
PROVIDING NATIVE SUPPORT FOR FEDERATED IDENTITY MANAGEMENT IN
A BUSINESS-PROCESS-MANAGEMENT SYSTEM

Identity Business Processes

Jens Müller
Faculty of Informatics,
Karlsruhe Institute of Technology,
Karlsruhe, Germany
E-mail: jens.mueller@kit.edu

Klemens Böhm

Faculty of Informatics,
Karlsruhe Institute of Technology,
Karlsruhe, Germany
E-mail: jens.mueller@kit.edu

Abstract: To facilitate information-system security, e. g., access control or audit,
the entities involved play a key role. This makes identity management an
important task. The success of service-oriented architectures (SOA) has lead to the
development of federated identity management (FIM), to deal with the dynamic
nature of SOA and to achieve economies of scale. Business processes in SOA are
a composition of services provided by IT systems and manual actions performed
by humans. Such compositions highly depend on the identity of participants. The
identity in turn determines aspects such as preferred services or assignment of
tasks. We analyze how to use FIM technologies to facilitate such identity-based
compositions and identify the problems arising from this combination (business
processes and FIM). Based on standards for business-process management, access
control, and FIM, by carefully considerating design alternatives, we propose
a system architecture for the execution of identity-based business processes.
The system implements FIM concepts in an application-specific way, based on
declarative configuration and taking the run-time context of business processes
into account. Finally, we describe our implementation of the architecture based
on the ZXID open-source library and its evaluation using a case study.

Keywords: Business-process management; access control; identity management;
Service-oriented architecture (SOA).

Reference to this paper should be made as follows: Müller, J. and Böhm, K.
(2014) ‘Identity Business Processes: Providing Native Support for Federated
Identity Management in a Business-Process-Management System’, International
Journal of Trust Management in Computing and Communications, Vol. x, No. x,
pp.xxx–xxx.

Biographical notes: The research of Jens Müller deals with security mechanisms
for workflow systems. He has worked in TAS3, an EU-funded research project
dealing with security and trust in service-oriented architectures and is an
experienced professional software developer. He has published several conference
papers and is currently working towards his PhD.

Copyright © 2014 Inderscience Enterprises Ltd.

2 J. Müller and K. Böhm

Klemens Böhm is professor for computer science (chair of databases and
information systems) at Karlsruhe Institute of Technology (KIT), Germany. Prior
to that, he has been affiliated with Otto-von-Guericke-Universität Magdeburg,
Germany, Swiss Federal Institute of Technology Zurich, Switzerland, and GMD
Darmstadt, Germany. He has obtained his PhD from the Technical University of
Darmstadt in 1997. The research topics currently addressed by his chair include
data mining, data privacy, and workflow management. The range of applicants
he collaborates with is broad and includes engineers, biologists, and economists.
Collaboration with industry also plays an important role.

1 Introduction

Service-oriented architectures (SOA) build upon the notion of services, i. e., bundles of
operations that are available through clearly defined interfaces. Today, implementations of
SOA commonly use web-service technologies such as SOAP [45], WSDL [13], and other
technologies building upon them [14].

Business-process management has the goal of orchestrating high-level interactions in
SOA. This means that processes manage how services interact, touching aspects such as
control flow and data flow. As an example, think of a corporate travel-booking application.
It combines services for booking a flight, a hotel, and a rental car. A clerk is involved to
check whether the booking intended confirms to corporate guidelines for travel expenses.

Security is an important issue in such applications. For example, transmission of
sensitive personal data to external services must not lead to disclosure of such data.
Moreover, one must be able to trust the service in that data is secure there. Users may
not perform tasks in the process without authorization. In the travel booking example,
employees are allowed to perform a booking, while interns are not. Further, a clerk may not
confirm his own booking, a constraint known as separation of duty (SoD) [21].

An important prerequisite to achieve these goals is to reliably manage the identity of
entities involved. Identity is “a property of a subject that enables it to be identifiable and
to link items of interest to the subject” [41]. Digital identity refers to attribute values of an
individual that are immediately accessible by technical means. Individuals expose different
parts of their identity in different contexts. Identity management (IdM) means managing
these various partial identities.

IdM is important for security, for authentication and access control in particular. An IdM
system has to check the identifiers and attribute values that a subject claims to possess, i.e.,
authenticate the identity of the subject. On this basis, a system can decide whether to grant
access to some resource. In our example, an attribute employment_status determines
whether an individual may use the travel-booking application. Authentic information about
individuals is used when booking tickets.

In the SOA context, IdM has evolved into federated identity management (FIM), a
set of technologies and processes that let computer systems distribute identity information
dynamically and delegate IdM functionality to other systems [27]. A FIM infrastructure
allows service providers to offload the cost of managing user attributes and login credentials
to an identity provider, thereby increasing scalability. It also provides users with single-
sign-on (SSO), making it easier to use services from different providers [8]. The Security
Assertion Markup Language (SAML) [38] implements FIM concepts. ID-WSF [24] uses
SAML and related technologies to facilitate identity-aware service compositions. In our

Identity Business Processes 3

example, the airline can automatically credit bonus miles to the traveler’s frequent-flyer
card of a partner airline. The booking application can enter itinerary data into the calendar
of the user.

We summarize the current status of FIM as follows: Terminology and concepts have
been established, and requirements on FIM have been explored. There are implementations
of FIM concepts, e. g., based on SAML, and even a framework to use FIM in service
compositions. However, there is no comprehensive solution for problems commonly
occuring in such compositions, for example managing the different security preferences of
the individuals involved. This would help making applications more user-friendly: E.g., a
user might have specified which data he is willing to disclose to applications of a specific
kind. When an application can access such preferences, it can avoid bothering the user
unnecessarily. Moreover, service compositions are commonly implemented using business-
process-management technologies, but there are no mature solutions to integrate FIM.

Integrating FIM support into a BP-management system (BPMS) facilitates what we
call identity business processes, allowing developers of BP applications to easily use the
services available in an IdM federation. To customize the FIM-related behavior of a service
composition, only lightweight configuration shall be necessary. Application developers
should be able to provide it separately from the BP definition itself, e. g., by annotating
the process model, as proposed in [44, 28, 42] For example, to use FIM for access control,
application developers need to state the attribute values required for users to perform a
certain activity of the process. Given this specification, users can use SSO to log into the
user interface, and the BPMS automatically authenticates the attributes of the user. Further,
users have a more consistent experience when using different service providers: They can
use their existing accounts at an identity provider and provide access to their personal
data to applications automatically. In addition, applications can respect privacy preferences
automatically.

The research question now is how to design a BPMS for identity BPs. Problems that
need to be solved are: How to adapt and extend the conventional architecture of a BPMS
to support FIM concepts? How can one implement advanced BPMS functionality in SOA,
such as dynamic service compositions, based on FIM? Which configuration options are
needed to customize the FIM-related aspects of BP definitions?

All these problems are challenging. First, it is unclear how FIM fits into the architecture
of a secure BPMS. There exists a well-defined BPMS reference architecture [17]. This
reference architecture is valid in a SOA context as well [16]. It provides a good basis for
the integration of new functionality into a BPMS. One question now is which interfaces of
this architecture are affected, i. e., have to interact with the FIM system or handle identity
information? Which components of the BPMS use such information? Second, the resulting
BPMS should re-use existing BPMS components, interoperate with established FIM
technologies, allow execution of existing process definitions, and require little additional
configuration. Third, the implementation of FIM features needs to take the process context
into account and adjust to the requirements of individual process definitions. One example
would be a travel-booking application involving a traveler and a clerk. After the booking
is completed, the traveler agrees to store itinerary data in his calendar. The BPMS needs to
discover the correct calendar service and call it with the correct identity. This depends on
process context, in a way that is specific to each application. In this example, the traveler
who has initiated the booking determines which calendar service to use, and the service is
called with his identity. Fourth, the resulting BPMS must maintain user privacy. To this end,
it must support the respective FIM features, like identity mapping between pseudonyms,

4 J. Müller and K. Böhm

prevent leakage of identity information between process instances, and provide appropriate
user control over the disclosure of their personal data.

Our contributions now are as follows:

• We determine how FIM concepts can be used in BPs. We do so by analyzing the flow
of identity information and the influence of BP context on FIM functionality. We also
describe peculiarities that arise when combining FIM concepts with BPM concepts.

• We analyze how FIM functionality needs to be configured so that it can meet the
requirements of different BP applications, and we develop respective configuration
mechanisms.

• In order to enable secure process execution in SOA with FIM, we identify important
design decisions and different solutions for each of them. We discuss their pros and
cons based on a number of design requirements. The result is an extended BPMS
architecture.

• We describe an implementation of the architecture based on web-service technologies
and the open-source ZXID library, an implementation of the SAML and ID-WSF
specifications. Finally, we demonstrate how the system executes a BP implementing
the travel-booking scenario from above. We also assess the architecture with respect
to the design requirements.

2 Fundamentals

The goal of this article is to facilitate the implementation of identity-based service
compositions in service-oriented architectures. The travel-booking use case serves as an
example for such a service composition. The question now is how existing concepts and
technologies can help with its implementation. This section features two major topics that are
useful to this end: (1) Business-process management systems orchestrate different services,
yielding more complex applications. They can also accomodate human activities. This
allows to orchestrate, say, a flight-booking system and the work of a manager responsible
for business trips. (2) FIM makes it easier to build service compositions that adapt to users
and their individual characteristics. For example, it allows to perform a flight booking in
the name of the traveler or limit usage of the application to regular employees.

2.1 Business-Process Management in SOA

Business processes orchestrate the behavior of services and humans. To this end, they define
a control flow and a data flow between the entities involved, based on message passing. For
example, a travel-booking BP would include an application by the traveler and approval by
a manager. A flight-booking service exists indepedently of the BP, but the BP coordinates
its interactions with the traveler and the manager. It performs the booking automatically,
but only if the trip has been approved. It also passes it the trip details confirmed by the
traveler. The WfMC reference model [17] defines an architecture for BPMS that offers this
functionality. See Figure 1. The central component is the BP execution engine (engine). It has
several interfaces. Interface 1 is between the engine and the BP modelling tool. It facilitates
the deployment of process definitions. This includes their security configurations. Interface 2
connects the worklist handler to the engine. The worklist handler performs interactions

Identity Business Processes 5

of the BPMS with users via human tasks. Note that there usually is a single worklist
handler for all users. Users can choose from different tasks, which are often available to
different users, but only performed by one user eventually. Interfaces 3 and 4 connect the
engine to applications and other BPMS, respectively. These interfaces are very similar at
the technical level, and the distinction mainly is for historical reasons. Interface 5 deals
with administration and monitoring, by providing audit data to an external component, and
allowing a management tool access to the engine. In SOA, process definitions commonly
use WS-BPEL [36]. Applications and other processes are provided as web services using
SOAP [45].

