working with the Ngram

format?

Rationale behind the question: Training models from

full-text corpora is well studied but Google Books Ngrams

have a restricted context of five words.

3. Historical data: How do models from historical

data perform? Are tests for contemporary language ap-

plicable to older versions of the language?

https://archive.org/details/twitterstream
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Rationale behind the question: Training word embed-

ding models on contemporary language has been stud-

ied [22–24]. For semantic shift analysis, we require good

models for historical data though.

We now examine the parameters for the word em-

beddings. Afterwards we go over the results and discuss

them.

5.1.1 Parameters

Word embeddings We do not want to rely on results

gained on training distributional models on contempo-

rary language since historic corpora are different in size

and quality. This is why we evaluate the performance

of different embedding combinations. We choose the

models Continuous Bag of Words (CB) and Skip-Gram

(SG) together with the approximation algorithms hier-

archical softmax (HS) and negative sampling (NS). We

refer to the original papers [22, 24] for an explanation.

We use the gensim [47] implementation which pro-

vides common default values. The target vector dimen-

sion is set to 200, and we train five iterations on one

billion words unless stated otherwise. This is because

previous work of ours has yielded good models for these

values [31, 32].

Match count handling Another important decision is

how to handle the match count of the Ngrams. Previ-

ous work often does not state how the authors have pro-

ceeded. But when sampling to a maximum of one billion

words in particular, the decision is crucial when look-

ing at our results. We therefore compare different ap-

proaches and call the parameter corpus building mode.

The standard approach is to duplicate each Ngram ac-

cording to the match count. The second option is called

scale and scales the match count by dividing by its

quadratic logarithm. We call the extreme approach ig-

nore. It completely drops the count, and the embedding

model only sees each Ngram once per iteration.

So the target parameter space that we evaluate is

the following one: {CB, SG} × {HS, NS} × {standard,

scale, ignore} × {1 billion, 5 billion}. For the third ques-

tion, we additionally evaluate the performance on his-

torical data. For this part of the evaluation we train over

500 embedding models. Each model requires 2–16 hours

training time, using 4 cores on a Intel R©XeonTME5-2630

v3 at 2.40GHz.

5.1.2 Benchmarks

We conduct two different types of tests of our word

embedding models. The first one is generally referred

to as analogy test and evaluates how well a model can

capture analogies such as “king is to man what queen is

to woman”. We use the test set published together with

the word2vec toolkit and one from Microsoft Research

collected in [4, 5]. The second type is more relevant for

semantic shift analysis since it evaluates the similarities

between words based on lists humans have created. We

refer to this type as word sense test and use six test sets

collected in [4, 5]. For scoring, we follow related work by

averaging the accuracy for analogy tests. For the word

sense tests, we calculate the correlations between the

similarities of the model and the ones given by human

judges.

As a reference, we choose a trained model published

by the author of the word2vec toolkit3. The model serves

as a reference and not as a baseline. This is because

the SGNS combination was trained on about 100 bil-

lion words, and the model contains three million words.

This is considerably more than what we work with. In

plots that will follow, the scores for the reference model

will appear as dashed lines.

5.1.3 Results

We now present our answers to the questions.

Corpus building mode. We first evaluate the dif-

ferent approaches for handling the match count. The

results for different combinations of word embedding

types and approximation algorithms are in Figure 5.

The models are trained on a contemporary sample of

the Books data set from 2000–2004. We see that NS

outperforms HS, and the gap is particularly noticeable

on the analogy tasks. The standard approach of using

the match count yields models of very inferior quality.

Together with the corpus size of one billion words, the
text learned during training is less diverse. This is be-

cause Ngrams with high match count fill up the desired

number of words quickly. Quality significantly increases

by scaling or even completely ignoring the frequency.

The achieved scores are substantially higher. On the

other hand, model training time also increases. This is

because during the training the corpus must be scanned

in a deeper manner to reach the configured maximum

number of words.

