
Scaling Multi-Armed Bandit Algorithms
Edouard Fouché

Karlsruhe Institute of Technology

edouard.fouche@kit.edu

Junpei Komiyama

University of Tokyo

junpei@komiyama.info

Klemens Böhm

Karlsruhe Institute of Technology

klemens.boehm@kit.edu

ABSTRACT
The Multi-Armed Bandit (MAB) is a fundamental model capturing

the dilemma between exploration and exploitation in sequential

decision making. At every time step, the decision maker selects a

set of arms and observes a reward from each of the chosen arms.

In this paper, we present a variant of the problem, which we call

the Scaling MAB (S-MAB): The goal of the decision maker is not

only to maximize the cumulative rewards, i.e., choosing the arms

with the highest expected reward, but also to decide how many

arms to select so that, in expectation, the cost of selecting arms

does not exceed the rewards. This problem is relevant to many real-

world applications, e.g., online advertising, financial investments

or data stream monitoring. We propose an extension of Thompson

Sampling, which has strong theoretical guarantees and is reported

to perform well in practice. Our extension dynamically controls the

number of arms to draw. Furthermore, we combine the proposed

method with ADWIN, a state-of-the-art change detector, to deal

with non-static environments. We illustrate the benefits of our

contribution via a real-world use case on predictive maintenance.

CCS CONCEPTS
• Computing methodologies→ Sequential decision making;
• Theory of computation → Online learning algorithms; • In-
formation systems→ Data streams; Data analytics.

KEYWORDS
Bandit Algorithms; Thompson Sampling; Adaptive Windowing;

Data Stream Monitoring; Predictive Maintenance

ACM Reference Format:
Edouard Fouché, Junpei Komiyama, and Klemens Böhm. 2019. Scaling Multi-

Armed Bandit Algorithms. In The 25th ACM SIGKDD Conference on Know-
ledge Discovery and Data Mining (KDD ’19), August 4–8, 2019, Anchorage, AK,
USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3292500.

3330862

1 INTRODUCTION
1.1 Motivation
In the classical Multi-Armed Bandit (MAB) problem, a forecaster

must choose one of K arms at each round, and playing it yields a

reward. Her goal is to maximize the cumulative reward over time.

In a generalization of the problem, known as the Multiple-Play

Multi-Armed Bandit (MP-MAB) [3, 20], the forecaster must choose

L distinct arms per round, where L is an exogenous parameter.

KDD ’19, August 4–8, 2019, Anchorage, AK, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in The 25th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’19), August 4–8,
2019, Anchorage, AK, USA, https://doi.org/10.1145/3292500.3330862.

While in some applications, such as web content optimization, L
is given, there are many applications where an appropriate value of

L is not obvious. We consider a new variant of the MP-MAB where

the forecaster not only must choose the best arms, but also must

“scale” L, i.e., change the number of plays, to maximize the reward

and minimize the cost at any time. By doing so, the forecaster

controls the efficiency of each observation. We name this setting

the Scaling Multi-Armed Bandit (S-MAB) problem.

Think of a new casino game, which we call the “blind roulette”:

The player places bets on distinct numbers, and each number has

an independent but unknown probability to be drawn. Bets are set

to a fixed amount, e.g., one can only bet 1$ on a number, or nothing.

In each round, the player must decide how many bets to place, and

on which numbers. The casino then reveals to the player which

ones of her bets were successful and pays the corresponding reward.

To make the game more challenging, the casino may sometimes

change the underlying probability of each number without notice.

While placing a few but confident bets may seem to be an eco-

nomically efficient option, the absolute gain at the end of the day

will not be large. On the other hand, placing many bets may not

be a good strategy, as many numbers typically have a low chance

to be drawn. To maximize her gain, the player must place as many

bets as possible, as long as her expected gain is greater than the

amount bet. Whenever the probabilities change, the player needs to

adapt her behaviour, otherwise she may loose most of her bets and

experience high regret w.r.t. an optimal (but unknown) strategy.

This game matches many real-world applications, e.g., the place-

ment of online advertisements, investment in financial portfolios,

or data stream monitoring. We elaborate on the latter using an

example from predictive maintenance, our running example:

Example 1 (Correlation Monitoring). Correlation often res-
ults from physical relationships between, say, the temperature and
pressure of a fluid. When correlation changes, this means that the sys-
tem is transitioning into another state, e.g., the fluid solidifies, or that
equipment deteriorates or fails, e.g., there is a leak. When monitoring
large factories, it is useful to maintain an overview of correlations to
keep operation costs down. However, updating the complete correlation
matrix continuously is impractical with current methods, since the
data is typically high-dimensional and ever evolving. A more efficient
solution consists in updating only a few elements of the matrix, based
on a notion of utility, e.g., high correlation values. The system must
minimize the cost of monitoring while maximizing the total utility,
in a possibly non-static environment.

Thus, the S-MAB problem introduces an additional trade-off:

One wants to maximize the reward, but at the same time minimize

the cost of each round/observation. The challenge here is threefold:

C1: Top-arms Identification. To maximize the reward from

L plays, one needs to find the L arms with the highest expected

reward. This is the traditional exploration-exploitation dilemma.

1

https://doi.org/10.1145/3292500.3330862
https://doi.org/10.1145/3292500.3330862
https://doi.org/10.1145/3292500.3330862

KDD ’19, August 4–8, 2019, Anchorage, AK, USA Edouard Fouché, Junpei Komiyama, and Klemens Böhm

C2: Scale Decision. One should not play more arms than ne-

cessary: Playing many arms leads to high costs, but playing only

a few arms leads to low rewards. One should set L accordingly to

control the efficiency, i.e., the ratio of the rewards to the costs.

C3: Change Adaptation. The environment can either be static

or non-static. In the second case, one needs to “forget” past know-

ledge whenever a change occurs. Forgetting that is too aggressive

or too conservative leads to suboptimal results.

1.2 Contributions
This paper makes the following contributions:

We formalize a novel generalization of the MAB problem,
the ScalingMAB (S-MAB). The novelty is that the decision maker

not only decides which arms to play, but also how many, to maxim-

ize her cumulative reward under an efficiency constraint. To our

knowledge, we are first to consider this setting.

We first propose S-TS, an algorithm to solve this problem
in the static setting, i.e., when the distribution of rewards does

not change over time. We leverage existing bandit algorithms, e.g.,

Thompson Sampling (TS), and show that the regret of our method

(i.e., the difference from the outcome of a perfect oracle) only grows

logarithmically with the number of time steps.

Then, we generalize ourmethod for the non-static setting.
To do so, we combine our algorithm with ADWIN [8], a state-of-

the-art change detector, which is at the same time efficient and

offers theoretical guarantees.

Finally, we validate our findings via experiments. The com-

parison with existing approaches shows that our method achieves

state-of-the-art results. – We release our source code and data on

GitHub
1
, to ensure reproducibility.

2 RELATEDWORK
Work on bandits traces back to 1933 [30], with the design of clinical

trials. The theoretical guarantees of bandits remained largely un-

known until recently [4, 5, 16, 18]. Our work builds on several facets

of bandits, which have been studied separately, such as: anytime

bandits [13, 19], multiple-play bandits (MP-MAB) [3, 20, 32] and

bandits in non-static environments [6, 17, 27].

One can see the S-MAB problem as a direct extension of the

MP-MAB, with the novelty that the player must control the num-

ber of plays over time. In particular, we build on the work from

[20]. It shows that Multiple-Play Thompson Sampling (MP-TS) has

optimal regret, while being computationally efficient. Nonetheless,

we compare our results with other multiple-play models, such as

variants of the celebrated UCB [4] and Exp3 [5] algorithms, namely

CUCB [12], MP-KL-UCB [15, 20] and Exp3.M [32].

Our problem is different from the so-called profitable bandits [1],

since they aim at maximizing a static notion of profit – as opposed

to efficiency – which boils down to finding the individual arms for

which the rewards exceed the costs in expectation. Moreover, our

problem is more challenging than the MP-MAB and its extension

called combinatorial MAB (CMAB) [12] in that we are interested in

a set of arms where the model parameters µi satisfy an efficiency

constraint (see Eq. (1)), and the algorithm needs to estimate them.

1
https://github.com/edouardfouche/S-MAB

The S-MAB also is related to the budgeted multi-armed bandit

model [31, 33], because it aims at maximizing a notion of efficiency,

i.e., the ratio of the reward to the cost of playing arms. In our

case, the total number of plays – the “budget” – is not an external

constraint. Instead, the S-MAB decides how many arms to play

based on its observations of the environment.

Bandits have readily been applied to a number of real-world

applications, such as packet routing [7], online advertising [11], re-

commendation systems [23], robotic planning [28] and resource al-

location [24]. Nonetheless, the application of bandits to data stream

monitoring (see Example 1) has received much less attention.