WS-BPEL only allows to express the control and data flow directly. Other aspects of
the workflow, especially non-functional concerns such as service selection, access control,
or logging are tedious to specify manually. In particular, specifying aspects that affect the
process as a whole is difficult. E.g., to select a service once and then perform several calls
to it, in standard WS-BPEL one needs to specify the service selection itself, including steps
such as checking the trustworthiness of selected services and asking the user for his choice,
and then store the address of the selected service in a variable and manually use the stored
value for subsequent calls. There are different approaches to integrate such process-level
aspects more easily into the BP definition.

[12] implements non-functional process-level requirements based on aspect-oriented
programming. The actual implementation of the requirements is provided in separate
components called middleware services. However, the authors also instrument the BPEL
code of the process substantially to achieve the respective functionality. [29] proposes proxy
components. It also requires instrumenting the process definition. In contrast to [12], the
instrumentation does not depend on the particular security functionality to achieve. It just
routes communication through the proxies. This is in line with the processing model of
SOAP that allows for intermediaries, cf. Chapter 3.5 of [20].

Regarding our travel-booking use case, all this means that existing BPMS allow to
express its basic functionality. However, we still need to determine how to adapt its behavior
based on the identity of users.

2.2 Federated Identity Management

Federated identity management enables different organizations and software components
to securely exchange identity information about users. For example, FIM allows all
employees to use the travel-booking application without additional accounts. Services
involved, such as the travel agency, can reliably determine the identity of the traveler. In
this subsection, we review FIM concepts and corresponding technologies, focussing on the
SAML framework [38] and specifications building upon it. OpenID [39] is an important
alternative. However, it is conceptually similar, and SAML is better suited for the web-
services world.

The basic roles in an IdM federation are an asserting party (also called identity
provider, IdP) which makes claims about individuals and a relying party (also called service
provider). The individual whom an identity provider makes claims about is called a subject.
Governance tasks in FIM comprise (a) establishing the relationship between users and
identity providers, i.e., creating accounts, verifying user identities by some real-world
mechanism and providing credentials, and (b) establishing a federation between an identity
provider and a service provider. This second group of tasks implies the creation of a trust
relationship, i. e., define which identity providers are trusted to correctly authenticate users.

6 J. Müller and K. Böhm

Technically, this requires exchanging configurations such as network addresses and public
keys. In what follows, we assume the existence of a federation, i. e., trust relationships
and operational arrangements between service providers and identity providers. We also
assume that accounts of users participating in this environment exist. With respect to our
use case, this means that all employees have an account at an identity provider hosted by
the company. This identity provider is trusted by the company’s BPMS and external service
providers involved.

2.2.1 Types of identity information

There are two kinds of identity-related information that an IdP can provide: Identifiers are
values that identify a user in a given context. Attributes contain some statement about the
user that may be relevant for the service provider (e. g., the type of driver’s license of the
user). For example, the system can use an identifier to attach an instance of the travel-
booking process to a particular employee. Attributes such as the job position are used to
determine whether an employee may approve trips of other employees, or to choose the
booking class.

In SAML, identity providers embed identity information in assertions [30]. Assertions
“carry statements about a principal that an asserting party claims to be true”. Different kinds
of statements carry the information mentioned above: Authentication statements assert that
the user has been authenticated and contain means and time of the authentication. An
attribute statement gives an attribute type and value claimed to be true for the user. Identifiers
are given in the Subject element of the assertion.

2.2.2 Providing Identity Information to service providers

As explained above, the BPMS executing the travel-booking BP and an external travel
agency need to use identity information of the persons involved, i. e., the traveler and
the manager approving the trip. There are different ways how they can get this identity
information from the identity provider, as follows:

BPs either interact with users directly (through the worklist handler) or with web
services, which in turn can act on behalf of users. In both cases it is possible to provide
identity information to the BP: When the user wants to interact with a worklist handler,
he needs to authenticate. As users access web-based services at many different service
providers, they do not want to manage access credentials for all of them. With SSO, the
user is redirected to the IdP, which authenticates him and asserts his identity to the service
provider. The other case is a user authenticating to some other application through his IdP.
The application acquires tokens testifying the authentication of the user and uses them in
web-service calls to other service providers.

SAML supports both ways: The Web Browser SSO Profile [32] allows to transfer
identity information from an IdP to a web frontend of a service provider. It is based on
the Authentication Request Protocol [30] and the HTTP Redirect, HTTP POST and HTTP
Artifact bindings. The SAML Token Profile of WS-Security [34] allows using SAML
assertions as tokens in WS-Security [35] headers of SOAP messages. The service provider
receiving the message has to validate the evidence provided by the caller according to the
method specified in the assertion (e. g., that the sender holds a specific key).

All in all, assertions as defined in the SAML standard are able to carry the identity
information needed to perform travel bookings. The BPMS running the travel-booking BP
can get them either through SSO or special web-service calls carrying SAML assertions.

Identity Business Processes 7

2.2.3 Services Based on Identity Information

The travel-booking BP itself uses identity information for various purposes. For example, it
needs to recognize users throughout the booking process. It also needs to make sure that no
user can approve his own trip. It might use the job status to determine the booking class of
the traveler. Travel booking also has many building blocks identity information is necessary
or useful for. Examples are the flight-booking service of a travel agency, a calendar service
itinerary data is entered into, or a service that authorizes payment based on the user’s consent
expressed through a more secure channel.

In more general terms, we can categorize possible services based on identity information
as follow: With identifiers, one can recognize users in order to provide a stateful service or to
enforce authorization constraints. Attributes allow to personalize the service. For example,
an application can address data for shipping or offer services available only to a certain age
group. Using identity information for access control is addressed in Section 2.4.

According to [24], an identity web service or identity service for short is “an abstract
notion of a web service that acts upon some resource to either retrieve information about
an identity or identities, update information about an identity or identities, or perform some
action for the benefit of some identity or identities.” In other words, the functionality of
an identity web service depends on whom it provides a service for. Examples of such
functionality are: (a) Storing information about the holder of an identity (user). In this case,
the service is able to answer requests for such information. (b) Interacting with the user and
returning his decision, such as the authorization of a payment. (c) Services that can take a
decision based on instructions from a user. In case of business processes, this includes a
service that can declare the consent of the user to terms of service based on a policy or on
his choice at prior occasions.

Services often depend on information provided by other services. This is also true for
identity web services. To achieve their functionality, they have to call other identity web
services on behalf of the identity that has invoked them, by including credentials.

The Liberty Alliance has developed ID-WSF [24], a framework for identity web services.
The ID-WSF Security Mechanisms specification [22] defines the use of tokens for message
authentication, including tokens that specify the invoking identity. The Discovery Service
specification [26] defines a data format to describe (identity) web services and specifies a
service that detects services of a certain type available to a given identity. ID-WSF defines
an SSO Service that lets a system obtain SAML assertions as security tokens.

ID-WSF provides a framework to develop the identity-based services necessary for our
travel-booking example. However, it does not provide any dedicated support to implement
the overall process. It does not address how to integrate this functionality into a BPMS.

2.3 Privacy Enhancements for FIM Systems

One can easily identify situations in the travel-booking use case where the distribution
of identity information should be restricted for privacy reasons. For example, consider a
service where travelers can give feedback about flights. This should only be possible for
actual travelers, but they should not have to reveal their identity to the service. Moreover, it
must be clear for employees which data is transmitted in any situation.

The laws of identity [7] address these and similar concerns. They are recommendations
for FIM implementations. They are the result of intensive discussions within the IdM
research community. Several laws concern privacy aspects of FIM features and respective
user-control mechanisms.

8 J. Müller and K. Böhm

One law requires the system to “only reveal information identifying a user with the user’s
consent” (Law 1). Another one (Law 2) requires only “minimal disclosure for a constrained
use.” Another law requires “unidirectional” identifiers valid only for one service provider
(Law 4), to prevent the combining of identity information provided to different parties. In
BPM, this means isolation between process instances. Finally, the identity system should
provide “unambiguous human-machine communication mechanisms offering protection
against identity attacks” (Law 6). The user experience should be consistent in different
situations (Law 7). The remaining laws (Laws 3 and 5) do not address privacy features of
FIM systems, but compliance and technical interoperability in FIM systems. The laws of
identity represent desirable privacy properties of any FIM system, including a FIM-enabled
BPMS.

In FIM, identifiers valid only in a specific context are known as pseudonyms. They
can be different for each service provider, but otherwise be persistent or even change
for each login session. Interactions between service providers require a mapping between
the different pseudonyms used at each service provider. [30] defines different kinds of
NameIDs, including pseudonymous ones. Core alternatives are globally unique names like
e-mail addresses and X.509 subject names, privacy-preserving persistent identifiers, which
do not have any correspondence to an actual identifier and are specific to a given service
provider, and transient identifiers, i. e., random and temporary values. ID-WSF also defines
an Identity Mapping Service that translates references to users into alternative formats or
identifier namespaces [25]. SAML or ID-WSF do not, however, address directed identifiers
for different BP instances in a BPMS.

By following these guidelines, we can make sure that the FIM-enabled BPMS envisioned
provides an adequate level of privacy for the travel-booking use case and other scenarios.

2.4 Access Control

Controlling access to functionality is an important topic in any application. For example,
only employees may apply for business trips, and only managers may approve these trips.
Moreover, not all booking services may be used for ordering tickets.