Corpus size. Another option to improve the quality

of the corpus learned by the embedding model is in-

creasing the maximum number of words used. As men-

tioned, one billion words are commonly used. But the

previous paragraph indicates that this number may not

be adequate when working with Ngrams. In Table 3 the

results for CBNS and SGNS for one billion and five bil-

lion words are compared for all three ways of handling

the match count. While the standard approach certainly

3 https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/
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Fig. 5 Scores for different approaches of handling the match count for different embedding combinations with the data from
the Books corpus from 2000–2004.

Table 3 Averaged word sense scores for 1 billion and 5 billion
corpus size.

Corpus building mode

Corpus Size Standard Scale Ignore

CBNS
1 billion 0.522 0.612 0.621
5 billion 0.580 0.619 0.620

SGNS
1 billion 0.527 0.623 0.631
5 billion 0.592 0.637 0.640

profits from the additional data, the improvements with

scaling or ignoring the match count are very small. Fur-

thermore, training time increases as well. This means

that the corpus which is five times larger requires at

least twice the training time.

Historical data. As the last part of this section, we

analyze the quality of training models from the histor-
ical Books data, i.e., comparing 1750–2008 for CBNS

and SGNS. We train a model for each 5-year period

and benchmark with the two test types presented. The

results are in Figure 6 for both combinations with NS.

The scores converge towards the performance of mod-

els trained on the most recent data. This also represents

the state of the language the tasks were designed for.

The scores on the analogy tests roughly reach the per-

formance of models trained on contemporary language.

Word sense benchmarks are more sensible to historical

data, in scores from data before 1900 in particular. A

closer look reveals that the number of missing words is

the reason. The models from the 18th century are un-

able to answer about 15–35% of the word sense ques-

tions due to words not being in the trained vocabulary

and not even in the corpus itself. This number drops to

about 5–10% at the start of the 20th century and is at

about 3% with the most recent data.

To further investigate the influence of the missing

words on embedding performance, we filter the lan-

guage tests to only include words that are present in

all 5-year time periods. The resulting scores are slightly

higher with the filtering than without. Yet the behavior

of the scores over time is similar to the one presented

in Figure 6. The performance of the models in the 18th

century is subpar, and the scores converge to the ones

of the reference model for the most recent corpora. The

difference between the scores with unfiltered and fil-

tered test sets is higher for the word-sense tests. This

is because the share of missing words in the unfiltered

setting is higher for the word-sense tests than for the

analogy tests as well.

5.1.4 Discussion

In this section, we have analyzed how to train a large

number of models for semantic shift analysis with re-

spect to run time. Negative sampling outperforms hier-

archical softmax in any respect; similar differences were

observed in [29]. The handling of the match count in

particular appears to be a critical parameter to obtain

good models. Our results show that working with one

billion words and ignoring the Ngram frequency yields

models not very different from the reference model for

data from the recent 50 years. The models trained on

historical data before 1900 perform worse. We have seen

that this is not only due to the number of questions the

models cannot answer. Even when filtering the tests

to only include questions that the models can answer,

model performance in the 18th and 19th century is con-

siderably lower than for the 20th century. One may

think that a reason for this subpar performance is the

volume of the data, and more data might help to sta-

bilize the model training. The total corpus size before

1900–1904 does not reach one billion words. Additional

tests however where we trained the models backwards,

i.e., from 1850 to 1750, or by initializing with the refer-

ence model, have shown that the inferior performance is
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Fig. 6 Scores over the 5-year time periods of the Books data set.

not due to the volume of the data in the 18th and 19th

century. We omit the presentation of detailed results, in

order to not make the article too long. Instead the data

itself is the problem when evaluated with tests for con-

temporary language. Whether this is because the lan-

guage actually has changed so much, i.e., the language

tests do not match the state of the historical corpora, or

the data quality per se is worse, remains an open ques-

tion. This would require expert knowledge of linguists

and is beyond the scope of this current article. For our

primary goal of analyzing semantic shifts, the extent of

the evaluation is sufficient so far, as we have obtained

important information on how to train language models

from the Books Ngram data set.