For a broader overview of bandit algorithms, we refer the reader

to recent surveys [9, 10, 22].

3 SCALING MULTI-ARMED BANDITS
In this section, we formally define the S-MAB problem and propose

an algorithm, named Scaling Thompson Sampling (S-TS), to solve

it in the static setting. Throughout our paper, we use the most

common notations from the bandit literature, e.g., as in [9].

3.1 Problem Definition
Let there be K arms. Each arm i ∈ [K] = {1, . . . ,K} is associated
with an unknown probability distribution vi with mean µi .

At each round t = 1, . . . ,T , the forecaster selects arms I (t) ⊂ [K],
then receives a corresponding reward vector X (t). Lt ≤ K is the

number of these arms. The rewards Xi (t) ∈ X (t) of each arm i
are i.i.d. samples from vi . We make the classical assumption from

bandit analysis that the rewardsXi (t) are 0 or 1, i.e., the distribution
of rewards from arm i ∈ [K] follows a Bernoulli distribution with

mean µi . The selection of each arm i ∈ [K] is associated with a unit

cost 1, where cost and reward do not need to have the same unit.

Note that it is not very difficult to generalize our results to other

reward distributions, as long as they are bounded.

Let Ni (t) and Si (t) be the number of draws of arm i and the sum
of the rewards obtained from it respectively before round t . Let
µ̂i (t) = Si (t)/Ni (t) be the empirical estimation of µi at time t . The
forecaster is interested in maximizing the sum of the rewards over

arms drawn, under the constraint that the sum of the rewards must

be greater than the sum of the costs by an efficiency factor η∗. The
parameter η∗ ∈ [0, 1] controls the trade-off between the cost of

playing and the reward obtained, which is application-dependent.

Thinking of our “blind roulette”metaphor, assume that, whenever

a bet is successful, the casino awards the double of the bet. Then,

for a positive gain expectation, the player must set η∗ > 0.5 and

control ηt , the admitted cost per arm, to be greater than η∗.
In other words, at each step t , the forecaster is facing the follow-

ing constrained optimization problem:

max

I (t)⊂[K]

∑
i ∈I (t)

Si (t) s .t . ηt =

∑
i ∈I (t) µi

Lt
> η∗ (1)

The difficulty here is that the forecaster does not know µi , but only
has access to an estimate µ̂i from previous observations.∑

i ∈I (t) Si (t) is maximized when the forecaster chooses the arms

with the highest expectation µi . For simplicity, we assume that all

arms have distinct expectations (i.e., µi , µ j ,∀i , j) and we assume

without loss of generality that µ1 > µ2 > · · · > µK , and thus [Lt] is

2

https://github.com/edouardfouche/S-MAB

Scaling Multi-Armed Bandit Algorithms KDD ’19, August 4–8, 2019, Anchorage, AK, USA

the top-Lt arms. Under the assumption that the forecaster always

chooses [Lt], the value of ηt is only determined by Lt , i.e., Eq. (1)
is equivalent to finding the optimal number of plays L∗:

L∗ = max

1≤L≤K
L s .t .

∑L
i=1 µi

L
> η∗ (2)

Thus, the correct identification of the top-Lt arms (C1) is sine qua
non to find the optimal number of plays L∗ (C2). Next, in non-static

environments, the expected rewards may change, i.e., µi : t 7→ [0, 1]
becomes a function of t , as does L∗. So the forecaster must adapt

its estimation µ̂i (C3), in order to correctly select the arms with the

highest reward, i.e., it needs to discard past observations. In this

paper, we describe how we solve these challenges.

3.2 Scaling Thompson Sampling (S-TS)
Let us first assume that the environment is static. Our algorithm is

the combination of two components:

(1) An MP-MAB algorithm to identify the top-Lt arms (C1).
(2) A so-called “scaling policy”, to determine the value of Lt+1

based on Lt and the observations at time t (C2).
For (1), we use an existing algorithm, MP-TS [20]. It is a Bayesian-

inspired bandit algorithm, which maintains a Beta posterior with

parameters αi , βi over each arm i . In each round, MP-TS samples

an observation θi from each posterior and selects the top-Lt arms

according to these observations. Then, the parameters of this pos-

terior are adjusted based on the reward vector X (t).
For (2), we propose to use a scaling policy, i.e., a strategy to

control the number of plays, such that the empirical efficiency η̂t
remains larger than η∗. Whenever η̂t ≤ η∗, we “scale down”, i.e., we
set Lt+1 = Lt − 1. Otherwise, we “scale up”. When we are confident

that adding one arm will lead to η̂t ≤ η∗, we stop scaling. To do so,

we estimate Bt , an upper confidence bound for η̂t+1, assuming that

Lt+1 = Lt + 1. B̂t is our estimator for Bt , based on the observations

from the environment so far. The confidence is derived from the

Kullback-Leibler divergence, as the so-called KL-UCB index [15, 25].

We name our policy Kullback-Leibler Scaling (KL-S):

Lt+1 =

Lt − 1 if η̂t ≤ η∗

Lt + 1 if η̂t > η∗ and B̂t > η∗

Lt otherwise

(3)

where 1 ≤ Lt+1 ≤ K and

η̂t =
1

Lt

I (t)∑
i

µ̂i B̂t =
Lt

Lt + 1
η̂t +

1

Lt + 1
b�Lt+1(t) (4)

B̂t is the empirical estimator of

Bt =
1

Lt + 1

Lt∑
i=1

µi (t) +
1

Lt + 1
bLt+1(t).

where bi (t) is the KL-UCB index of arm i and �Lt + 1 is the arm of

the (Lt + 1)-th largest index. The KL-UCB index is as follows:

bi (t) = max

q
{Ni (t)dKL(µ̂i (t),q) ≤ log(t/Ni (t))} (5)

where dKL is the Kullback-Leibler divergence.

In S-TS, the algorithms of (1) MP-TS and (2) KL-S are intertwined.

See Algorithm 1. S-TS successively calls the two proceduresMP-TS

and KL-S, while maintaining the statistics Ni , Si for each arm.

We initialize the scaling policy with L1 = K . The rationale is that
nothing is known about the reward distribution of the arms initially,

so pulling a maximum number of arms is indeed informative.

Computational complexity of Algorithm 1: At each round,

MP-TS draws a sample from a Beta distribution (Line 12), and KL-S

computes the KL-UCB index for each arm (Line 25), which can be

done efficiently via Newton’s method. Given that these operations

are done in constant time and that finding the top-Lt elements

among K elements takes O(K logK) in the worst case (Lt = K),
each round of the proposed algorithm takes O(K logK) time. The

space complexity of the algorithm is O(K) as it only keeps four

statistics (αi , βi , Ni , Si) per arm i ∈ [K].

Algorithm 1 S-TS

Require: Set of arms [K] = {1, 2, . . . ,K}, target efficiency η∗

1: αi (1) = 0, βi (1) = 0 ∀i ∈ [K]
2: Ni (1) = 0, Si (1) = 0 ∀i ∈ [K]
3: L1 ← K
4: for t = 1, 2, . . . ,T do
5: I (t),X (t) ←MP-TS(Lt) ▷ Play Lt arms (as in MP-TS)

6: for i ∈ I (t) do
7: Ni (t + 1) = Ni (t) + 1
8: Si (t + 1) = Si (t) + Xi (t)

9: Lt+1 ← KL-S(Lt) ▷ Scale Lt for the next round

10: procedure MP-TS(Lt)
11: for i = 1, . . . ,K do
12: θi (t) ∼ Beta(αi (t) + 1, βi (t) + 1)

13: Play arms I (t) := argmaxK ′⊂[K], |K ′ |=Lt
∑K ′
i θi (t)

14: Observe reward vector X (t)
15: for i ∈ I (t) do ▷ Update parameters

16: αi (t + 1) = αi (t) + Xi (t)
17: βi (t + 1) = βi (t) + (1 − Xi (t))

18: return I (t),X (t)

19: procedure KL-S(Lt)
20: Si = Si (t + 1),Ni = Ni (t + 1) ∀i ∈ [K]
21: µ̂i = Si/Ni ∀i ∈ [K] ▷ µ̂i = 1, if Ni = 0

22: η̂t =
∑
i ∈I (t) µ̂i

23: if η̂t ≤ η∗ then return max(Lt − 1, 1) ▷ Scale down

24: else
25: KL =

{
maxq {Ni · dKL(µ̂i ,q) ≤ log

t+1
Ni
} : ∀i ∈ [K]

}
26: b�Lt+1 = (Lt + 1)-th largest element from KL

27: B̂t =
Lt

Lt+1 η̂t +
1

Lt+1b�Lt+1(t)
28: if B̂t > η∗ then return min(Lt + 1,K) ▷ Scale up

29: else return Lt ▷ Do not scale

4 THEORETICAL ANALYSIS
In this section, we analyse the properties of scaling bandits. In

particular, we measure the capability of an algorithm to control

3

KDD ’19, August 4–8, 2019, Anchorage, AK, USA Edouard Fouché, Junpei Komiyama, and Klemens Böhm

the size of Lt by introducing a quantity called “pull regret”. Our

analysis is general: We show that not only S-TS (Algorithm 1) but

that KL-S, combined with any MP-MAB algorithm of logarithmic

regret, has logarithmic pull regret. We introduce our notation in

Section 4.1 and proceed to our main theorem in Section 4.2. Details

of the proofs are in Section 8, in the supplementary material.