In business processes, access control mainly is about controlling who can cause the
execution of process activities. This concerns both human tasks and the processing of
incoming web-service calls. In a FIM context, it is natural to use attributes to achieve this, a
paradigm known as attribute-based access control (ABAC) [46]. ABAC is a generalization
of role-based access control. One possibility to express respective access-control policies
is XACML. It is a well-established de-facto standard. It is based on ABAC and integrates
well with SAML, and, consequently, FIM in general. Therefore we deem it a good basis
for access control. XACML includes a reference architecture and a format for decision
requests and results. The SAML 2.0 Profile of XACML 2.0 [33] defines an extension
of XACML authorization-decision queries, so that SAML attributes can be included in
decision requests. In [19] we have developed a framework, suitable for SOA, for taking
access-control decisions based on different notions of trust. Our Trust PDP also supports
queries that omit the subject (i. e., the service) to discover services that are trustworthy
according to the underlying trust policy.

XACML is not well integrated with BPM technology yet. This will be necessary to
protect the travel-booking application against unauthorized access. Moreover, it is necessary
to prevent an employee from approving his own trip. Multi-session separation of duty [11]

Identity Business Processes 9

is a useful concept to this end. Finally, business processes may call out to trustworty services
only. Existing technology offers no straightforward solution here.

3 Design Requirements

In Section 4 we will determine how different kinds of FIM functionality can be made
available to BPs and integrated into a BPMS. The overall goal of this analysis is the
development of a respective BPMS. The development should accomodate issues such as
privacy and intereroperability. In the following, we formulate design requirements that will
serve as guidelines for the analysis in Section 4.

We distinguish between privacy-related and architecture-related design requirements.
The requirements belonging to the first group (D1 and D2) stem (1) from the laws of identity
stating desired privacy properties of FIM applications (Section 2.3). (2) The architecture-
related requirements stem from best practices in the fields of BPM and SOA, and (3) from
considerations on how to facilitate implementation and system maintenance. Further, [14]
lists principles of service orientation leading to some of the requirements: Services abstract
underlying logic (D3) and are autonomous and composable (D5). Contemporary SOA is
based on open standards (D4).

D1 Isolate BP instances: The laws of identity propose pseudonyms for users that
are different for each service provider, to prevent different organizations from combining
their identity information about a user. The SAML framework provides a solution through
pseudonymous NameIDs different for each service provider. However, a BPMS, acting as
a single service provider, can host different independent business processes. This means
that the BPMS needs to prevent several BP instances running in the same BPMS from
combining their identity information.

D2 User consent: Identity information should be released only with the consent of
the user, expressed unambiguously. When the BPMS provides identity information to BP
instances or to third parties, it has to make sure that the user has consented in such a way.
In a distributed environment, users interact with several parties. An interaction of the user
with one party can trigger data processing in several components belonging to other parties.
Nevertheless, users should have to give consent only once for the same data transfer or
data processing. Therefore, the BPMS is only responsible for requesting consent when one
of its components triggers processing and disclosing identity information. When another
party triggers processing of identity information in the BPMS, the BPMS assumes that the
user has given consent. This does not include the further transfer of that data to other users
or service providers. The underlying assumption is that a component disclosing identity
information is responsible for ensuring that the user has given consent.

D3 Abstraction from technologies: We need to distinguish between a concrete
implementation and the generic FIM concepts. Consequently, we have to provide a concrete
and a generic layer with a lean interface between them. BPM-specific functionality should
only work with the generic view on FIM. This allows to use existing FIM libraries, and to
update them when necessary to follow the evolution of the underlying specifications.

D4 Standards-based architecture: The architecture of our BPMS and its interactions
with the environment should be based on established standards. This includes the WfMC
workflow reference model [17], and the reference architecture of XACML [31].

D5 Clear assignment of functionality to components: We want to assign responsibility
for a security-relevant function to one component, as done by the specifications mentioned

10 J. Müller and K. Böhm

in D4 as well. This reduces complexity and makes it easier to guarantee correct behavior
of the system.

D6 Declarative configuration where feasible: The BPMS offers security functionality
for applications with different security requirements. Consequently, it must be possible to
configure the BPMS so that it fulfills the security requirements of a specific application.
We see two alternatives how to accomplish this: (1) The BPMS provides operations that
an application BP can invoke in order to set configuration options based on its internal
state. This requires explicit, imperative-style code in the application. In addition, the
application bears the burden of keeping the configuration in sync with its internal state.
(2) Declarative-style configuration accompanies the definition of application BPs. When
performing security functionality, the BPMS evaluates this configuration, taking the state
of BP instances into account. – We prefer (2), because this approach allows for better
separation of concerns, i. e., between the application functionality and FIM. In particular,
this eases re-use of existing application BPs, because developers do not need to touch the
BP definition itself when configuring the security. This is in line with policy-driven security
pursued by the WS-SecurityPolicy specification [37]. However, we expect that in some
cases it is not possible to provide generic policy-based solutions because application logic is
closely combined with FIM functionality. For example, an application might select available
offers based on attributes such as age. In such cases, an imperative approach is inevitable.
In summary, we want to provide declarative configuration wherever possible, and interfaces
abstracting from technical details otherwise.

We have formulated two kinds of design requirements. We have the architecture-related
ones under control insofar as they concern our BPMS and its components. Therefore,
the BPMS envisioned must fully implement them. Fulfillment of the privacy-related
requirements does not only depend on our BPMS, but also on the environment it is running
in, and on the BP application it executes. We therefore require that the resulting BPMS
does its part to fulfill them. We have already stated this assumption in general terms in D2.
We will address the privacy issues of the various FIM concepts in Section 4. The design
decisions in Section 5 will take these issues into account. We will assess the resulting BPMS
with respect to the privacy-related design requirements in Subsection 7.1 and state in more
detail the assumptions on the environment so that the system as a whole can fulfill them.

4 Requirements Concerning Support for Individual FIM Concepts

Taking the design requirements from Section 3 into account, we now examine how to
integrate different FIM concepts into a BPMS. The discussion addresses the following
aspects:

• Data flow: When implementing the FIM concept, on which occasions does identity
information enter or leave the BPMS? Which components of the FIM infrastructure
are involved? This affects the interfaces of the BPMS.

• Context used: Which types of BP context, such as the execution history of a BP instance,
have to be considered?

• Lifetime: What is the timeframe over which context and identity information have to
be stored? The alternatives we see are the login session of the user, the lifetime of
a process instance, or a single activity. The answer affects where such information
should be stored.

Identity Business Processes 11

• Need for configuration: Does the functionality work for BPs without explicit security
configuration, or is it necessary to include a specific security configuration in each BP
definition?

• Type of configuration: Is entirely declarative configuration possible (cf. D6), or do
BP definitions have to include special activities that control the functionality? In the
former case, we will have to define how to evaluate the configuration. In the latter case,
we need to figure out how to provide the necessary information to BP instances.

• Basis for configuration: Which elements of the process definitions must the
configuration refer to, and what is the runtime information corresponding to such
references? For example, a separation-of-duty constraint refers to activities in the BP
instance and the users that have performed or will perform these activities. The answer
lets us decide which components should implement the functionality, and how they
get the necessary information.

• Privacy issues: How can the BPMS handle privacy issues (D1 and D2) arising with
respect to the functionality in question?

By analyzing each FIM feature with respect to these aspects, we have been able
to develop the architecture presented in Section 5 in a systematic way. The resulting
architecture and the way it implements FIM functionality is also in line with our design
requirements, as we will demonstrate in Section 7.

The following subsections discuss the FIM concepts presented above in the context
of BPs. Subsection 2.2.2 has covered different ways how identity information can reach
a relying party, i. e., the BPMS in our case. They are covered in Subsection 4.1 (SSO)
and 4.2 (incoming WS calls). Subsection 2.2.3 has addressed different ways of using this
information, covered one by one in Subsections 4.3 through 4.5. Finally, 2.4 has addressed
the combination of FIM and access control. Subsections 4.6 and 4.7 address this in relation
to individual process activities and the entire process, respectively.

4.1 SSO

This subsection discusses how to perform SSO for the user interfaces of business processes.
Data flow: In a BPMS, users interact with the worklist handler to perform human

tasks through a web-based interface. Identity information enters the BPMS when the user
logs into the tasklist handler using SSO. Context used: At this time, information about
BP instances is not yet relevant. The information acquired through SSO is merely stored
for later use. Lifetime: The information acquired through SSO is needed at least for the
duration of the respective SSO session. During this session, the user may view his task list
and perform one or more tasks. When the user has performed a task, the BPMS creates a
relation between the corresponding BP activity and the identity information of the user. The
required lifetime then depends on the purpose the information is used for, as we will assess
below. Configuration: How the BPMS uses the information acquired depends on the tasks
performed and on the corresponding BP definitions. We do not see any need, however, to
configure how to perform SSO itself. Privacy issues: SSO causes the identity provider to
pass identity information to the BPMS. This has obvious privacy implications. Therefore,
the user must be able to trust the BPMS, and he must be aware of any disclosure of his
identity information. As long as the user does not perform any tasks, the BPMS does not
need to provide any identity information to BP instances. Of course, the user has to trust

12 J. Müller and K. Böhm

the BPMS itself not to disclose the information and to protect it against attacks. The BPMS
must make clear which BP instances identity information is potentially provided to when
the user performs a task. Further, the BPMS has to provide access to the privacy policy of
that BP. Moreover, the BPMS could perform automatic checks based on a consent policy
submitted by the user.

4.2 Incoming Identity-WS Calls

In this subsection, we examine how the BPMS deals with web-service calls which it obtains.
Data flow: In the infrastructure envisioned, web-service calls can carry identity

information, pointing to the individual in whose name the caller invokes a service. BPs
orchestrate service compositions and can both invoke and provide web-service interfaces.
When such an interface is invoked, the call contains identity information in addition to the
payload. Context used: Each web-service call invokes a specific activity in a specific BP
instance. The BPMS has to determine this activity based on information in the payload of the
call. To this end, WS-BPEL specifies correlation sets. A correlation set is a named group of
properties that identify a conversation. The values of these properties are initialized by the
first message of the conversation. Subsequent incoming messages are then routed to the same
BP instance. The context needed here is the content of the correlation sets of the running
BP instances. Lifetime: The identity information included in the incoming call relates only
to a single activity. Again, the lifetime required depends on the purpose the information is
used for. For example, if the activity is part of a separation-of-duty constraint, the identifier
is needed until all other activities that are part of the same constraint have been executed. If
the identity information is only used for authorization on the activity level, it is not needed
afterwards. In any case, identity information is no longer needed once execution of the BP
instance has finished. Configuration: Correlation sets, which determine the BP activity and
instance a call is routed to, are a standard feature of WS-BPEL and are not security-specific.
We do not see any need to configure the actual extraction of identity information from the
incoming call. Privacy issues: When a call is received, BP instances directly get identity
information. It would not be convenient for the user if he had to access the BPMS and give
consent. This means that the caller has to make sure the user has consented before making
the call.