5.2 Extrinsic Evaluation of Semantic Shifts

We now examine our time series model in the context

of detecting semantic shifts. A problem here is that the

ground truth of all shifts is unknown, and inspecting

all detected changes manually is impossible. To evalu-

ate different word embedding combinations, one needs

an appropriate data set with a ground truth. There-

fore, we follow the state-of-the-art approach in [5] and

construct a synthetic corpus with manually induced se-

mantic shifts. In order to prove the generality and va-

lidity of our approach, we seek answers to the following

questions:

1. Micro-Benchmarking: Which combination of word

embedding type, approximation algorithm, and align-

ment works best?

Rationale behind the question: By comparing different

combinations, we prove the abstraction of our approach

and at the same time identify the best setting for fur-

ther analysis.

2. Inclusion of Frequency: How much does our model

benefit from the frequency information included addi-

tionally?

Rationale behind the question: We seek to quantify the

difference between executing our approach only on the

semantic dimension against using both dimensions.

3. Comparison to state-of-the-art: Is our approach

superior to previous work on semantic change analysis

[4, 6, 25, 45] and detection [5]?

Rationale behind the question: To our knowledge, Kulka-

rni et al’s work is the most recent work that performs

change detection on time series built from word em-

bedding models. We quantify the superiority of our ap-

proach and examine the limitations of [5]. Other meth-

ods for semantic shift analysis, such as [4, 6, 14, 25, 45],

do not feature change detection. In other words, they

do not return an estimate of the point in time when a

word has shifted, only words with a high fluctuation.

So while this is an easier problem, we use respective

approaches as reference points nevertheless.

5.2.1 Synthetic Corpus

We now introduce the synthetic corpus. We follow the

state-of-the-art approach in [5] for the construction.

Our corpus is based on a full dump4 of the English

Wikipedia from November 1, 2016. After extracting all

raw texts from the articles by removing all xml -meta

tags and WikiMarkup5, we model 10 time periods by

duplicating the corpus 10 times. The last 5 time periods

are then perturbed as follows: We select (donor, recep-

tor) word pairs, where the donor is replaced with the

receptor with a certain probability p ∈ [0.1, 0.2, . . . , 0.9],

as in [5]. The receptor then is the word under investiga-

tion since it starts appearing in a new context, i.e., the

context of the donor before the replacement. As word

pairs, we manually choose 75 word antonym pairs, e.g.,

(small, big), (birth, death) or (begin, end). In order to

4 The most recent dump is always available at https://

dumps.wikimedia.org/
5 https://en.wikipedia.org/wiki/Help:Wiki_markup

https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
https://en.wikipedia.org/wiki/Help:Wiki_markup
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do an evaluation with different word types, the pairs

consist of 20 adjective, 24 noun, 18 verb and 13 ad-

verb pairs. The number of 75 pairs is small enough

to not change the language too much and to allow

a quantitative evaluation at the same time. Addition-

ally, the selection of antonym pairs ensures that the

grammar of a sentence is not completely destroyed.

This is because most of the time antonyms can be ex-

changed. Antonyms sometimes appear in completely

different contexts which should then result in heavy

movement in the distributional language models. With

this approach, we manually induce a semantic shift at

time period 6. We expect change detection methods to

then identify this point in time. After the perturbation,

the text is transformed to 5grams and filtered exactly

as the Google Books Ngram data set, to enable a realis-

tic comparison. In order to realistically model different

degrees of semantic shift, we use two types of pertur-

bation:

– Static perturbation with a fixed p ∈ [0.1, 0.2, . . . 0.9]

– Incremental perturbation with temporally increas-

ing value p from time period 6 to 10:

slow : 0.1, 0.2, . . . ; mid : 0.1, 0.3, . . . ; fast : 0.3, 0.6, . . .

This type of perturbation reflects the natural language

where not all semantic shifts are sudden but sometimes

also steady trends.

As an example, the time series for the word “birth”

is in Figure 7. On the left side, the raw values are visual-

ized similarly to our description in the dimension com-

bination problem paragraph. On the right, there is the

same with our model B; note the different y-axis. The

time series is modeled from incrementally trained SGNS

embeddings with perturbation mode fast. Clearly, the

synthetic change at time period 6 is present, and rela-

tive frequency increases as well.