4.1 Preliminaries
We assume there is a unique L∗, i.e., L∗ is such that

∑L∗
i=1 µi/L

∗ > η∗

and

∑L∗+1
i=1 µi/(L

∗ + 1) < η∗. Let ∆ = min(∆a ,∆b) be the “gap”, i.e.,
the absolute difference between η∗ and the closest possible ηt , with

∆a = (
∑L∗
i=1 µi − η

∗) > 0 and ∆b = (η
∗ −

∑L∗+1
i=1 µi) > 0.

Let us first generalize S-TS in Algorithm 2. A “base bandit” (MP-

Base-Bandit, Line 4) is an abstract bandit algorithm that, given the

reward information up to the last round and the current number of

plays Lt , decides on I (t), i.e., which arms to draw, and returns the

reward vector X (t) at each round t .

Algorithm 2 Scaling Bandit with General Base Bandit Algorithm

Require: Set of arms [K], target efficiency η∗

1: Ni (1) = 0, Si (1) = 0 ∀i ∈ [K]
2: L1 ← K
3: for t = 1, 2, . . . ,T do
4: I (t),X (t) ←MP-Base-Bandit(Lt) ▷ Play Lt arms

5: for i ∈ I (t) do
6: Ni (t + 1) = Ni (t) + 1
7: Si (t + 1) = Si (t) + Xi (t)

8: Lt+1 ← KL-S(Lt) ▷ Scale Lt for the next round

If we setMP-Base-Bandit ≡MP-TS (Algorithm 1, Line 10), then

Algorithm 2 becomes Algorithm 1. As an alternative to MP-TS, one

could consider for example MP-KL-UCB [15] (resp. CUCB [12]) that

draws the top-Lt arms in terms of the KL-UCB indices (resp. UCB1

indices) or Exp3.M [32] that uses exponential weighting.

To evaluate whether our scaling strategy converges to the op-

timal number of pulls L∗, we define a new notion of “pull regret”

as the absolute difference between the number of pulls Lt and L
∗
:

PReg(T) =
T∑
t=1

��L∗ − Lt �� (6)

The “standard” multiple-play regret, with varying Lt , measures

how many suboptimal arms the algorithm draws. It is defined as:

Reg(T) =
T∑
t=1

 max

I⊆[K], |I |=Lt

∑
i ∈I

µi −
∑
i ∈I (t)

µi

 (7)

Notice that, when an algorithm uses Lt = L∗ in each round, the

pull regret is 0, and the regret boils down to the existing MP-MAB.

Achieving sublinear pull regret implies that the algorithm satis-

fies the efficiency constraint, while sublinear regret implies that it

maximizes the total reward, so we need to minimize both regrets.

4.2 Regret Bound
For any event X, let Xc be its complementary. For an event X,

1(X) = 1 if X holds or 0 otherwise.

Definition 4.1. (Top-Lt set) I (t) : |I (t)| = Lt is a top-Lt set if it
contains the Lt arms with highest expectation µi . Let At be the

event that I (t) is the top-Lt set.

Definition 4.2. (A logarithmic regret algorithm) A base bandit

algorithm has logarithmic regret if there exists a distribution-de-

pendent constant C
alg
= C

alg
({µi }) such that

T∑
t=1

Pr

[
Ac

t
]
≤ Calg

logT

Remark 1. Based on their existing analyses, one can prove that
CUCB [12], MP-KL-UCB [15], and MP-TS [20] have logarithmic regret
for varying Lt . We show that MP-TS has logarithmic regret in Section
8.1 in the supplementary material, using techniques from [2].

The following theorem states that our policy has logarithmic

pull regret, i.e., that the number of pulls converges to L∗ when we

combine it with a base bandit algorithm of logarithmic regret.

Theorem 4.3. (Logarithmic Pull Regret) Let the general scaling
bandit of Algorithm 2 with a base bandit algorithm of logarithmic
regret be given. Then, there exist two distribution-dependent constants
C
preg

∗ ,C
reg

∗ = C
preg

∗ ({µi }),C
reg

∗ ({µi }) such that

E[PReg(T)] ≤ C
preg

∗ logT , (8)

Moreover, the standard regret of the proposed algorithm is bounded as

E[Reg(T)] ≤ C
reg

∗ logT . (9)

Let us first define the events needed for the proof:

Bt = {Lt ≤ L∗ ∩ η̂t > η∗} ∪ {Lt > L∗ ∩ η̂t ≤ η∗} (10)

Ct = {Lt ≥ L∗ ∪ B̂t > η∗} (11)

Dt = {Lt < L∗ ∪ B̂t ≤ η∗} (12)

The following lemmas are key to bound the pull regret:

Lemma 4.4. (Scaling) Lt ∈ {L
∗,L∗ + 1} holds if⋂

t ′=t−K, ...,t−1
Bt ′ ∩ Ct ′ .

Proof of Lemma 4.4. Bt ′ ∩ Ct ′ implies

• Lt ′+1 = Lt ′ + 1 if Lt ′ < L∗,
• Lt ′+1 ∈ {L

∗,L∗ + 1} if Lt ′ = L∗

• Lt ′+1 = Lt ′ − 1 if Lt ′ ≥ L∗ + 1
As L∗−Lt−K < K , there exists t ′c ∈ {t−K , t−K+1, . . . , t−1} such

that Lt ′c = L∗ and after the round t ′c , Lt ′ ∈ {L
∗,L∗ + 1} holds. □

Lemma 4.5. (Sufficient condition of No-regret) Lt = L∗ holds if⋂
t ′=t−K, ...,t−1

{Bt ′ ∩ Ct ′} ∩ Dt−1.

Proof of Lemma 4.5. Lemma 4.4 implies Lt−1 ∈ {L
∗,L∗ + 1},

which, combined withBt−1∩Ct−1∩Dt−1 implies that Lt = L∗. □

We can now proceed to the proof of Theorem 4.3:

4

Scaling Multi-Armed Bandit Algorithms KDD ’19, August 4–8, 2019, Anchorage, AK, USA

Proof of Theorem 4.3. Lemma 4.5 implies that, if the direction

of scaling is correct and the confidence bound is sufficiently small,

then Lt goes to L
∗
. We decompose the pull regret using Lemma 4.5:

PReg(T) ≤ K
T∑
t=1

1[Lt , L∗]

(since PReg(t) increases at most by K at each round)

≤ K
T∑
t=1

1

[(t−1⋃
t ′=t−K

(
Ac

t ′ ∪ B
c
t ′ ∪ C

c
t ′
)
∪ Dc

t−1

)
∩ Lt , L∗

]
(by the contraposition of Lemma 4.5)

≤ K + K
T∑

t=K+1

(
1

[t−1⋃
t ′=t−K

(
Ac

t ′ ∪ B
c
t ′ ∪ C

c
t ′
)]

+ 1

[t−1⋂
t ′=t−K

(
Ac

t ′ ∩ B
c
t ′ ∩ C

c
t ′
)
∩ Dc

t−1 ∩ Lt , L∗

])
≤ K + K2

T∑
t ′=K+1

(
1[Ac

t ′] + 1[At ′ ∩ B
c
t ′] + 1[At ′ ∩ C

c
t ′]

)
+ K

T∑
t=K+1

1

[t−1⋂
t ′=t−K

(At ′ ∩ Bt ′ ∩ Ct ′) ∩ D
c
t−1 ∩ Lt , L∗

]
(13)

The following lemma, which is proven in the supplementary ma-

terial, bounds each term in Eq. (13) in expectation.

Lemma 4.6. (Bounds on each term) The following bounds hold:

T∑
t=1

Pr[Ac
t ′]︸ ︷︷ ︸

(A)

= O(logT) ;

T∑
t=1

Pr[At ∩ B
c
t]︸ ︷︷ ︸

(B)

= O(1/∆2)

T∑
t=1

Pr[At ∩ C
c
t]︸ ︷︷ ︸

(C)

= O(1/∆2) +O(log logT)

T∑
t=K+1

Pr

[t−1⋂
t ′=t−K

(At ′ ∩ Bt ′ ∩ Ct ′) ∩ D
c
t−1,Lt , L∗)

]
︸ ︷︷ ︸

(D)

=O(1/∆2).