4.3 Using Attributes for a Personalized Service

Business processes coordinate web services and human activities. In particular, they
compose web services in order to provide a more complex service for a specific user.
Depending on the application, the attribute values of the user can help to customize the
service to him. For example, a BP for booking a rental car can exclude premium-category
vehicles when the driver’s license of the user is less than two years old. We now discuss
how to facilitate such customizations.

Data flow: The BPMS needs to provide identity information relating to BP activities
(Sections 4.1 and 4.2) to the corresponding BP instances. Context used: Identity information
always belongs to a single user performing tasks in a process instance. A BP instance
can acquire different attributes for the same user with respect to different BP activities.
For example, this can be the case when a user has used different means of authentication.
Accordingly, the activity that has acquired the identity information is important as well,
not only the user whom it belongs to. Because identity information, and in turn the user

Identity Business Processes 13

it belongs to, can be uniquely identified through the activity which has acquired it, no
further context information is required. Lifetime: A BP instance potentially needs identity
information acquired by a specific activity at any point in its lifetime. Configuration:
The actual customizations highly depend on the individual application. For example, one
application might perform different functionality depending on attributes such as age or
insurance status. Another application might include attribute values in calls to external
services. The BPMS does not know how to process the attributes. This completely depends
on the BP definition. It is best specified using imperative process logic, because there are
no generic patterns that can be a basis for declarative configuration. The task of the BPMS
solely is to provide user attributes to BP instances, which process this information according
to the process definition. We will assess different ways of providing attributes in Section 5.
Configuring declaratively which piece of information to retrieve appears feasible. However,
the resulting data needs to be inserted into the data flow of the process, which is connected
to the imperative application logic. To this end, we see a need for explicit activities that
retrieve identity information and make it available to the application logic of the process.
This can be accomplished by letting them refer to another activity in the process, and thus
the identity which has performed that activity. Privacy issues: A user must be aware which
attributes are provided to a BP instance before he triggers the actual transfer. Given this, it
is implied that the instance can use the attributes.

4.4 Recognizing Users in a Stateful Interaction

Another feature envisioned, different from the previous one, is an application that interacts
with a user over several steps of a BP. The point here is not that the application has to behave
differently for different users, but that it has to remember previous interactions with a user.

Data flow: When a user accesses the BPMS a second time, it has to recognize him
based on the identity information provided. Context used: The BPMS must know the
identifiers of users who have performed activities in the past, so that it can compare them
to the one of the user performing the current activity. Lifetime: The interaction of an
application with a user usually covers the entire lifetime of a process instance, so the BPMS
needs to remember identifiers of past activities until the instance has completed. Need for
configuration: Applications have tasks that the same user should perform, so one must be
able to specify which tasks are concerned. This is a kind of process-level authorization
constraint; we consider it below in Section 4.7. Privacy issues: With this functionality,
application BPs can learn that a user is the one who has performed a previous activity.
However, this is necessary to maintain a stateful interaction, so that users can reasonably
expect such a use when they perform an activity and provide identity information to a BP.

4.5 Invoking Services on Behalf of Users

In a framework based on identity web services, BPs invoke such services on behalf of a
user. This enables them, say, to access personal data in a personal data store of the user. To
this end, it is also necessary to find services available to that user and to select one. The
framework has to provide a discovery service that finds services of a given type available to
a specific user. The address of the user’s discovery service is part of the assertion provided
by the identity provider.

Data flow: When invoking services on behalf of users, the BPMS has to use identity
information for two purposes: First, it has to discover services available to a specific user.

14 J. Müller and K. Böhm

Second, it has to add credentials asserting that it makes the call on behalf of this user when
it actually performs the call. Context used: The user on whose behalf the BPMS makes the
call depends on the activity. He must have performed an activity in that process instance
before, so that his credentials are available to it. The BPMS uses this identity information
not only for the actual call, but also to perform service discovery. To this end, it contacts
the user’s discovery service. In summary, the context used by the BPMS is the activity
performing the call, and a previously performed activity in the same BP instance together
with its identity information. Lifetime: The BPMS has to remember credentials of users who
have performed activities in the process instance. Configuration: A characteristic of BPs
is that more than one user can be involved, and that activities triggered by one user might
not be executed immediately, but only after some condition is fullfilled. E. g., approval by
another user might be necessary. Accordingly, it is not immediately clear on whose behalf
the BPMS needs to make a call. For each outgoing call to an identity web service in BP
definitions, it is necessary to configure which identity information to use. This identity
information comes from a previous activity performed by the respective user. It is possible
to refer to a previous activity by specifying its name. We deem this sufficient for a start,
although in the case of conditional executions or loops, more sophisticated mechanisms
become necessary. This is because in such a case different activity instances with the same
name are possible. We leave respective solutions as future work. Privacy issues: When
invoking services on behalf of users, this issue is twofold: First, the BP transfers identity
information to the services invoked. The BPMS alleviates corresponding privacy risks by
taking user preferences into account when choosing services. To achieve this, it determines
the trust level of available services according to the policy of the user. Second, the services
invoked may expose personal data of the user. In principle, the user consents to this by using
the BP, but appropriate control mechanisms are needed. However, note that this applies to
any chaining of service calls and is not BP-specific. In addition, the invoked service may
check whether it trusts the BPMS to convey user consent correctly.

4.6 Activity-level Authorization

This subsection examines how to perform authorization, taking only the current activity
into account. ABAC uses attributes of users to decide whether access on some entity should
be granted.

Data flow: In BPM, ABAC concerns human tasks as well as service calls directed to
process instances in the name of a user. Context used: The BPMS has to use the attributes
associated with the incoming call or provided via SSO to the worklist handler. Lifetime:
The access-control decision can be taken for each such process activity individually. This
means that identity information is used immediately for access control and is no longer
necessary afterwards. Configuration: The attributes required depend on the application, so
each BP definition needs an access-control configuration. A declarative specification, e. g.,
an XACML policy, is fit for this purpose. It specifies the attribute values a user must have
to perform each activity.

4.7 Process-level Authorization

BPs are stateful and can involve several users performing tasks. Authorization needs to
take the relationship between tasks into account. This subsection therefore discusses how to
support such authorization methods in our architecture. The fundamental concepts that cover

Identity Business Processes 15

most application needs are separation of duty (SoD) [21] and binding of duty (BoD) [43].
SoD requires different users for conflicting activities, such as Authorize payment and Issue
cheque, while BoD requires the same user to perform several activities. We always apply
these constraints on complete instances of business processes, i.e., the most refined business
context, using the terminology of [11]. More complex relationships are possible, e. g., based
on attribute values. Their implementation is possible following the same basic approach.

Data flow: As in the previous subsection, process-level authorization concerns human
tasks as well as service calls directed to process instances. Authorization decisions use
identity information that have entered the BPMS for different activities, either through SSO
or incoming web-service calls. Context used: To facilitate SoD or BoD, the BPMS needs to
know who has performed past activities in the same BP instance. Lifetime: The information is
potentially needed through the lifetime of the BP instance. Configuration: The SoD or BoD
constraints that exist between the activities of a BP are application-specific. Accordingly,
BP developers must be able to specify the constraints for each BP definition, i. e., the
activities that must be performed by different users (SoD) or the same user (BoD). A simple
specification would just list activity names. However, this is not sufficient when activities
are executed several times, e. g., in the case of loops. We leave respective solutions as future
work. Privacy issues: The BPMS can only enforce SoD and BoD constraints correctly with
persistent pseudonyms. They allow the BPMS to recognize users permanently.

4.8 Summary

We have systematically explored the implications arising from the integration of FIM
functionality into a BPMS. In particular, we have disclosed how the BPMS processes identity
information, and which context and configuration options are needed. This paves the way
for the design of an extended BPMS in the next section.

5 System Design

In this section, we derive the structure of an extended BPMS for identity BPs, based on the
requirements from the previous section. First, we examine which functionality a generic
FIM layer can perform, in line with D3, and how BPMS components can use this layer.
In line with D5, we then introduce new components of an extended BPMS responsible for
acquiring identity information, storing it, and performing functionality based on it, such as
access control. We define the interactions between the components. In particular, we define
how BP context reaches the components that need it. We also describe the configurations
necessary for BPs running in the extended BPMS.

5.1 Basic Architecture

Figure 1 shows a simplified version of the BPMS architecture in SOA and its interfaces
according to the WfMC reference model [17]. One has to extend it in several ways: Interfaces
2–4 concern the communication of BPs with the outside world at runtime. BPs send and
receive WS calls through Interfaces 3 and 4. They create instances of human tasks in
the worklist handler through Interface 2 and get notifications when instances have been
performed. One has to extend the worklist handler and the WS interface so that identity
information is acquired. The core BPMS has to process that information to provide the FIM

16 J. Müller and K. Böhm

functionality described in Section 4. Interface 1 concerns the deployment of BP definitions.
Security configurations must accompany them, so one has to define the structure of this
configuration and how it is distributed to the components that need it.

Based on the design decisions explained in the following subsections, we will extend this
architecture. Figure 2 shows the extended architecture. New BPMS components have a grey
backgrounds. The diagram is structured into several parts: The main part of the BPMS, the
engine that executes BP instances, is at the top. Below are the other components, including
our new security components. The left part contains component specific to the handling of
human tasks. The right part in turn deals with web services. The space in between contains
components that are common to both groups. Components that are not part of the BPMS
but of the surrounding infrastructure have a dashed edge. They are shown at the bottom of
the diagram.