We note that it is only the frequency of the words

affected by the perturbation that changes in this syn-

thetic corpus, i.e., donor and receptor. In real world

corpora this is not the case. This is because frequency

also fluctuates without any semantic shift. A baseline

detection solely run on the frequency dimension of our

synthetic corpus performs well. However, it is not clear

how one could induce such frequency fluctuations by

hand without modifying the word sense. So we follow

our main competitor [5] in the creation of the synthetic

corpus. Our two-dimensional model still outperforms a

baseline run on the frequency dimension, as we will see

in Section 5.2.3.

5.2.2 Metric

We now discuss the metric used for this evaluation. We

define the quality criterion as where shifted words ap-

Table 4 Illustration of the MRR calculation for two example
rankings R1 and R2. The second and the fourth column state
whether the word with the current rank has actually shifted
with “yes”/“no”. The total number of shifted words in this
example is 3.

R1 R2

Rank w shifted? 1/rank(w) w shifted? 1/rank(w)

1 yes 1/1 no
2 no no
3 yes 1/3 yes 1/3
4 yes 1/4 yes 1/4

5 no yes 1/5

MRR 0.5278 0.2611

pear in the ranked list after sorting by change detection

score. For the synthetic evaluation, the ground truth is

available. So we can define a score based on the po-

sitions of the perturbed words in the ranking. To this

end, we choose the Mean Reciprocal Rank (MRR), as

in [5]. Function rank(w) is the position of word w in

a sorted list. Given the perturbed words Vp and the

ranked list, we calculate:

MRR =
1

|Vp|
·
∑
w∈Vp

1

rank(w)
(4)

The larger MRR, the higher the quality is. Table 4 is

an example where we calculate the MRR for two simple

rankings: The inverse ranks of the words that actually

have shifted are averaged.

Generally, it is possible that several words have the

same change detection score. A trivial detection that

assigns a fixed-value score for all words results in a

high MRR value. This is because all words would be

placed on rank 1. To solve this issue, we penalize iden-

tical scores: We calculate unique ranks in the list and

average the rank of groups with identical score. For ex-

ample, a group of three words at the top of the ranking

with identical score receives rank (1 + 2 + 3) / 3 = 2

for all three words. Additionally, to ensure that each

perturbed word is detected in the time period when

perturbation started, i.e., time period 6, we penalize

wrong detections by setting the score to ±∞, depend-

ing on the value order of the change detection method

used. As a consequence, a wrong detection appears at

the end of the list, and the MRR score is reduced.

In opposition to other measures, the value range of

MRR differs, and the perfect detection would be all 75

manually perturbed words appearing first in the ranked

list. The corresponding score would then be 0.0654,

which we add as a reference line to the plots. While

we have only perturbed a few words, some other words

can be affected as well, e.g., neighbors of the inserted

word. This affects the final score since we cannot con-
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Fig. 7 Example time series for the word “birth” from incrementally trained SGNS embeddings.

trol the full impact of the perturbation. Nevertheless,

our metric facilitates a quantitative comparison of dif-

ferent parameters. This fulfills our goal.

We use an additional metric to quantify whether a

method detects the semantic shift at the correct point

in time. We map the changes identified for the receptor

words to a binary label. This label indicates whether

the change is identified at the correct point in time,

i.e., time point 6, or not. Then we use the true positive

rate as a metric, i.e., the ratio of the correctly identified

changes. Here, a value of 1 stands for a perfect detec-

tion, and 0 is the worst one. We refer to this metric as

detection rate in the following.

5.2.3 Results

We now answer the questions raised earlier.

Micro-Benchmarking We test different combinations sim-

ilarly to the previous evaluation. We seek the best com-

bination for our remaining experiments. The results for

different combinations for static and incremental per-

turbation are in Figure 8. The difference between NS

and HS is again evident since NS consistently outper-

forms HS. Furthermore, our method identifies the cor-

rect change point for at least 95% for all perturbations

with SGNS.