Eq. (8) now follows from Lemma 4.6. Eq. (9) follows from the

fact that the base bandit algorithm has logarithmic regret. □

5 NON-STATIC ADAPTATION (S-TS-ADWIN)
To handle the non-static setting (C3), we combine S-TS with Ad-

aptive Windowing (ADWIN) [8], yielding S-TS-ADWIN.

ADWIN (Algorithm 3) monitors the expected value from a single

(virtually infinite) stream of values {x1,x2, . . . }, where xi ∈ [0, 1].
ADWIN maintains a windowW of varying size |W | so that the

nature of the stream is consistent. ADWIN reduces the size of the

window whenever two neighbouring subwindows have different

mean, based on a statistical test with confidence δ . For each two

subwindows of size |W1 | + |W2 | = |W | with corresponding means

µ̂W1
, µ̂W2

, ADWIN shrinks the windows toW2 if

|µ̂W1
− µ̂W2

| ≥ ϵδ
cut

where ϵδ
cut
=

√
1

2m
log

(
4|W |

δ

)
(14)

and m = 1/((1/|W1 |) + (1/|W2 |)). The authors [8] showed that

ADWIN efficiently adapts to both gradual and abrupt changes with

theoretical guarantees (see Theorem 3.1 therein).

Algorithm 3 ADWIN

Require: Stream of values {x1,x2, . . . }, confidence level δ
1: W ← {}
2: for t = 1, 2, . . . do
3: W ←W ∪ {xt }
4: Drop elements from the tail ofW until |µ̂W1

− µ̂W2
| < ϵδ

cut

holds for every splitW =W1 ∪W2.

The idea behind S-TS-ADWIN, showed in Algorithm 4, is to

create an ADWIN instance Ai per arm i . At each step t , Ai obtains
as input the reward from the corresponding arm Xi (t) if i ∈ I (t).
Thus, each instance Ai maintains a time windowWi of variable

size, which shrinks whenever ADWIN detects a change in µi .
However, for any bandit algorithm with logarithmic regret, the

number of plays of suboptimal arms grows with log(T). That is,
after some time, the Aj of any suboptimal arm j does not obtain
any input, and thus no change can be detected for arm j.

Thus, we use wt = min{|Wi | : ∀i ∈ [K]}, i.e., the smallest

window from each Ai , to estimate the statistics of any arm i ∈ [K]
at each step t . Here, we implicitly assume that the change points

are “global”, i.e., that they are shared across the µi ,∀i ∈ [K]. In
principle, changes may also be “local”, e.g., a single µi changes. But
we will show that despite this assumption, it works well in practice.

Algorithm 4 S-TS-ADWIN

Require: Set of arms [K], target efficiency η∗, delta δ
1: αi (1) = 0, βi (1) = 0 ∀i ∈ [K]
2: Ni (1) = 0, Si (1) = 0 ∀i ∈ [K]
3: Ai ← instantiate ADWIN with parameter δ ,∀i ∈ [K]
4: L1 ← K
5: for t = 1, 2, . . . ,T do
6: I (t),X (t) ←MP-TS(Lt) ▷ Play Lt arms (as in MP-TS)

7: for i ∈ I (t) do
8: Ni (t + 1) = Ni (t) + 1
9: Si (t + 1) = Si (t) + Xi (t)
10: Add Xi (t) into Ai

11: Lt+1 ← KL-S(Lt) ▷ Scale Lt for the next round
12: wt ← min{|Wi | : ∀i ∈ [K]} ▷ Keep the smallest window

13: Ni (t + 1) =
∑t
j=t−wt

1(i ∈ I (j))
14: Si (t + 1) =

∑t
j=t−wt

Xi (j) ∗ 1(i ∈ I (j))
15: αi (t + 1) = Si (t + 1), βi (t + 1) = Ni (t + 1) − Si (t + 1)

By default, we set δ = 0.1 for each instance, since [8] showed

that it leads to a very low empirical false positive rate and good

performance. We show in our experiments that this parameter does

not have a significant impact on our results, and that S-TS-ADWIN

performs very well against synthetic and real-world scenarios.

5

KDD ’19, August 4–8, 2019, Anchorage, AK, USA Edouard Fouché, Junpei Komiyama, and Klemens Böhm

Computational complexity of Algorithm 4:We use the im-

proved version of ADWIN, dubbed ADWIN2 [8]. For a window of

sizeW , ADWIN2 takes O(logW) time per object. Since we have

K instances of them, the time complexity of the ADWIN2 part is

in O(K logW) = O(K logT) per round. The space complexity of

ADWIN2 is in O(W), but the window typically shrinks rapidly in

the case of a non-static environment. We show in our experiments

that the scalability of S-TS-ADWIN is almost the same as S-TS.

6 EXPERIMENTS
This section evaluates the performance S-TS and S-TS-ADWIN. We

compare against alternative “base bandits” and to the state-of-the-

art non-static bandit algorithms. We also highlight the benefits of

scaling by comparing against non-scaling bandits.We simulate scen-

arios with 10
5
steps, to evaluate our approach in static (Section 6.1)

and non-static (Section 6.2) environments. Then, we present a study

where we have monitored real-world data streams (Section 6.3). We

will also verify the scalability of our approach.

We have implemented every approach in Scala and averaged

our experimental results across 100 runs. Each algorithm was run

single-threaded in a server with 64 cores at 3 GHz and 128 GB RAM.

6.1 Static Environment
In this section, our goal is to verify the capability of S-TS to find

L∗ and maximize the reward in a static environment. We compare

S-TS in terms of pull regret and standard regret against alternative

scaling bandits, i.e., by replacing the base bandit with MP-KL-UCB

[15, 20], CUCB [12], and Exp3.M [32]. We adapt each algorithm so

that they “scale”. The prefix “S-” stands for the use of KL-S: For

instance, S-KL-UCB is Algorithm 2 where the MP-Base-Bandit

chooses the top-Lt arms based on the KL-UCB index.

We simulate a static scenario with K Bernoulli arms with known

means µ1, . . . µK and T = 10
5
, such that

{µi }
K
i=1 =

{
i

K
−

1

3K

}K
i=1

(15)

Given this, the means of theK arms are distributed linearly between

0 and 1, such that, whenη∗ = 0.9, thenL∗ = K/5, andwhenη∗ = 0.8,

then L∗ = 2K/5, and so on. We set K = 100. We measure the regret

and the pull regret of each approach against a Static Oracle (SO),

which always pulls the top-L∗ arms in expectation.

In Figure 1, the first row shows the convergence to L∗. The second
and last rows show the pull regret and standard regret respectively.

We see that S-TS and S-KL-UCB perform best, since they obtain the

lowest regret for both measures. When η∗ is smaller, the number

of pulls Lt converges faster to L
∗
, for two reasons: (i) The optimal

number of pulls L∗ is closer to the starting condition L1, and (ii) a

lower η∗ allows more exploration and more plays per rounds. So

the top-L∗ arms are found in fewer rounds with higher confidence.

We also see that S-Exp3.M does not perform very well. S-Exp3.M

targets at the adversarial bandit problem [32]. I.e., its assumptions

regarding the rewards distribution are weaker. The policy, based on

exponential weighting, forces Exp3.M to explore much, so that our

scaling policy KL-S lets Lt quickly drop to 1. Nonetheless, we see

that after a large number of steps, S-Exp3.M lets Lt increase again.

0

20

40

60

80

100

L
t

L∗

η∗ = 0.9

L∗

η∗ = 0.7

0.00

0.25

0.50

0.75

1.00

P
R

eg
(T

)

×105

100 101 102 103 104 105

T

0.00

0.25

0.50

0.75

1.00

R
eg

(T
)

×104

100 101 102 103 104 105

T

S-CUCB
S-Exp3.M
S-KL-UCB
S-TS

20

18

60

58

Figure 1: Static experiment. S-TS minimizes both regrets.

6.2 Non-Static Environment
In this section, we verify whether S-TS-ADWIN adapts to changes

in the reward distribution. We compare our results against the

following state-of-the-art non-static bandit algorithms: Discoun-

ted Thompson Sampling (dTS) [26] with parameter γ (discounting

factor), Epsilon-Greedy (EG) [29] with parameter ϵ (probability

of selecting the best arm greedy-wise) and Sliding Window UCB

(SW-UCB) [16] with parameterw (size of the window).

We set η∗ = 0.6 and use the previous static setup to generate

our non-static scenarios. In line with the literature on concept drift

[14], we simulate “gradual” and “abrupt” changes:

• Gradual: We place 60 equidistant change points over the

time axis. For the first 30 change points, we set µh = 0 for

the arm h ∈ K with the current highest expected reward.