5.2 Encapsulation of Technology-specific FIM Functionality

Problem: To conform with D3, technology-dependent FIM functionality should be
encapsulated in a separate layer. The BPMS envisioned relies on different kinds of FIM
functionality. We can partition the functionality required on how it deals with identity
information, namely acquiring, outputting or accessing it: (1) Acquisition of identity
information: Technically, identity information is represented as SAML assertions. The
BPMS acquires it either through SSO in case of web-based interactions, i. e., a user
performing human tasks through the worklist handler, or when it receives identity-WS calls
through its web-service interface (Sections 4.1 and 4.2). (2) Outputting identity information:
The BPMS has to use identity information when invoking web services on behalf of users
according to ID-WSF, and when requesting activity-level authorization decisions using [33]
(Sections 4.5 and 4.6). The exact behavior for all this depends on the technical specifications
mentioned. (3) Accessing parts of identity information: For some tasks, the BPMS itself
needs to access parts of identity information. In particular, it needs to access attributes to
provide a personalized service, and identifiers to recognize users in a stateful interaction
and to perform process-level authorization (Sections 4.3, 4.4, and 4.7). Consequently, we
need a FIM layer implementation that can acquire and output identity information while
encapsulating the implementation details, and allows access to attributes and identifiers.
Because several components of the BPMS need access to this functionality (as we will
explain below in more detail), they must be able to share identity information stored in the
FIM layer.

Alternatives: Several libraries that provide the desired functionality are available.
ZXID [3] is a library that implements the ID-WSF protocols. Other possibilities are the
Liberty Open Source Toolkit[6], another implementation of ID-WSF, and OpenSAML [2],
which implements only SAML itself, not the ID-WSF that is built on top of it. Another
alternative would be to implement a suitable library ourselves.

Discussion: In comparison with SAML, ID-WSF specifies additional details facilitating
interoperability. This makes it advantageous to choose a library supporting it. ZXID persists
identity information as ZXID sessions and allows to address it using so-called ZXID
session IDs. It can perform SSO and extract identity information from ID-WSF-compliant
web-service calls. Both functions lead to the creation of a ZXID session, which stays
available until it is deleted explicitly. ZXID can make outgoing ID-WSF calls and request
authorization decisions using identity information from a specified ZXID session. Finally,

Identity Business Processes 17

ZXID provides an interface to access attributes and identifiers. By sharing ZXID session
IDs, components running on the same machine can use ZXID to access identity information.

Conclusion: ZXID is a library under active development and continuously integrates
new features. It also supports ID-WSF. Thus, we deem it the library best-suited for our
needs. Because ZXID stores sessions in the file system, components accessing the FIM
layer must run on the same machine. However, we deem this acceptable for the start. The
alternative, implementing a library supporting distributed setups from scratch, is impractical
because of the amount of work it would require. Our choice therefore is ZXID. An option
for later development is to add support for passing the content of ZXID sessions between
different installations.

Impact on the Architecture: ZXID is used throughout the architecture. First, several
component use ZXID for external communication that uses a special protocol supported
by ZXID. This is indicated in Figure 2 by a small circle at the respective end of an arrow.
Second, those components access identity information (identifiers or attributes) already
stored in a ZXID session. Components are marked by a small star to indicate this.

5.3 External Communication and Acquisition of Identity Information

Problem: FIM functionality is visible at the external interfaces of the BPMS, namely the
user interface for humans and the web-service interfaces. The BPMS has to use special
protocols here to acquire and eventually output identity information. It also has to prevent
unauthorized access to business processes. The question now is where to perform this
functionality.

Alternatives: The first option is to use proxy components. All external communication
of BPs would pass through these proxies. They can selectively block messages, add or
remove data such as identity information, and translate messages to and from protocol-
specific formats. Alternatively, one can instrument BP definitions so that BPs themselves
perform this functionality. We have presented these different approaches to integrate non-
functional concerns into BPs in Section 2.1.

Discussion: Requiring BP instances to handle the respective protocols would require
complex and technology-specific instrumentations. In contrast, assigning this functionality
to dedicated components makes it easier to change the underlying protocol, and to delegate
technology-specific funcionality to ZXID, the library we have decided to use in Subsection
5.2.

Conclusion: We decide to have two dedicated proxies to isolate the BP engine from
the worklist handler and from external web services, respectively.

Impact on the Architecture: The two proxies are called Policy Enforcement Point for
Human Tasks (PEP-HT) and Policy Enforcement Point for Web Services (PEP-WS). This is
because they can enforce security decisions, as we will explain below. They are shown in
the respective blocks of the architecture diagram.

5.4 Access Control

In Subsection 5.3, we have already introduced components that intercept all communication
between the BPMS and its environment. These proxies can selectively block messages for
security reasons. In this subsection, we now have to take several design decision concerning
the access-control part of our architecture. This concerns the partitioning of the system as
a whole into components, namely for policy decisions and policy enforcement, for human
tasks and web services, and for activity- and process-level authorization constraints.

18 J. Müller and K. Böhm

5.4.1 Decisions and Enforcement

Problem: We have to decide whether to separate access-control decisions and enforcement.
Alternatives: We can integrate access-control decisions into the proxies already

introduced, or assign this functionality to one or more separate components.
Discussion: The XACML reference architecture distinguishes between access-control

decisions and their enforcement and assigns them to distinct components, a Policy
Enforcement Point (PEP) and a Policy Decision Point (PDP). The latter takes access-control
decisions by evaluating declarative policies. This distinction is in line with D4 and D5.

Conclusion: We decide to assign access-control enforcement and policy-based access-
control decisions to separate components.

5.4.2 Decisions for Different Kinds of Activities

Problem: The question is whether to use separate PDPs for different kinds of activities.
Alternatives: Alternatives are a separate PDP for human tasks as well as for incoming

WS calls and the respective PEPs, or one combined PDP.
Discussion: For both kinds of activities, access-control decisions are based on the

attributes and on the identifiers of the users who try to perform them. Moreover, process-
level authorization constraints are not limited to one kind of activities.

Conclusion: We use one combined PDP for all activities.

5.4.3 Structure of Policies

In Subsection 4.6 and 4.7 we have addressed the need to authorize the execution of activities
both on the activity level and on the process level. The BPMS should perform both kinds of
authorization based on policies. Depending on the structure of the policies, we see several
options concerning the components responsible for the evaluation of the policies.

Problem: How should policies be structured with respect to activity- and process-level
constraints?

Alternatives: One option is to separate the policy in two parts. The alternative is to allow
mixing two kinds of constraints. With both options, one can express the same constraints,
but the latter option allows to group constraints of both kinds. Application developers may
find this more intuitive. Process-level constraints are expressed as predicates over tuples of
activities. We have to decide what kind of constraints we allow.

Discussion: The respective parts of the security specification are usually independent,
see Chapter 8 of [5]. Having two independent policy parts allows their independent
evolution. In particular, this is important because languages for stateless activity-level
policies are widely established and not BP-specific, whereas languages for process-level
constraints are not yet standardized to the same extent. Most approaches for process-level
constraints use only the identifiers of users performing activities, not their attributes. It is
possible to keep a history of previous access-control decisions and refer to it in XACML
policies [11]. However, this requires specifying each constraint in the policy multiple times
for each activity concerned. Thereby, these constraints become less clear and it is more
difficult to change the policy.

Conclusion: We will use policies with two separate parts. We deem process-level
constraints that do not take attributes into account sufficient. In particular, we support the
predicates = and 6=, which represent binding of duty and separation of duty.

Identity Business Processes 19

5.4.4 Structure of the Policy-decision Point

Problem: Having decided to separate the activity- and process-level-parts of policies, the
question now is how to assign the evaluation of these parts to components.

Alternatives: We have to decide whether to implement a monolithic PDP or use separate
components responsible for the two different parts of the policy.

Discussion: The evaluation of activity-level constraints is stateless. In contrast, process-
level constraints take the execution history into account. On the one hand, a monolithic
PDP can have better performance, because it only needs to access identity information once
and saves communication overhead. On the other hand, a modular PDP is more flexible:
First, one can change the policy language. Second, the stateless part of the policies heavily
depends on the concrete technology. For example, when identity information is provided as
SAML assertions, a policy can refer to the authentication method used, which is expressed
in a way specific to SAML. Being able to plug in an existing implementation is favorable
regarding D3.

Conclusion: We choose a modular implementation, because we deem flexibility more
important.

Impact on the Architecture: There are two PDPs in our architecture: (1) A PDP for
the evaluation of BP-specific process-level constraints, called Policy Decision Point for
Business Processes (PDP-BP). See the middle part of the architecure diagram. (2) For the
stateless part, any existing PDP compliant to the SAML profile for XACML [33] can be
used. – The PDP-BP library uses ZXID library functions to invoke a stateless PDP, shown
at the bottom of the diagram, using the SAML/XACML profile. ZXID can be configured to
automatically relay the attributes acquired through SSO or an incoming ID-WSF-compliant
web-service call to the external PDP. Both PEPs request access-control decisions from the
PDP-BP.

5.5 Connecting Identity Information with Activities

Identity information, whether acquired via SSO or incoming WS calls, is connected to a
specific execution of an activity in a specific BP instance. The BPMS uses it immediately for
authorization of this activity (Sections 4.6 and 4.7), but also needs it later on, e. g., to invoke
services on behalf of the user or to perform process-level authorization of other activities.
In this subsection, we decide where to store the relationship between activities and identity
information, and how to establish this relationship in the first place.

5.5.1 Storing the Relationship between Identity Information and Activities

Problem: Which component or components should store the relationship between identity
information and activities?

Alternatives: This relationship can be stored separately or together for human tasks
and WS calls.

Discussion: On the one hand, establishing the relationship between identity information
and an activity works quite differently for human tasks and WS calls, as described below.
However, this does not preclude storing the information in one place once the relationship
has been established. On the other hand, process-level authorization constraints can involve
activities of both kinds. It is easier to evaluate them when the necessary information is stored
in one place.

20 J. Müller and K. Böhm

Conclusion: We decide to use one component for storage, because it is necessary to
combine the information for human tasks and web-service calls anyway to evaluate process-
level constraints.

Impact on the Architecture: The new component is named Policy Information Point
for Business Processes (PIP-BP), shown in the middle part of the architecure diagram. It
provides identity information belonging to past activities to the PDP-BP. Other components
submit these relationships to be stored in it, as explained below.