We now compare the alignment approaches. We eval-

uate models with SGNS that are trained incrementally,

not aligned or aligned with Procrustes analysis or a lin-

ear transformation. To measure the raw impact of the

alignment, we perform our detection only on the first

dimension, i.e., the semantic movement. The results are

in Figure 9. The incrementally trained models are su-

perior to all other approaches. The alignment based on

Procrustes analysis yields inferior results. It clearly out-

performs the alternative without any or with the linear

alignment though.

Inclusion of frequency As a next step, we quantify the

MRR increase due to the inclusion of the frequency.

Since we have extended the model with a second dimen-

sion for frequency, we can also run our detection only

on the semantic movement dimension, in the following

called 1D. In Figure 10 we compare the results of 1D

and 2D detection for different combinations trained in-

crementally. The models with HS in particular close the

gap to NS and highly benefit from the additional infor-

mation. CBNS moves closer to SGNS as well and out-

performs the CBNS 1D detection. For SGNS, detection

improves only slightly but is still noticeable. A baseline

that is computed by only running the change detection

on the frequency dimension yields an average MRR of

0.0401. The detection on the frequency dimension is an

easier task, due to the nature of the perturbations, as

explained earlier. Yet our 2D detection outperforms this

baseline as well with an average MRR of 0.04347. These

results indicate that our abstraction works as intended

and generally improves semantic shift detection.

Comparison to state-of-the-art We now compare with

the model and the change detection method used in [5].

We also use incrementally trained series and follow the

authors by computing the distances of each word to a

fixed point instead of pairwise, as for our models. To en-

sure a fair comparison, we have tested multiple combi-

nations including those used in their paper. Table 5 lists

results from the best combination with 5000 random

permutations, no threshold, and individually normal-

ized time series. Our approach consistently outperforms

detection based on the mean shift model. Regarding the

detection rate, their approach only detects around 51%

of the changes in the correct time period, compared

to our 95%. Our CUSUM-based approach on the full

vocabulary is several orders of magnitudes faster than

their approach with 5000 permutations (around 6 hours

for 1000, 32 hours for 5000 compared to our 10–15 sec-

onds).
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Fig. 10 Performance on only the similarity series (1D) against the extended model with frequency (2D).

We now compare against methods solving the easier

problem of searching for words with the largest move-

ment, without identifying a change point. To do so, we

sum the cos-dist dimension as in [4, 6, 25, 45]. Table 5

lists the results. For SGNS and static perturbation, this

sum based method performs worse than our method,

with an average score of 0.0347 compared to 0.0485.

In a more natural setup with incremental perturbation,

SCAF outperforms the method relying on basic sums

(average of 0.0285 against 0.0118).

5.2.4 Discussion

The first part of the evaluation has assessed different

combinations of embedding types, approximation algo-

rithms, and alignment methods. Generally, we suggest

using SGNS trained incrementally. The disadvantage

is that the word embedding models must be trained

Table 5 MMR score of the approach with change detection
[5] and the one based on summing the semantic dimension
[4, 6, 25, 45] on our synthetic corpora.

[5] [4, 6, 25, 45]†

p CBNS SGNS CBNS SGNS

0.1 0.000048 0.000110 0.011134 0.007503
0.2 0.000027 0.000057 0.014936 0.014700
0.3 0.000032 0.000117 0.023319 0.023921
0.4 0.000030 0.000060 0.028694 0.029536
0.5 0.000038 0.000038 0.030801 0.035544
0.6 0.000035 0.000071 0.030560 0.048368
0.7 0.000028 0.000058 0.034111 0.049124
0.8 0.000031 0.000132 0.034777 0.052122
0.9 0.000037 0.000051 0.037270 0.051646

slow 0.000026 0.000107 0.009523 0.003622
mid 0.000026 0.000034 0.010977 0.003410
fast 0.000038 0.000054 0.022741 0.028464

†These methods do not identify any change point.
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consecutively. When working with more time periods

and a time constraint, we propose using individually

trained models and aligning with Procrustes analysis.