Then, we revert those changes in a “last in – first out” way.

Thus, L∗ evolves gradually from 80 to 20, and back.

• Abrupt: We place two change points, equidistant from the

start and end. At the first one, we set µh = 0 for the top-

30 arms. We revert this change at the second change point.

Thus, L∗ abruptly changes from 80 to 20 and back.

Since the environment is non-static, µi and L∗ now vary as a

function of t . Thus, we measure regret against a piecewise static

oracle, which “knows” µi (t) and L
∗(t).

6

Scaling Multi-Armed Bandit Algorithms KDD ’19, August 4–8, 2019, Anchorage, AK, USA

0

20

40

60

80

100

L
t

Gradual Abrupt

0.00

0.25

0.50

0.75

1.00

P
R

eg
(T

)

×106

0.00 0.25 0.50 0.75 1.00

T ×105

0

1

2

3

R
eg

(T
)

×105

S-CUCB
S-CUCB-ADWIN
S-Exp3.M
S-Exp3.M-ADWIN

0.00 0.25 0.50 0.75 1.00

T ×105

S-KL-UCB
S-KL-UCB-ADWIN
S-TS
S-TS-ADWIN
S-SO

Figure 2: Non-static experiment: S-TS vs. S-TS-ADWIN.

A key result from this experiment is that S-TS, which assumes

that arms do not change over time, fails to adapt to a changing

environment, whereas our improvement, S-TS-ADWIN, does (Fig-

ure 2) and even outperforms all alternatives (Figure 3).

Figure 2 shows that S-CUCB(-ADWIN) and S-KL-UCB(-ADWIN)

behave similarly to S-TS(-ADWIN), but have slightly higher regret

and pull regret. S-Exp3.M has very high pull regret. Overall, we see

that our adaptation based on ADWIN made it possible to handle

both gradual and abrupt changes.

Figure 3 compares our approach to the existing non-static bandit

alternatives. S-dTS tends to underestimate L∗ in the case of a strong

discounting factor, e.g., for γ = 0.7. On the contrary, S-SW-UCB

overestimates L∗, in particular when the window size w is small.

The behaviour of S-EG is similar to the one of static approaches: It

does not adapt to change quickly.

We also see that S-TS-ADWIN is robust for a large range of δ ,
except for very small values, e.g., 0.01 and 0.001. The best results

are obtained with δ = 0.1, which is consistent with the results in

[8]. Other approaches in turn are quite sensitive to their parameters.

For example, we can see that a weak discounting factor of γ = 0.99

is beneficial for dTS in the case of a gradual change, but that more

aggressive discounting is better with abrupt changes. The figure

shows that our approach adapts to different kinds of change, as

opposed to the other approaches, without tuning its parameter.

0

25

50

75

100

L
t

Gradual Abrupt

0.00

0.25

0.50

0.75

1.00

P
R

eg
(T

)

×106

0.00 0.25 0.50 0.75 1.00

T ×105

0

1

2

3

4

5

R
eg

(T
)

×105

0.00 0.25 0.50 0.75 1.00

T ×105

0.95

1.00

1.05
×102 Gradual

S-dTS; γ = 0.7

S-dTS; γ = 0.8

S-dTS; γ = 0.9

S-dTS; γ = 0.99

S-EG; ε = 0.7

S-EG; ε = 0.8

S-EG; ε = 0.9

S-EG; ε = 0.99

S-SW-UCB; w = 50

S-SW-UCB; w = 100

S-SW-UCB; w = 500

S-SW-UCB; w = 1000

S-TS-ADWIN; δ = 0.001

S-TS-ADWIN; δ = 0.01

S-TS-ADWIN; δ = 0.1

S-TS-ADWIN; δ = 0.3

S-TS-ADWIN; δ = 0.5

S-TS-ADWIN; δ = 1.0

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Figure 3: Non-static experiment: Non-static bandits.

6.3 Real-World Example
In this section, we look at a real-world instance of Example 1. The

data set corresponds to a week of measurements in a pyrolysis

plant. It contains one measurement per second from a selection of

20 sensors, such as temperature, pressure, in various components.

We consider Mutual Information [21] as a measure of correlation,

which we have computed pair-wise between all attributes over a

sliding window of size 1000 (∼ 15 minutes) with step size 100 (∼ 1.5

minute). Our goal in this use case is to employ bandit algorithms as a

“monitoring system” to keep an overview of large correlation values

in the stream. Whenever the monitoring system detects a Mutual

Information value higher than a threshold Γ, it obtains a reward
of 1, otherwise 0. The challenge is to decide which coefficients to

re-compute and how many of them at each step. This results in

a S-MAB problem with 6048 steps and (20 ∗ 19)/2 = 190 arms.

Figure 4 is the reward matrix for Γ = 2. We see that there are

fewer rewards at the beginning and end of time. This is because the

week is bordered by periods of lower activity in the plant. In the

weekends, we observe fewer correlations than during weekdays.

Since there is no ground truth {µi (t)}, it is not possible to assess
the pull regret nor the standard regret. Instead, we compare the

7

KDD ’19, August 4–8, 2019, Anchorage, AK, USA Edouard Fouché, Junpei Komiyama, and Klemens Böhm

Su
n,00

:00

Su
n,16

:00

M
on

,09
:00

Tu
e,0

2:0
0

Tu
e,1

8:0
0

W
ed

,11
:00

Thu,04
:00

Thu,20
:00

Fr
i,1

3:0
0

Sa
t,0

6:0
0

Sa
t,2

2:0
0

T

0
50

10
0

15
0

19
0

P
ai

rs
(A

rm
s)

Reward Matrix, Γ = 2

0

1

Figure 4: Real-world experiment: Distribution of rewards.

0

50

100

150

190

L
t

η∗ = 0.8,Γ = 2
S-TS
S-TS-ADWIN
S-KL-UCB-ADWIN
S-Exp3.M-ADWIN
S-CUCB-ADWIN
S-DO-ADWIN

0 1000 2000 3000 4000 5000 6000

T

0.00

0.25

0.50

0.75

1.00

η t

η∗

Figure 5: Real-world experiment: Variation of Lt and ηt .

rewards and costs across algorithms: Whenever an Algorithm A

obtains more rewards than an Algorithm B for the same cost (i.e.,

number of plays), we conclude that A is superior to B.

We compare against oracles with different levels of knowledge:

Random Oracle (RO), Static Oracle (SO) and Dynamic Oracle (DO)

are shown as a black, green and gold dotted lines respectively.

In Figure 5, we set η∗ = 0.8 and visualize the evolution of the

number of plays over time for various approaches. S-TS-ADWIN

is the closest match to S-DO-ADWIN, our strongest baseline. This

indicates that S-TS-ADWIN adapts to changes of rewards to find a

proper value for Lt , unlike static algorithms such as S-TS.

Figure 6 shows the relationship between the average reward and

the average cost (in terms of number of plays) of each algorithm.

S-TS-ADWIN consistently yields higher rewards than DO for the

0

10

20

30

40

50

60

R
ew

ar
d

(S-)TS-ADWIN

DO
SO
RO
KL-S; η∗ = 0.1

KL-S; η∗ = 0.2

KL-S; η∗ = 0.3

KL-S; η∗ = 0.4

KL-S; η∗ = 0.5

KL-S; η∗ = 0.6

KL-S; η∗ = 0.7

KL-S; η∗ = 0.8

KL-S; η∗ = 0.9

No Scaling; L = K/10

No Scaling; L = K/5

No Scaling; L = K/4

No Scaling; L = K/3

No Scaling; L = K/2

No Scaling; L = K

(S-)KL-UCB-ADWIN

0 50 100 150 200

Cost

0

10

20

30

40

50

60

R
ew

ar
d

(S-)CUCB-ADWIN

0 50 100 150 200

Cost

(S-)OD-ADWIN
0

10

20

30

40

50

60

R
ew

ar
d

(S-)TS-ADWIN (S-)KL-UCB-ADWIN

0 50 100 150 200

Cost

0

10

20

30

40

50

60

R
ew

ar
d

(S-)CUCB-ADWIN

0 50 100 150 200

Cost

(S-)DO-ADWIN

0

50

100

150

R
ew

ar
d

(S-)TS-ADWIN; Γ ≥ 0.5 (S-)TS-ADWIN; Γ ≥ 1

0 50 100 150 200

Cost

0

50

100

150

R
ew

ar
d

(S-)TS-ADWIN; Γ ≥ 1.5

0 50 100 150 200

Cost

(S-)TS-ADWIN; Γ ≥ 2

Figure 6: Real-world experiment: Scaling vs. Non-Scaling
and variation of the utility criterion Γ with (S-)TS-ADWIN.

same costs. TS-ADWIN (without scaling) also is superior to SO. Here

we see the full benefit of our scaling policy with S-DO-ADWIN:

The scaling dynamic oracle consistently achieves nearly maximal

reward, while pulling fewer arms than a non-scaling algorithm. In

other words, it outperforms its non-scaling counterpart.