5.5.2 Human Tasks

In a traditional BPMS, the execution of human tasks works as follows: An activitity in a
BP instance creates a task instance by sending a request to the worklist handler. When a
user has completed the tasks, the worklist handler sends a response to the BP instance. Our
envisioned BPMS in turn has to handle the identity information of users acquired through
SSO, and has to decide whether a user may perform a task based on that information.

Example 5.1 (Creation of a human-task instance) In our travel-booking example, the
request to create a human task comprises the following: The name of the human-
task definition (“Travel Authorization”), the payload for the human task (i. e., the
name of the traveler, the destination and date of the trip, and the reason for the
trip), an endpoint for the callback such as http://bp-engine.example/ode/
processes/TravelBooking/AuthorizeTravel.Callback/, the name of the
activity (“Authorize Travel”), and the ID of the BP instance (e.g., “BP2342”).

Problem: Establishing the relationship between identity information and activities has
two facets: The first one is how to establish this relationship in order to perform access
control for the current activity. This includes defining which components are involved in
access control. The second one concerns establishing this relationship before it is stored in
the PIP-BP. These facets are independent because in the first case it is not yet clear whether
the activity will actually be performed. Moreover, it is possible that different components
will establish the relationship in the two cases.

Alternatives: One possibility is that the worklist handler does not directly access any
component of the BPMS, except for the PEP-HT. This means that it sends all access requests
to the PEP-HT, which in turn forwards them to the PDP-BP. The PEP-HT also registers
completed human tasks in the PIP-BP. The alternative is that the worklist handler does
perform some or all of these calls itself.

Discussion: Both alternatives require changes to the worklist handler. However,
decoupling it from the PDP-BP and the PIP-BP requires changes that are less specific to
our architecture. In any case, we have to extend the worklist handler to support SSO and to
request an access-control decision before allowing users to see or perform tasks. Were the
worklist handler to call the PDP-BP directly, it would have to know which activity in which
process instance had created a task, and support the protocol for such requests.

Conclusion: We decide to extend the worklist handler only minimally, and assigning
additional functionality to the PEP-HT. This means that the PEP-HT forwards access-control
requests and registers completed tasks.

Impact on the Architecture: The worklist handler is extended with SSO functionality
by using ZXID. A circle in the diagram indicates this. For each human-task-instance, the
PEP-HT creates an ID, stores it and the endpoint reference of the callback in the PIP-BP,
and forwards the request to the worklist handler. Users can login into the worklist handler

Identity Business Processes 21

once using SSO and then perform several tasks. Here, authorization has to occur twice:
When a user views his worklist, the worklist handler must know whether to include a given
task. When a user actually performs the task, authorization is required again because of
constraints. Think of a BoD constraint between two tasks. As soon as a user has performed
one of them, other users are no longer allowed to perform the other task. Whenever a
task is completed, the worklist handler includes the correspoding ZXID session ID in the
response. The PEP-HT stores it in the PIP-BP before forwarding it to the BP instance.
The architecture diagram shows an arrow between the PEP-HT and the worklist handler.
It stands for creation and completion of human tasks and for authorization requests. the
PEP-HT is also connected to the PDP-BP (for authorization requests) and the PIP-BP (to
store which identity information belongs to completed tasks).

5.5.3 Web Services

For incoming web-service calls, the BPMS has to perform access control before they trigger
an activity in a BP instance.

Example 5.2 (Incoming WS call requiring authorization) We now assume that
managers do not approve trips by human tasks. Instead, there is a dedicated application
where they can view which employees are absent due to business trips, annual leave, illness,
etc. The travel-approval process notifies this application about new requests for business
trips using a web-service call. Managers view the list of open requests at some later time,
and approve trips based on the overview provided by the application. The application
sends the results back to the BP as a web-service call, using the credentials of the manager
who approved the request. If these approvals were not subject to access control, it would
be easy to send fake approvals to the travel-booking BP, so that business trips would be
booked without approval.

Problem: As explained in Section 4.2, BPEL provides correlation sets to determine the
context of the call, i. e., the activity and BP instance the call is directed to. Normally, it is
the BP engine that performs correlation. However, the BPMS needs this context to perform
authorization, and to establish the relation between identity information and an activity, to
store it in the PIP-BP.

Alternatives: We see several approaches to address this problem: (1) Re-implementing
correlation in the PEP-WS. (2) Instrumenting the process, activities receiving calls in
particular: The idea is to insert a process fragment that sends the ID of the BP instance
and the name of the receiving activity to the PEP-WS. With this information, the PEP-WS
can perform authorization and send the authorization result as a reply. If authorization is
denied, the received message is discarded, and the receiving activity is started again. (3)
Close integration of the PEP-WS with the BP engine to perform correlation without actually
delivering the message. (4) A minimal solution supporting only calls that start new BP
instances. For such calls, no correlation is necessary. However, the PEP-WS must learn the
ID of the newly created instance. This is possible using a simple process instrumentation.

Discussion: We deem (1) impractical. It would require re-implementing a substantial
part of the functionality of the BP engine in the PEP-WS. To accomplish this, the PEP-WS
would need process state currently not available to it, such as activities waiting for calls. (3)
makes our extensions contingent on a particular BP engine, contrary to our design objectives.
(2) is reasonable. (4) is fit for a large class of applications and easiest to implement.

22 J. Müller and K. Böhm

Conclusion: Our pragmatic solution is to start with (4) and leave (2) as future work.
Appendix A features a detailed illustration of the process instrumentation necessary for (2).

Impact on the Architecture: The PEP-WS receives WS calls using ZXID, indicated
by a small circle in the diagrams. The PEP-WS then sends a request to the PDP-BP. The
request contains the activity and BP instance in question and a ZXID session ID referring
to the identity information. If the request is granted, the PEP-WS forwards the call to the
engine, which creates a new BP instance. This new instance sends its ID to the PEP-WS,
which registers the identity information for the start activity of that instance in the PIP-BP.

5.6 Outgoing Web-Service Calls

For outgoing web-service calls made on behalf of users (Section 4.5), the BPMS first has to
determine which service to call. Then it has to make the call. To this end, it has to include
the correct credentials. Because we rely on unidirectional identifiers valid for one service
provider only, the BPMS has to map the identifier of the user valid for itself to one valid for
the provider of the service invoked.

ZXID provides the technical parts of the required functionality: Based on a ZXID
session ID, it can discover services of a given type available for the respective user, perform
identity mapping, i. e., get credentials with identifiers valid for the service invoked, and
perform the actual call according to the ID-WSF protocols. ID-WSF distinguishes between
the sender identity (the user on whose behalf the call is made) and the invocation identity
(the service provider actually performing the call). It also provides for the identification
of intermediaries when service invocations are chained, see Sections 4.3 and 7.3 of [23].
The invoked service can perform access control according to its own policies, taking into
account the invocation identity and the intermediaries that were part of the call chain.

5.6.1 Determining the Identity

Problem: The BPMS first has to determine in whose name it has to perform the call, i. e.,
which identity to use.

Alternatives: We see two main alternatives to solve this problem: (1) When activities
are performed, the BP instance gets a token representing the identity information acquired.
(2) For each activity invoking a web service (ai for short), a policy has to specify another
activity (ar for short), either a human task or an activity that receives a WS call. The BPMS
then uses identity information from ar to perform ai.

Discussion: While (1) is more flexible, (2) is in line with D6. It does not require
changing existing BP definitions; a small additional configuration is sufficient.

Conclusion: Given the arguments just provided, we choose Alternative (2).
Impact on the Architecture: There has to be a component evaluating the additional

configuration. We assign this task to the PDP-BP because it involves policy evaluation, even
though the decision is not for access-control purposes. The PEP-WS asks the PDP-BP which
credentials to use for ai. The PDP-BP determines ar and looks up the identity information
belonging to the the last execution of ar in the PIP-BP.

Example 5.3 (Web-service call using identity information) In our earlier example, ar is
a human task where the user confirms the flight details. ai is an activity that invokes a
flight-booking service. ai is executed shortly after ar. The user knows that performing ar
will trigger the booking, so he agrees to the use of his credentials to perform the call to the
booking service.

Identity Business Processes 23

5.6.2 Performing Service Discovery

Problem: When the PEP-WS knows which identity information to use, it can perform
service discovery. To select a service, it has to take user preferences into account. We assume
that these preferences have been coded explicitly as personalized trust policies.

Alternatives: We see two alternatives to deal with these policies. (1) The component
that stores the policies (policy store, PS) and Trust PDP are separate components. (2) The
Trust PDP knows the trust policies of users. Note that, in a distributed setting, users should
be able to choose a Trust PDP. Thus, it depends on the user which Trust PDP is used.

Discussion: (1) discloses the trust policy to the BPMS, (2) does not. In addition,
(2) is more interoperable, because there currently is no common trust-policy language in
widespread use.

Conclusion: Our current implementation is similar to (1). The reason is that we use an
existing Trust PDP that supports dynamic policies passed at runtime, but does not store user
policies itself. At the moment, we only use one central Trust PDP. This means that users
cannot choose among several ones. An advantage is that a central Trust PDP has access to
more user feedback and can thus deliver more accurate trust rankings.

Impact on the Architecture: This design decision leads to the inclusion of two external
components in our architecture. The PEP-WS retrieves user policies from the Trust-Policy
Store and then retrieves trust scores from the Trust PDP. See Algorithm 1.

5.7 Providing Attributes to BP Instances

Problem: BPs must be able to access attributes of users to provide a personalized service
(Section 4.3).

Alternatives: There are different ways to accomplish this [15]. They include (1)
extending the interfaces of the BPMS so that all attributes available are provided once the BP
instance receives a call, or a human task is completed, or (2) letting BP instances explicitly
fetch the attributes they need.

Discussion: The interface of (2) is simpler. In addition, (1) would require changing
interfaces and transferring attribute values even when the BP does not need them. There
is no need for BP instances accessing identifiers. In particular, one can ensure that two
tasks are performed by the same user by specifying a binding-of-duty constraint, which is
evaluated by the PDP-BP.

Conclusion: We choose to implement Alternative (2). This option is very flexible and
allows BPs to access identity information regardless of how it has entered the BPMS.