This allows to train models independently of each other

in parallel.

Experiments have shown that the detection improves

with our model. With the frequency dimension added,

more information is available during change detection,

and inferior combinations, e.g., with HS, profit in par-

ticular. Our method clearly outperforms the approach

in [5]. Our average MRR score is 0.04347 compared

to their score of 0.000074. For the detection rate, our

method detects 95% of the changes at the correct point

in time, compared to their 51%. The main problem of [5]

is the calculated scores: Since the score directly depends

on the number of permutations, the suggested number

of 1000 produces equivalent scores for a lot of words,

and increasing to 5000 permutations hardly helps. As

stated, we compute the average rank in case of score

equivalence. It is not clear how [5] deals with equiv-

alent scores. As discussed when explaining the MRR,

fixing this equivalence in the ranking is crucial for a

meaningful result. Another strength of our CUSUM-

based approach is the runtime, which is several orders

of magnitudes lower than their approach. On the full vo-

cabulary, our method runs in 10-15 seconds, compared

to 6-32 hours of [5].

To sum up, we have shown that the method that

sums up the semantic dimension without any change

detection as in [4, 6, 25, 45] performs worse than our

method. Some words are very unstable in the embed-

dings, i.e., cos-dist > 0.25. This includes very rare words

as well as some high-frequency words for which the com-

petitors cannot detect any semantic change, e.g., “sep-

arately” or “sensational”. These words take the first

ranks when summing the cos-dist values. Filtering such

words on both ends is difficult. SCAF solves this prob-

lem by only summing changes of cos-dist values. We

detect both rare as well as frequent words without be-

ing affected by the unstableness of the embeddings.

In this section, we have evaluated the different word-

embedding-parameter combinations. Using a synthetic

data set with a known ground truth, we have identified

the best combination. With this knowledge we can now

turn to the two real-world data sets.

5.3 Application to Books Corpus

In this section, we focus on the Books corpus. We first

check for known shifts from related work. Then we pro-

ceed by identifying semantic changes of words that are

unknown so far.

Table 6 Detection of CUSUM 1D and 2D on shifts known
from related work [4, 5].

CUSUM

Word Year 1D 2D

apple 1984 1980 1980
bitch 1955 1990 2005
bush 1989 1975 2005
diet 1970 1820 1975
gay 1920 1975 1995
honey 1930 1965 1945
monitor 1930 1960 1995
plastic 1950 1940 1975
record 1920 1810 1955
recording 1990 1915 1985
sex 1965 1940 1975
tape 1970 1900 1995
windows 1992 1985 2000

5.3.1 Known Shifts

We now test against known shifts:

Shift direction The first dimension refers to the move-

ment of words in the vector space. While it is com-

monly used for semantic shift detection, only the raw

similarities or distances are used while the vector direc-

tion is ignored, and the neighborhood is inspected for

only a few time periods, e.g., in [5, 6]. To ensure that a

word actually moves in the correct direction, we apply

a test proposed in [4]. Based on word pairs, we evaluate

whether the representative word vectors move towards

or away from each other. One example is the word “gay”

that started moving away from “happy” after 1920 and

at the same time towards “homosexual”. We calculate

the results as in [4], by testing for the correct sign of

the Spearman correlation between the pairwise cosine

similarity and the time.

Results. With our incrementally trained models, we

achieve an accuracy of 0.9643 for SGNS at a significance

of 0.8929 at the p < 0.05 level. This test serves as a

sanity check and confirms that our embeddings capture

the correct shift directions.

Detection We now inspect the results on words that

shifted according to related work [4, 5]. An excerpt of

annotated shifts and our detection is in Table 6. The

results are for the 1D detection as well as for the 2D

detection. The 1D detection yields an average deviation

of 47.69 years, compared to the 26 years for the 2D de-

tection. As presented earlier, the embeddings from data

in the 19th century are of inferior quality; this affects

the 1D detection. For the words “diet” and “record”,

1D detection falsely positions the changes at very early
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Table 7 Top changes in time period 1900–2005 identified by our method. The explanations are from the etymology dictionary.