Surprisingly, the UCB-based approaches do not perform well

without scaling; they are close to the random oracle (RO). We hypo-

thesize that ADWIN keeps the size of the dynamic window small

in the real-world setting;wt remains small, affecting the sharpness

8

Scaling Multi-Armed Bandit Algorithms KDD ’19, August 4–8, 2019, Anchorage, AK, USA

10 500 1000 1500 2000

K

101

102

103

104

105

106

107

R
u

nt
im

e
(m

s)

T = 1000

S-TS
S-TS-ADWIN

0.00 0.25 0.50 0.75 1.00

T ×105

K = 100

RO
S-CUCB

S-KL-UCB
S-Exp3.M

Figure 7: Scalability of bandit algorithms w.r.t. K and T .

of the confidence bound. However, when our scaling policy is used,

both approaches perform slightly better than DO.

We also verify that S-TS-ADWIN can adapt to different environ-

ments by changing Γ, which influences the availability of rewards.

We see here that the improvement against our baselines is consist-

ent, i.e., our algorithm also adapts the number of plays per round.

Finally, we evaluate the scalability of our approach with growing

K and T . To do so, we stick to our real world example and create

versions of the problem of different size with 10 to 2000 arms and

up to 10
5
steps, by resampling the arms and observations. Then,

we run our real-world experiment with Γ = 2 and average the

runtime with scaling parameter η∗ from 0.1 to 0.9. Figure 7 shows

the result. We see that each bandit approach scales linearly with

the number of arms and the number of steps. S-CUCB is the fastest

one, closely followed by S-TS and S-KL-UCB. S-Exp3.M is two

orders of magnitude slower w.r.t. K . By comparing S-TS and S-TS-

ADWIN, we see that the added computational burden from ADWIN

is small and scales alike with an increasing number of arms and

time steps. Each bandit approach, except Exp3.M, is at most one

order of magnitude slower than choosing arms at random (RO).

We see that our approach requires on average one millisecond to

decide which arms to play when K = 100. This is typically less than

the time required at each step to estimate Mutual Information on a

single pair, using state-of-the-art estimators [21].

Altogether, our experiments verified that our algorithms, S-TS

and S-TS-ADWIN, are both effective and efficient. S-TS outperforms

state-of-the-art bandits in the static setting, while S-TS-ADWIN

adapts better to different kinds of change than its competitors. In our

real-world example, S-TS-ADWIN obtains almost all the rewards

in the environment for a cost reduced by up to 50%, outperforming

very competitive baselines, such as a non-scaling dynamic oracle.

7 CONCLUSION
We have formalized a novel bandit model, which captures the effi-

ciency trade-off that is central to many real-world applications. We

have proposed a new algorithm, S-TS, which combines Multiple-

Play Thompson Sampling (MP-TS) with a new functionality to

decide on the number of arms played per round, a so-called “scal-

ing policy”. Our analysis and experiments showed that it enjoys

strong theoretical guarantees and very good empirical behaviour.

We also proposed an extension of our algorithm for the non-static

setting. We applied the proposed model to data stream monitor-

ing and showed its utility. However, we expect the impact of our

contribution to extend beyond this one application.

In the future, it will be interesting to look closer at the non-static

setting. The static regret analysis already is quite involved, and

extending it to non-static settings is a challenge. Our algorithm

performs better than the existing approaches empirically. We hy-

pothesize that this success is due a class of non-stationarity that

our solution exploits – but which has not been formalized yet.

ACKNOWLEDGMENTS
This work was supported by the DFG Research Training Group

2153: “Energy Status Data – Informatics Methods for its Collection,

Analysis and Exploitation” and the German Federal Ministry of

Education and Research (BMBF) via Software Campus (01IS17042).

We thank the pyrolysis team of the Bioliq®process for providing the

data for our real-world use case (https://www.bioliq.de/english/).

REFERENCES
[1] Mastane Achab, Stéphan Clémençon, and Aurélien Garivier. 2018. Profitable

Bandits. In ACML (Proceedings of Machine Learning Research), Vol. 95. PMLR,

694–709. http://proceedings.mlr.press/v95/achab18a.html

[2] Shipra Agrawal and Navin Goyal. 2013. Further Optimal Regret Bounds for

Thompson Sampling. In AISTATS (JMLR Workshop and Conference Proceedings),
Vol. 31. JMLR.org, 99–107. http://proceedings.mlr.press/v31/agrawal13a.html

[3] Venkatachalam Anantharam, Pravin Varaiya, and Jean Walrand. 1987. Asymptot-

ically efficient allocation rules for the multiarmed bandit problem with multiple

plays-Part I: I.I.D. rewards. IEEE Trans. Automat. Control 32, 11 (1987), 968–976.
https://doi.org/10.1109/TAC.1987.1104491

[4] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. 2002. Finite-time Analysis

of the Multiarmed Bandit Problem. Machine Learning 47, 2-3 (2002), 235–256.

https://doi.org/10.1023/A:1013689704352

[5] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. 1995.

Gambling in a rigged casino: The adversarial multi-armed bandit problem. In

Proceedings of IEEE 36th Annual Foundations of Computer Science. 322–331. https:

//doi.org/10.1109/SFCS.1995.492488

[6] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. 2002. The

Nonstochastic Multiarmed Bandit Problem. SIAM J. Comput. 32, 1 (2002), 48–77.
https://doi.org/10.1137/S0097539701398375

[7] Baruch Awerbuch and Robert D. Kleinberg. 2004. Adaptive routing with end-to-

end feedback: distributed learning and geometric approaches. In STOC. ACM,

45–53. https://doi.org/10.1145/1007352.1007367

[8] Albert Bifet and Ricard Gavaldà. 2007. Learning from Time-Changing Data

with Adaptive Windowing. In SDM. SIAM, 443–448. https://doi.org/10.1137/1.

9781611972771.42

[9] Sébastien Bubeck and Nicolò Cesa-Bianchi. 2012. Regret Analysis of Stochastic

and Nonstochastic Multi-armed Bandit Problems. Foundations and Trends in
Machine Learning 5, 1 (2012), 1–122. https://doi.org/10.1561/2200000024

[10] Giuseppe Burtini, Jason L. Loeppky, and Ramon Lawrence. 2015. A Survey

of Online Experiment Design with the Stochastic Multi-Armed Bandit. CoRR
abs/1510.00757 (2015). http://arxiv.org/abs/1510.00757

[11] Deepayan Chakrabarti, Ravi Kumar, Filip Radlinski, and Eli Upfal. 2008. Mortal

Multi-Armed Bandits. In NIPS. 273–280.
[12] Wei Chen, Wei Hu, Fu Li, Jian Li, Yu Liu, and Pinyan Lu. 2016. Combinatorial

Multi-Armed Bandit with General Reward Functions. In NIPS. 1651–1659.
[13] Rémy Degenne and Vianney Perchet. 2016. Anytime optimal algorithms in

stochastic multi-armed bandits. In ICML (JMLRWorkshop and Conference Proceed-
ings). JMLR.org, 1587–1595. http://proceedings.mlr.press/v48/degenne16.html

[14] João Gama, Indre Zliobaite, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid

Bouchachia. 2014. A survey on concept drift adaptation. ACM Comput. Surv. 46,
4 (2014), 44:1–44:37. https://doi.org/10.1145/2523813

[15] Aurélien Garivier and Olivier Cappé. 2011. The KL-UCB Algorithm for Bounded

Stochastic Bandits and Beyond. In COLT (JMLR Proceedings), Vol. 19. JMLR.org,

359–376. http://proceedings.mlr.press/v19/garivier11a.html

[16] Aurélien Garivier and Eric Moulines. 2008. On Upper-Confidence Bound Policies

for Non-Stationary Bandit Problems. CoRR abs/0805.3415 (2008). https://arxiv.

org/abs/0805.3415

[17] Aurélien Garivier and Eric Moulines. 2011. On Upper-Confidence Bound Policies

for Switching Bandit Problems. In ALT (Lecture Notes in Computer Science),
Vol. 6925. Springer, 174–188. https://doi.org/10.1007/978-3-642-24412-4_16

9

https://www.bioliq.de/english/
http://proceedings.mlr.press/v95/achab18a.html
http://proceedings.mlr.press/v31/agrawal13a.html
https://doi.org/10.1109/TAC.1987.1104491
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1109/SFCS.1995.492488
https://doi.org/10.1109/SFCS.1995.492488
https://doi.org/10.1137/S0097539701398375
https://doi.org/10.1145/1007352.1007367
https://doi.org/10.1137/1.9781611972771.42
https://doi.org/10.1137/1.9781611972771.42
https://doi.org/10.1561/2200000024
http://arxiv.org/abs/1510.00757
http://proceedings.mlr.press/v48/degenne16.html
https://doi.org/10.1145/2523813
http://proceedings.mlr.press/v19/garivier11a.html
https://arxiv.org/abs/0805.3415
https://arxiv.org/abs/0805.3415
https://doi.org/10.1007/978-3-642-24412-4_16

KDD ’19, August 4–8, 2019, Anchorage, AK, USA Edouard Fouché, Junpei Komiyama, and Klemens Böhm

[18] Emilie Kaufmann, Nathaniel Korda, and Rémi Munos. 2012. Thompson Sampling:

An Asymptotically Optimal Finite-Time Analysis. In ALT (Lecture Notes in
Computer Science), Vol. 7568. Springer, 199–213. https://doi.org/10.1007/

978-3-642-34106-9_18

[19] Robert D. Kleinberg. 2006. Anytime algorithms for multi-armed bandit problems.