Impact on the Architecture: We provide an Identity-Information Access Service BPs
can invoke in order to retrieve attribute values. They have to specificy their instance ID and
the name of the activity that has aquired the identity information.

Example 5.4 In our travel-booking example, we assume that managers are allowed to
travel business class, while other employees are limited to economy class. Thus, the BP has
to determine the job role and pass the corresponding booking class to the flight-booking
service. We assume that the identity provider passes the employment status as an attribute.
To this end, the business process sends a request to the IdI Access service which includes the
BP-instance ID, the name of the activity (“Initiate booking”), and the name of the attribute
(“job_role”). The IdI Access service replies with the value of the attribute as it has been
acquired by the specified activity. Depending on the value, which is either “manager” or

24 J. Müller and K. Böhm

“regular_employee”, the BP chooses the booking class and includes it in the call to the
flight-booking service.

5.8 Configuration

In the previous subsections, we have insinuated that the components of the system need to be
configured to perform the functionality required. We now summarize which configurations
are needed and determine how to make them available to those components of the BPMS
that need them.

In Section 4, we have examined the necessary configurations for FIM functionality used
in a BPMS. Earlier in Section 5, we have determined the components responsible. This has
resulted in the following types of configuration used by our BPMS envisioned:

Activity policy: Access-control policies for activities, consisting of two parts, namely
for the authorization on the level of individual activities (activity-level constraints) and
constraints involving several activities (process-level constraints). The separation into two
parts suggests itself given that the two parts are independent and evaluation works quite
differently. It is similar to the approach in [4]. – Note that trust policies of users are not part
of the configuration of the BPMS. This is because the BPMS just retrieves them from a
policy store and forwards them to the Trust PDP. An obvious way to express activity-level
constraints are XACML policies. These policies need to specify which subjects are allowed
to perform which actions on which resources. XACML uses attributes to describe all these.
More explicitly, the resource is specified by using activity names as a resource attribute.
Unlike in [4], the policy is not limited to roles for describing subjects. Instead, an arbitrary
combination of attributes can be used, which allows more flexible policies. Solutions for
process-level constraints include BPCL from [4], or a simple set of BoD and SoD constraints
each referring to two or more activities.

Example 5.5 (Two-part access-control policy for activities) The first part, i. e., activity-
level constraints, can look as follows. Because XACML is very verbose, we state this part
in natural language. The translation into XACML is straightforward.

• For resources with activity_name = "Initiate Booking" or
activity_name = "Choose Airline" and action “perform”, require
subject attribute employment_status = "regular".

• For resources with activity_name = "Authorize Travel" and action
“perform”, require subject attribute job_role = "manager".

The second part, i. e., process-level constraints, is a set of BoD and SoD constraints:

• BoD(“Initiate Booking”, “Choose Airline”): The employee initiating the travel-
booking process must confirm the details of his own trip.

• SoD(“Initiate Booking”, “Authorize Travel”): No employee, not even a manager, may
approve his own trip.

Identity-selection policy: For each activity performing an outgoing WS call, the identity
information to use has to be given by specifying the activity that has acquired it. This is just
a set of pairs of activity names, such as {(Confirm Booking,Book Flight)}. This indicates
that the identity information acquired by the “Confirm Booking” activity is to be used for
the web-service call in the “Book Flight” activity.

Identity Business Processes 25

We now describe how the configurations just described can be deployed to the BPMS.
When a BP definition is deployed to the BP Engine, the identity-selection policy has to be
deployed to the PDP-BP, using the identifier of the BP definition in the BP Engine. There
are alternative ways to provide the activity policy to the stateless PDP: (1) It is deployed to
the PDP-BP, which provides it with every authorization request. This is not possible with
every PDP implementation and can be inefficient. (2) The policy part relating to individual
activities is deployed directly to the stateless PDP. Requests made by the PDP-BP to the
stateless PDP include the name of the BP definition so that the stateless PDP can determine
the policy applicable. – Our current approach is based on (1), but we plan to switch to (2)
for efficiency reasons.

6 Implementation

As mentioned above, we rely on the ZXID library [3] for functionality. ZXID is written in
C but provides bindings for several languages, including a Java binding based on the Java
Native Interface (JNI). Its functions for performing SSO or processing incoming WS calls
can be integrated into J2EE servlets as well as other technologies for serving HTTP requests.
We use our own implementation of the worklist handler, because existing implementations
are either closed source, not mature enough or too complex. The human-task definitions of
our implementation are basically form descriptions written in XML, where form elements
can be marked as input, output, or both. Our worklist-handler implementation automatically
generates WSDL interface descriptions for each human task.

The PEP-WS and PEP-HT are implemented as J2EE servlets, making it easy to integrate
ZXID. As the BP Engine, we use Apache Ode. We currently have to instrument BP
definitions manually before deployment, replacing calls to external web services and the
worklist handler with calls to the PEP-WS and PEP-HT, respectively. Our PDP-BP uses
the PERMIS PDP [1] as its underlying stateless PDP. The PERMIS PDP allows passing
the policy at run-time, a feature intended to be used with so-called sticky policies. The
interfaces the PEP-HT, PIP-BP and PDP-BP provide to other components are implemented
as SOAP web services. The PIP-BP uses a MySQL database for storage.

7 Evaluation

In order to evaluate the architecture created, we pursue a twofold approach. We first assess
it with respect to the design requirements presented in Section 3. We then demonstrate in a
case study that it is feasible to model a business process that uses the functionality.

7.1 Assessment

In Section 3, we have introduced a number of design requirements. We can group them into
privacy-related (D1 and D2) and architecture-related ones (D3 through D6). We will now
assess our architecture with respect to these design requirements by means of plausibility
arguments.

D1 requires preventing BP instances from combining identity information. We allow
BP instances to access any identity attribute of users which could serve as quasi-identifiers.
Therefore, BP definitions have to be validated before deployment to ensure that they adhere

26 J. Müller and K. Böhm

to their privacy policy. In particular, BPs may only correlate identity information from
different sources when necessary to achieve the purpose of the BP and specified in that
policy.

According to D2, identity information should be released only with the user’s consent.
Regarding this requirement, it is necessary to distinguish which entity is responsible for
requesting the user’s consent. When an external caller invokes a web-service interface of
the BP, or when the user logs in via SSO through an identity provider, the transfer of
identity information is initiated by a component that is not part of the BPMS. We see this
component (the caller or the identity provider, respectively) responsible for ensuring that
the user has consented to this transfer. The BPMS itself is responsible when it provides
identity information to BP instances or performs calls to external web services that include
identity information. Identity information included in web-service calls is directed to a
specific BP instance. The BPMS provides it to this BP instance without further checks.
Identity information acquired through SSO is only provided to a BP instance when the user
performs a task in that BP instance. Our BPMS does not yet provide fine-grained control
of the attributes that the BP instance can access. For example, the travel-booking BP can
access the drivers_license attribute even when the trip does not include usage of a
rental car. A respective solution should leverage application semantics to be practical. We
sketch the requirements on such a solution below. When the BPMS invokes a web service, it
checks that the service is trustworthy according to the user’s policy (Subsection 5.6.2). The
identity provider issues an assertion containing the user’s identity information specifically
for the service invoked. This means that it can control which information to release. – In
summary, we see two major opportunities for improvement: (1) Identity providers should
have a mechanism to control which identity information they disclose. (2) The BPMS should
allow user to control which attributes a BP instance will be able to access. A possible way
to achieve this is annotating BP definitions with the set of attributes they potentially access,
computing the intersection with the user’s attributes, and displaying a message when a user
is about to perform a task.

D3 postulates abstration from the actual technologies used. Firstly, we achieve this
by building the architecture around generic concepts of identity management and access
control: The fundamental concepts used, namely identifiers, attributes, and the transfer
of identity information in service calls and user interactions, are independent from any
concrete specification such as SAML. Secondly, the architecture uses a dedicated software
layer to encapsulate the details of the technology actually used Subsection 5.2). This
layer has a sufficiently generic interface based on technology-independent concepts. It
provides high-level interfaces for acquiring identity information through web-service calls
and user interactions, accessing it using generic concepts such as identifier and attribute,
and outputting it for access control or web-service calls.

D4 requires a standards-based architecture, and D5 aims at clearly specifying the
component responsible for a certain piece of functionality. The standards relevant for
our architecture are the WfMC reference model for BPM functionality, and the XACML
reference architecture for its access-control functionality. Following existing standard
architectures is also one important step towards the a clear assignment of functionality
to components. Following the WfMC reference model makes sure that the functionality
needed is implemented for all interfaces of the BPMS. In line with the XACML reference
architecture, the tasks of policy enforcement, policy decision, and storing information
needed to this end are assigned to dedicated components (Subsections 5.4.1 and 5.5.1).
Our architecture specification also defines whether common or distinct components are

Identity Business Processes 27

responsible for similar functionality regarding human tasks and web services, and specifies
how they interact (Subsections 5.5.2 and 5.5.3).

According to D6, declarative means of configuration should be preferred over explicit
control of FIM functionality by individual BPs. The architecture employs declarative
policies for access control and determining the identity to use in web-service calls
(Subsection 5.8). These policies are independent from the BP definition itself, so it is easy
to adapt them when more powerful specification mechanisms become available. When BPs
need attribute values for application-specific purposes, they have to fetch them explicitly. We
conclude that the BPMS uses declarative policies wherever this is possible in an application-
dependent way.

In summary, the BPMS fulfills the architecture-related design requirements. Regarding
the privacy-related requirements, there is room for improvement, but this requires the
development of a mechanism that allows to specify the identity attributes needed by an
application, or the integration of an existing one. This is mainly implementation work.
Because it has an impact not only on our BPMS, but also on BP-based applications, a
conceptually sound specification needs to be developed.

7.2 Case Study

In the following, we provide a case study based on the travel-booking example. We
demonstrate how the corresponding security specification is evaluated during BP execution.

The example BP definition, dubbed P , is a linear sequence of four activities. a1
(Initiate booking) receives incoming WS calls that starts the BP. The interface comprises
a destination, travel dates, and a reason as input. a2 (Authorize travel) is a human task,
which displays destination, travel dates, reason, and the name of the traveller, and asks for
authorization. a3 (Choose airline) is a human task for the traveler. a4 (Book flight) is a call
to a web service provided by a travel agency.