Word Year Explanation

mores 1950 From Latin “mores” meaning “manners” used since around 1900-1910

tipper 1990
Dump truck (since around 1910) and
Mary Elizabeth “Tipper” Gore second lady 1993–2001

abusers 1980 Appeared in the context of drugs starting in 1960s–1970s

reparations 1925
Meaning “compensation for war damaged owed by the aggressor”
attested from 1920s (referring to Germany)

childrens 1975 illegal plural form with increasing usage in broadlydifferent contexts

points in time. With the additional frequency informa-

tion, this problem is mitigated.

Our method places the shifts later than the actual

year, for several reasons: Semantic shifts often are not

immediate, but a steady process. Additionally, we work

with a book corpus where changes can appear later.

During the shift, it also takes some time until the new

word sense is generally adopted. This causes a slight

delay in the word usage and therefore in occurrence in

books as well. This explains the small temporal dis-

placement, and our method places the changes at posi-

tions similar to the ones from related work.

5.3.2 Exploration

As a last step, we inspect the detection results of our

method on the time period 1900–2008. Additionally, we

filter the vocabulary with the English word list pro-

vided in [4], to get rid of stop words and proper nouns.

First and last names dominate top lists of most changed

words since they appear in continuously changing con-

text. As noted earlier, words that appear as a proper

name later are still under investigation. We also filter

words appearing less than 1000 times. All in all, this

results in a vocabulary of around 20,000 words.

Table 7 lists the top words detected by our method

in 1900–2008 and gives an explanation. We identify the

reasons by inspecting the nearest neighbors in the em-

bedding models and by consulting an etymology dic-

tionary6. We can find an explanation for most of the

words in the first positions of the list. An inspection of

the time series shows that all words at the top of the

list moved in the embeddings while relative frequency

increased at the same time.

Additionally, we explore the most recent years by

running our model and change detection on the time

period 1975–2008. Table 8 contains some of the words

that changed most. For these, the shift is evident and

can also be observed by inspecting the nearest neigh-

bors. Terms with new meanings in the area of tech-

6 http://www.etymonline.com/
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Fig. 11 Example time series for the word “excel” with the
clear semantic shift after time period 1985.

nology dominate the list. Their usage increases dis-

tinctly in the last years. As an example, we give the

original series together with our time series model for

the word “excel” in Figure 11. The semantic shift after

1985 is evident. While the cosine distance already drops

again after 1990, relative frequency still increases heav-

ily. The calculated cumulative sum therefore increases

until 1995 before stabilizing. Our method then reports

1995 as the most probable change.

5.3.3 Discussion

We have evaluated our approach on the Books data

set. It can detect valid change points for words that

knowingly shifted. It also has identified new semantic

changes. Including the relative frequency in our time

series model affects the change detection results. A core

insight is that our approach identifies a new kind of

word that has semantically shifted: Our method ranks

words higher that not only have shifted semantically

but have also gained popularity at the same time. The

full detection list for different time spans is part of our

supplementary material.

5.4 Application to Twitter data

In this section, we focus on the Twitter data set. Due

to the lack of a ground truth on this very recent data,

we perform an exploratory analysis. For this analysis we

train SGNS models incrementally. We initialize the first

http://www.etymonline.com/
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Table 8 Some top words extracted in period 1975–2008.

Word Year Neighbors 1900 Neighbors 2005

server 1995 servers, player servers, dhcp
web 1995 unweaves, webs httpwww, namespaces
gender 1990 nouns, infinitives sexes, heterosexual
navigate 2000 navigating, steer navigating, upload
java 1990 sumatra, ceylon servlets, applets
excel 1995 surpass, excelled submenu, autoshape

model with the previously mentioned reference model

from the word2vec toolkit.

5.4.1 Exploration

We now inspect the results SCAF produces for the

Twitter data set. Table 9 lists the top words detected

by our method. Award shows are hot topics which are

heavily discussed on Twitter. Celebrities are another

typical type of word that appears in changing context.