In SODA. ACM Press, 928–936. https://doi.org/10.1145/1109557.1109659

[20] Junpei Komiyama, Junya Honda, and Hiroshi Nakagawa. 2015. Optimal Regret

Analysis of Thompson Sampling in Stochastic Multi-armed Bandit Problem with

Multiple Plays. In ICML (JMLR Workshop and Conference Proceedings), Vol. 37.
JMLR.org, 1152–1161. http://proceedings.mlr.press/v37/komiyama15.html

[21] Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. 2004. Estimating

mutual information. Phys. Rev. E 69 (Jun 2004), 066138. Issue 6. https://doi.org/

10.1103/PhysRevE.69.066138

[22] Tor Lattimore and Csaba Szepesvári. 2019. Bandit Algorithms. Cambridge Uni-

versity Press (preprint). https://banditalgs.com/

[23] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-

bandit approach to personalized news article recommendation. In WWW. ACM,

661–670. https://doi.org/10.1145/1772690.1772758

[24] Tian Li, Jie Zhong, Ji Liu, Wentao Wu, and Ce Zhang. 2018. Ease.ml: Towards

Multi-tenant Resource Sharing for Machine Learning Workloads. PVLDB 11, 5

(2018), 607–620. https://dl.acm.org/citation.cfm?id=3177737

[25] Odalric-Ambrym Maillard. 2017. Boundary Crossing for General Exponential

Families. In ALT (Proceedings of Machine Learning Research), Vol. 76. PMLR,

151–184. http://proceedings.mlr.press/v76/maillard17a.html

[26] Vishnu Raj and Sheetal Kalyani. 2017. TamingNon-stationary Bandits: A Bayesian

Approach. CoRR abs/1707.09727 (2017). http://arxiv.org/abs/1707.09727

[27] Aleksandrs Slivkins and Eli Upfal. 2008. Adapting to a Changing Environment:

the Brownian Restless Bandits. In COLT. Omnipress, 343–354.

[28] Vaibhav Srivastava, Paul Reverdy, and Naomi Ehrich Leonard. 2014. Surveillance

in an abruptly changing world via multiarmed bandits. In CDC. IEEE, 692–697.
https://doi.org/10.1109/CDC.2014.7039462

[29] Richard S. Sutton and Andrew G. Barto. 1998. Reinforcement learning : an intro-
duction. MIT Press.

[30] William R. Thompson. 1933. On the Likelihood that One Unknown Probability

Exceeds Another in View of the Evidence of Two Samples. Biometrika 25, 3/4
(1933), 285–294. https://doi.org/10.2307/2332286

[31] Long Tran-Thanh, Archie C. Chapman, Enrique Munoz de Cote, Alex Rogers,

and Nicholas R. Jennings. 2010. Epsilon-First Policies for Budget-Limited Multi-

Armed Bandits. In AAAI. AAAI Press.
[32] Taishi Uchiya, Atsuyoshi Nakamura, and Mineichi Kudo. 2010. Algorithms for

Adversarial Bandit Problems with Multiple Plays. In ALT, Vol. 6331. Springer,
375–389. https://doi.org/10.1007/978-3-642-16108-7_30

[33] Yingce Xia, Tao Qin, Weidong Ma, Nenghai Yu, and Tie-Yan Liu. 2016. Budgeted

Multi-Armed Bandits with Multiple Plays. In IJCAI. IJCAI/AAAI Press, 2210–2216.
http://www.ijcai.org/Abstract/16/315

8 PROOFS
8.1 Performance of MP-TS as a “base bandit”
We show that Remark 1 holds for MP-TS. Let the posterior sample

of TS at round t be θi (t) ∼ Beta(αi (t) + 1, βi (t) + 1). Note that

Ac
t ,Lt = l implies that there exists i ≤ l , j > l such that i < It ,

j ∈ It . Let d = µi − µ j > 0 and x ,y = µ j + d/3, µ j + 2d/3. Let the
events Ei,µ (t) = {µ̂i (t) ≤ x} and Ei,θ (t) = {θi (t) ≤ y}. Let θ(l)(t)
be the l-th largest from {θi (t)} (ties broken arbitrarily). We have

T∑
t=1

Pr

[
Ac

t
]
=

T∑
t=1

∑
l ∈[K]

Pr

[
Ac

t ∩ Lt = l
]

≤

T∑
t=1

∑
l ∈[K]

∑
i≤l, j>l

Pr [Lt = l ∩ i < It ∩ j ∈ It] . (16)

Here,

Pr [Lt = l ∩ i < It ∩ j ∈ It] ≤ Pr

[
Lt = l ∩ y ≤ θ j (t)

]
+ Pr

[
Lt = l ∩ θ(l)(t) ≤ y ∩ θi (t) ≤ y

]
. (17)

Let pi,n = Pr[θi (t) > y ∩ Ni (t) = n]. The following discussion is

essentially equivalent to the Lemma 9 in [20]. Let θ(l)\i (t) be the
value of the l-th largest among {θ j }j ∈[K]\i . Due to place restrictions,

we may write equivalently θ(l)\i (t) ≡ θ
t
(l)\i . Thus, we have

T∑
t=1

1
[
Lt = l ∩ θ(l)(t) ≤ y ∩ θi (t) ≤ y

]
≤

T∑
n=1

T∑
t=1

1
[
Lt = l ∩ θ(l)(t) ≤ y ∩ θi (t) ≤ y ∩ Ni (t) = n

]
≤

T∑
n=1

T∑
t=1

1
[
Lt = l ∩ θ(l)\i (t) ≤ y ∩ θi (t) ≤ y ∩ Ni (t) = n

]
≤

T∑
n=1

T∑
m=1

1

[
m ≤

T∑
t=1

1
[
Lt = l ∩ θ

t
(l)\i ≤ y ∩ θ ti ≤ y ∩ N t

i = n
]]
.

The event

m ≤
T∑
t=1

1
[
θ(l)\i (t) ≤ y ∩ θi (t) ≤ y ∩ Ni (t) = n

]
(18)

implies that {θ(l)\i (t) ≤ y ∩θi (t) ≤ y ∩Ni (t) = n} occurred at least
m rounds, and {θi (t) ≤ y} occurred for the firstm rounds such that

Eq. (18) holds. By the statistical independence of θ(l)\i (t) and θi (t):

Pr

[
m ≤ 1

[
Lt = l ∩ θ

t
(l)\i ≤ y ∩ θ ti ≤ y ∩ N t

i = n
]]
≤ (1 −pi,n)

m .

and following the same steps as Lemma 9 in [20], we have

T∑
n=1

T∑
m=1
(1 − pi,n)

m ≤

T∑
n=1

1 − pi,n
pi,n

≤
1

(µi − y)2
(by Lemma 2 in [2]). (19)

Moreover, by Lemma 4 and Lemma 3 in [2]:

Pr

[
Lt = l ∩ y ≤ θ j (t)

]
≤ Pr

[
Lt = l ∩ j ∈ It ∩ y ≤ θ j (t) ∩ x > µ̂ j

]
+ Pr

[
Lt = l ∩ j ∈ It ∩ x ≤ µ̂ j

]
≤

(
logT

dKL(x ,y)
+ 1

)
+

(
1

dKL(x , µ j)
+ 1

)
, (20)

where dKL(p,q) = p log(p/q) + (1 − p) log((1 − p)/(1 − q)) be the
KL divergence between two Bernoulli distributions. From Eqs. (16),

(17), (19), and (20), we have

∑T
t=1 Pr

[
Ac

t
]
= O(logT).

8.2 Proof of Lemma 4.6
In this section, we bound each of the terms (A)–(D) in Lemma 4.6.

Lemma 8.1. Let

Gl (t) =
⋂
i≤l

{|µ̂i (t) − µi | ≤ ∆} .

For l ∈ [K], the following inequality holds:
T∑
t=1

Pr[At ∩ Lt = l ∩ G
c
l (t)] = O(1/∆

2). (21)

Proof. Event A implies each of arm i ≤ l is drawn, and thus

T∑
t=1

Pr[At ∩ Lt = l ∩ G
c
l (t)] ≤ 1 +

T∑
n=1

Pr[|µ̂i,n − µi | ≤ ∆]

≤ 1 +
1

2∆2
e
−2nc∆2

(by Lemma 9.2) = O

(
1

∆2

)
. □

10

https://doi.org/10.1007/978-3-642-34106-9_18
https://doi.org/10.1007/978-3-642-34106-9_18
https://doi.org/10.1145/1109557.1109659
http://proceedings.mlr.press/v37/komiyama15.html
https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.1103/PhysRevE.69.066138
https://banditalgs.com/
https://doi.org/10.1145/1772690.1772758
https://dl.acm.org/citation.cfm?id=3177737
http://proceedings.mlr.press/v76/maillard17a.html
http://arxiv.org/abs/1707.09727
https://doi.org/10.1109/CDC.2014.7039462
https://doi.org/10.2307/2332286
https://doi.org/10.1007/978-3-642-16108-7_30
http://www.ijcai.org/Abstract/16/315

Scaling Multi-Armed Bandit Algorithms KDD ’19, August 4–8, 2019, Anchorage, AK, USA

Bounding Term (A): Term (A) is directly bounded by the fact

that the base bandit algorithm has logarithmic regret.

Bounding Term (B): Note that Bt = {Lt ≤ L∗ ∩ η̂t < η∗} ∪
{Lt > L∗ ∩ η̂t ≥ η∗}, and {At ∩ Gl (t)} implies Bt . By Lemma 8.1,

T∑
t=1

Pr[At ∩ B
c
t] ≤

∑
l ∈[K]

T∑
t=1

Pr[At ∩ G
c
l (t)] = O(1/∆

2). (22)

Bounding Term (C): The eventAt ∩B
l
i (t) < η∗ implies Gcl (t)∪

bl+1(t) ≤ µl+1 − ∆. By using this, we have

T∑
t=1

Pr[A(t) ∩ Cc (t)] ≤
L∗−1∑
l=1

T∑
t=1

Pr[At ∩ Lt = l ∩ B
l
i (t) ≤ η∗]

≤

L∗−1∑
l=1

T∑
t=1

Pr

[
At ∩ Lt = l ∩

(
Gcl (t) ∪ bl+1(t) ≤ µl+1 − ∆

)]
≤

L∗−1∑
l=1

T∑
t=1

(
Pr[At ∩ Lt = l ∩ G

c
l (t))] + Pr[bl+1(t) ≤ µl+1 − ∆]

)
≤

L∗−1∑
l=1

T∑
t=1

Pr[At ∩ Lt = l ∩ G
c
i (t))] +O(log logT)

(By the union bound of Lemma 9.3 over t ∈ [T])

= O(1/∆2) +O(log logT) (by Lemma 8.1). (23)

Bounding Term (D): Note that
⋂t−1
t ′=t−K (At ′ ∩ Bt ′ ∩ Ct ′) im-

plies Lt−1 ∈ {L
∗,L∗ + 1}. Thus, Lt , L∗ implies BLt−1i (t − 1) > η∗,

and BLt−1i (t − 1) > η∗ implies GcLt−1
(t) ∪ bLt−1+1(t) > µLt−1+1 + ∆.

Moreover,

⋂t−1
t ′=t−K (At ′ ∩ Bt ′ ∩ Ct ′)∩D

c
t−1 implies that arm L∗+1

is drawn in either round t − 1 or round t , and thus the event

t−1⋂
t ′=t−K

(At ′ ∩ Bt ′ ∩ Ct ′) ∩ D
c
t−1 ∩ NL∗+1(t) = n

occurs at most twice for each n. By using these we obtain

T∑
t=K+1

Pr

[t−1⋂
t ′=t−K

(At ′ ∩ Bt ′ ∩ Ct ′) ∩ D
c
t−1 ∩ Lt , L∗)

]
≤ K

∑
l ∈{L∗,L∗+1}

T∑
t=1

Pr[At ∩ G
c
l (t)] + K +

4 logT

∆2

+

T∑
t=K+1

Pr

[
bL∗+1(t − 1) ≥ µL∗+1 + ∆ ∩ Ni (t) ≥

2 logT

∆2

]
≤ O(1/∆2) + K +

4 logT

∆2

+

T∑
t=K+1

Pr

[
bL∗+1(t − 1) ≥ µL∗+1 + ∆ ∩ NL∗+1(t) ≥

2 logT

∆2

]
(by Lemma 8.1)

≤ O(1/∆2) + K +
4 logT

∆2

+ 2

T∑
n= 2 logT

∆2

Pr

[⋃
t

(
btL∗+1 ≥ µL∗+1 + ∆ ∩ N t

L∗+1 = n
)]
, (24)

and the last term is bounded as

T∑
n= 2 logT

∆2

Pr

[⋃
t
(bL∗+1(t) ≥ µL∗+1 + ∆ ∩ NL∗+1(t) = n)

]

≤

T∑
n= 2 logT

∆2

Pr

[
ndKL(µ̂L∗+1,n , µL∗+1 + ∆) ≤ logT

]
≤

T∑
n= 2 logT

∆2

Pr

[
2n(µ̂L∗+1,n − µL∗+1 − ∆)

2 ≤ logT
]

(by Pinsker’s inequality)

=

T∑
n= 2 logT

∆2

Pr

[
µ̂L∗+1,n ≤ µ + ∆ −

√
logT

2n

]

≤

T∑
n= 2 logT

∆2

Pr

[
µ̂L∗+1,n ≤ µ + ∆/2

]
≤

T∑
n= 2 logT

∆2

e
−2n(∆/2)2 = O(1/T)

(by Hoeffding inequality). (25)

9 CONCENTRATION INEQUALITIES
The following inequalities are used to derive Lemma 4.6.

Lemma 9.1. (Hoeffding inequality) LetX1, . . . ,Xn be independent
random variables taking values in [0, 1] with mean µ = (1/n)

∑n
i Xi .

Let µ̂ = (1/n)
∑n
i=1 Xi . The following inequalities hold:

Pr[µ̂ ≥ µ + ϵ] ≤ e
−2nϵ 2 and Pr[µ̂ ≤ µ − ϵ] ≤ e

−2nϵ 2 . (26)

Lemma 9.2. (High-probability bound) Let µ̂i,n be empirical es-
timate of µi at Ni (t) = n. For any ϵ > 0 and nc > 0, the following
bound holds:

Pr

[
Ni (t) = n ∩

∞⋃
n=nc

|µ̂i,n − µ | ≥ ϵ

]
≤

1

2ϵ2
e
−2nc ϵ 2 .

Lemma 9.2 is easily derived by using the Hoeffding inequality

and the union bound over n.

Proof of Lemma 9.2.

Pr

[
Ni (t) = n ∩

∞⋃
n=nc

|µ̂i (t) − µ | ≥ ϵ

]
≤

∞∑
n=nc

Pr [Ni (t) = n ∩ |µ̂i (t) − µ | ≥ ϵ]

≤ e
−2nc ϵ 2

∞∑
n=0

e
−2nϵ 2

(by Hoeffding inequality)

= e
−2nc ϵ 2 e

2ϵ 2

e
2ϵ 2 − 1

≤ e
−2nc ϵ 2 1

2ϵ2
. □

Lemma 9.3. (Underestimation of the KL-UCB index, Corollary

23 in [25]) The following inequality holds: Let ϵ > 0 be arbitrary.
There exists constants Tc ,CKL = CKL({µi }, ϵ) such that, for t > Tc

Pr[bi (t) ≤ µi − ϵ] ≤
CKL
t log t

. (27)

11

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Related Work
	3 Scaling Multi-Armed Bandits
	3.1 Problem Definition
	3.2 Scaling Thompson Sampling (S-TS)

	4 Theoretical Analysis
	4.1 Preliminaries
	4.2 Regret Bound

	5 Non-static Adaptation (S-TS-ADWIN)
	6 Experiments
	6.1 Static Environment
	6.2 Non-Static Environment
	6.3 Real-World Example

	7 Conclusion
	Acknowledgments
	References
	8 Proofs
	8.1 Performance of MP-TS as a ``base bandit''
	8.2 Proof of Lemma 4.6

	9 Concentration Inequalities