Our method also is able to detect sudden hypes at the

correct time. Examples are the “mannequinn challenge”

or “Pokémon Go”.

5.4.2 Discussion

We have applied our approach on a sample of the Twit-

ter stream. It can detect reasonable change points for

hot topics including award shows, celebrities or other

trends. Semantic changes in the Twitter stream are

more sudden than in the Google Books Ngram corpus.

This is because social events immediately result in new

Tweets while publishing books incurs some delay. This

behavior is similar to the static perturbation setup of

our synthetic data set which we have evaluated.

6 Conclusions

Recent research on automatic shift detection of word se-

mantics has made significant advances relying on word

embeddings. Web search in particular has to be aware

of the evolution of language, in order to adapt to re-

cent hypes or trends. However, a limitation of previous

approaches is that the rate of semantic shift negatively

correlates with frequency. To address this issue, we have

investigated how to incorporate word usage frequencies.

To this end, we developed SCAF, an abstraction of the

time series models used in related work with an or-

thogonal extension by frequency. While we focused on

different combinations of embedding type, approxima-

tion algorithm, and alignment method, the abstraction

is independent of the underlying embeddings and hence

allows applying any approach where the rate of seman-

tic change is measurable. We thereby rely on the well-

known change detection mechanism CUSUM. Based on

that, we examine how to include word frequencies so

that our model can be used with any combination. Our

evaluation relies on the idea in [5] to create synthetic se-

mantic shifts and achieves better detection rates than

the main competitor [5]. On real-world data, our ap-

proach detects more plausible change points than previ-

ous work. It also detects yet unknown shifts for popular

words.

Regarding the analysis of semantic shifts, SCAF

opens a new field that incorporates the changing popu-

larity of a word. With the published material, i.e., the

word embedding models, we ease the work of linguists

extracting new knowledge from the steadily evolving

language.

Future work This article raises several open questions

for future work. In Section 5.1 we have analyzed the

performance of word embedding models trained on his-

torical corpora. The poor performance in the 19th cen-

tury has surprised us. Future work should assess the

quality of the Books data set with help of expert knowl-

edge of linguists. Additionally, to match historical lan-

guage more suitable word embeddings tests should be

developed. This would allow to evaluate the quality of

embeddings trained on historical corpora.

In this article we also have studied semantic shifts

on a word basis. Naturally, a lot of words have sev-

eral meanings. With the evolution of language some

appear or disappear. An interesting research direction

would be to study the evolution for each meaning of a

word individually. One can identify the different mean-

ings by applying word-sense disambiguation as a pre-

processing step. The different meanings could then be

studied individually. However, it is not clear whether

it is feasible to apply such a disambiguation on the

corpora used in this article. This is because the dis-

ambiguation requires suitable resources, e.g., historical

dictionaries in our case. This seems particularly diffi-

cult for the very recent Twitter data with its trends

and hypes. Future research could address this problem

of performing word-sense disambiguation on historical



Improving Semantic Change Analysis by Combining Word Embeddings and Word Frequencies 19

Table 9 Excerpt of the top words that changed in January 2016 – June 2017 identified by our method on Twitter data.

Word Date Explanation

mtvhottest July 2016 The hashtag is used for artist voting preceding the MTV Video Music Awards

amas November 2016 Winners of the American Music Award appear with “amas”

camilacabello March 2017 “mgk” (Machine Gun Kelly) appears in her context after their performance at the Kids’
Choice Awards

mannequin November 2016 The viral internet trend called “mannequin challenge” appears

comey May 2017 Trump dismissed James Comey on May 9, 2017

merly/streep January 2017 Both words appear for Merly Streep winning a honorary Golden Globe on January 8,
2017

magenta May 2017 The color appears in the context of the T-Mobile Magenta Carpet Live event

phelps June 2017 Swimmer Michael Phelps announces to race a great white shark

pokemon July 2016 The augmented reality game Pokémon Go is released

corpora. When a respective method will have been de-

veloped in the future, our approach can then be applied

to study semantic shifts further.
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