This BP definition is accompanied by the following security configuration: (1) Activity
level authorization: a1 and a3 require an attribute employment_status with the value
regular. a2 requires an attribute position with the value manager. (2) Process-
level authorization constraints: {BoD(a1, a3),SoD(a1, a2)} (3) Identity selection for the
outgoing WS call:{(a3, a4)}. – the BPMS executesa4 in the name of the user who performed
a3.

We now list the steps in an exemplary execution of P together with the component
interactions they cause:

• John, a regular employee, causes a WS call to the interface of a1 to start the booking
process for a trip to London on June 20–22 to visit a trade fair. The PEP-WS intercepts
this call. It uses ZXID to extract the IdI. Since a1 is the initial activity of P, the PEP-
WS creates a new BP-instance ID, P1. It then asks the PDP-BP for authorization. The
PDP-BP in turn sees from the policy that a1 is subject to a BoD as well as to a SoD
constraint. It looks up the IdI for a2 and a3 in the PIP-BP. The result is that these
activities have not yet been performed. Accordingly, the constraints cannot be violated.
The PDP-BP then calls the stateless PDP, passing the IdI of John. Because John is a
regular employee, authorization is granted. The PDP-BP forwards this decision to the
PEP-WS, which then calls a1 in the BP Engine, passing the new ID P1, and stores the
connection of John’s IdI to a1 in the PIP-BP.

28 J. Müller and K. Böhm

• The BP Engine starts execution of a2, sending a request to the PEP-HT. The PEP-
HT assigns the ID h1 to the new human-task instance, and registers it in the PIP-BP,
together with P1 and a2. It then forwards the request to the worklist handler. Bob, a
manager in John’s department, then logs into the worklist handler via SSO, using the
company’s IdP. ZXID handles the SSO process and stores Bob’s IdI. For all available
tasks, including h1, the worklist handler requests an authorization decision from the
PEP-HT. The PEP-HT determines that h1 had been created by a2 in P1 by asking the
PIP-BP. Then the PEP-HT sends an authorization request, which contains Bob’s IdI,
a2, and P1, to the PDP-BP. The PDP-BP’s policy states that a SoD conflict with a1
exists. It looks up the IdI for a1 in the PIP-BP and determines that a1 was performed
by a different identity, namely John. It then requests authorization from the stateless
PDP. This is granted because Bob is a manager. The worklist handler gets the PDP-
BP’s decision via the PEP-HT and shows h1 in Bob’s worklist. Bob chooses h1 and
completes it, authorizing John’s trip. Because new authorization constraints might
apply due to activities executed in parallel, the worklist handler requests authorization
again, which is granted the same way as before. The PEP-HT registersh1 as completed,
with a pointer to Bob’s PII. The worklist handler sends the completed task (i. e., Bob’s
decision) to the PEP-HT. The PEP-HT determines the callback address for h1 from
the PIP and forwards the result to the BP Engine.

• The BP Engine starts execution of a3, sending a request to the PEP-HT. The PEP-HT
assigns the ID h2 for the new human-task instance, and registers it in the PIP-BP,
together with P1 and a3. It then forwards the request to the worklist handler. John then
logs into the worklist handler via SSO, using the company’s IdP. ZXID handles the
SSO process and stores John’s IdI. For all available tasks, including h2, the worklist
handler requests an authorization decision from the PEP-HT. The PEP-HT determines
thath2 had been created by a3 inP1 by asking the PIP-BP. It then sends an authorization
request, which contains John’s IdI, a3, and P1, to the PDP-BP. The PDP-BP’s policy
states that a BoD relation with a1 exists. It looks up the IdI for a1 in the PIP-BP and
determines that a1 was performed by the same identity.It then requests authorization
from the stateless PDP. This is granted just like for a1. The worklist handler gets the
PDP-BP’s decision via the PEP-HT and shows h2 in John’s worklist. John chooses
h2 and completes it, choosing Universum Airways. The worklist handler requests
authorization again, which is granted the same way as before. The PEP-HT registers
h2 as completed, with a pointer to (the new copy of) John’s PII. The worklist handler
sents the completed task to the PEP-HT. The PEP-HT determines the callback address
for h2 from the PIP and forwards the result to the BP Engine.

• The BP Engine starts execution of a3, a request to book a flight to London with
Universum Airways around June 22-24. Its message to the PEP-WS includes a4, P1

and the service type, i.e., “flight booking”. The PEP-WS asks the PDP-BP which
identity to use for the call. The policy states that the identity from a3 shall be used, so
the PDP-BP looks up who has performed a3 in P1 in the PIP-BP. It sends the result,
a pointer to John’s IdI, to the PEP-WS. The PEP-WS now performs service discovery
using ZXID and discovers two flight-booking services, b1 and b2. It then retrieves
John’s trust policy from his trust-policy store. It calls the Trust PDP with this policy to
retrieve trust scores for b1 and b2. According to his policy, John trusts b2, but not b1.
The PEP-WS accordingly calls b2, using John’s credentials. ZXID performs identity
mapping automatically.

Identity Business Processes 29

One can see that a simple BP together with a simple policy for it lead to many actions
performed by the BPMS in the background. This would be very tedious for BP designers
to specify explicitly. Our BPMS in turn performs the required actions automatically. This
facilitates using FIM for business processes and improves reliability with respect to identity
management.

7.3 Discussion of possible extensions

Regarding some concepts, the architecture described in this article features only basic
solutions. We acknowlege that there are more sophisticated solutions available for specific
aspects in isolation and described in the literature. In the following, we sketch approaches
to integrate them with our architecture. However, a full integration is outside the scope of
this article.

7.3.1 Delegation of Authority

One of our requirements is that the business process must be able to invoke services on
behalf of users (Section 4.5). This requirement, also known as delegation of authority, has
been studied in depth in the literature. According to [9], an important requirement on the
conceptual level is the fine-grained decision of which privileges, attributes, or roles are to
be delegated. In addition, delegation should be subject to an express delegation policy. The
authors propose a delegation-of-authority web service, which is invoked by users and issues
delegation certificates. These certificates can be issued for an arbitrary period of time, can
be used an unlimited number of times, and can be revoked at any time.

In contrast, we rely on the service discovery specified in ID-WSF. When a user logs into
the BP engine using SSO, the IdP supplies a token that allows using the discovery service
and the identity mapping services. When a BP needs to invoke a service with privileges of the
user, it possibly has to use the discovery service in order to find a concrete service endpoint.
It then retrieves a token from the identity mapping service which allows the invocation of
the desired service on behalf of the user. This delegation, however, is not controlled by a
separate component, and there are no explicit policy checks.

In order to use the above-mentioned delegation service with our architecture and
determine which privileges users need to delegate, BP designers would have to specify the
following: Which kinds of services does the BP need to invoke on behalf of users? Because
concrete service endpoints might only be known after service discovery, they cannot be
part of the specification. Which data does the BP access, and which actions does it perform
on that data? For which period should the delegation be valid? However, this is difficult
to determine in general. If the BP takes longer, it might be blocked until the user renews
the delegation. Furthermore, it can be difficult to exactly determine the privileges required
by the BP when it starts. On the other hand, users might be reluctant to delegate privileges
that might not be needed. One possible solution would be to let BP designers specify the
required privileges separately for different branches of the BP. However, this would require
repeatedly asking the user for delegation, and the BP would be blocked until the user actually
performs it. From a user interaction perspective, we argue that the delegation service must
be able to handle delegation requests by the BP, which the user can then confirm using, say,
a web interface.

30 J. Müller and K. Böhm

7.3.2 Generic security architecture

We have described an architecture based on policy-enforcement points for the interfaces
of a BPMS and a dedicated PDP-BP which can handle the state information to be used
in access-control policies for BPs. There exist generic proposals for security enforcement
architectures. One such architecture is [10]. It separates the application-independent
and application-dependent functionality of the PDP into different components, providing
generic handling of, say, obligations and sticky policies. It also provides for a Master PDP
aggregating the decisions of multiple PDPs. This current article in contrast deals with the
special security requirements of BPs dealing with identity information, but does not propose
a generic solution applicable to all kinds of applications. For example, the access-control
policy defined for the current BP could be combined with sticky policies for the different
user data accessed in the BP. However, this would exceed the scope of this article. Mapping
the concepts developed here to a more generic architecture is therefore left as future work.

8 Related Work

[15] proposes extensions for a BPEL engine to let processes access the content of security
tokens. This approach only considers web-service interactions and requires BP definitions
containing explicit activities that access the information. Our approach also addresses user
interactions (through human tasks). It covers the whole range of FIM concepts and allows
declarative configuration of respective mechanisms. In fact, [15] is one possibility to give
processes access to profile information contained in tokens (see Section 5.7).

[18] presents an approach for identity and access management in SOA. Their policy
language can express RBAC models with ressources, operations, permissions and entities
called context. It also supports SoD, but only in the static form. Scopes in BPEL processes are
annotated with the role required and the context valid in that scope. Similarly to our approach,
the annotated BPEL processes are automatically transformed to enforce the policies. To
this end, the process retrieves user name and password of an eligible user from a credential
service and acquires a SAML assertion for the user, including the current role and context,
from an identity provider. They refer to this process as single sign-on (SSO), but, in line with
established terminology, login credentials are (only) handled by a trusted identity provider
when performing SSO [8].

The assertion is then added to the headers calls to web services. The services invoked
check the user’s permission based on their own policy. Our approach is more realistic with
respect to how BPs acquire identity information and credentials, because we adhere to
widely-used protocols specified to this end. It it also more generic because we cover the
orchestration of identity-based services, while [18] uses identity information only for access
control. In addition, unlike [18], our approach has the important features of addressing
dynamic authorization constraints (BoD/SoD) (while the static versions are also possible)
and performing access control based on attributes asserted by the IdP of the user. We
accomplish this by leveraging FIM features and technology systematically.

The draft WS-BPEL Extension for People (BPEL4People) specifies the integration
of human activities (here called people activities) into business processes. It defines
authorization only in an abstract way. Users eligible for a people activity are determined
using so-called people queries. The specification does not define the format of people
queries. History-based constraints can be implemented manually in BPEL. BPEL4People

Identity Business Processes 31

does not provide any support for policy-based specification and enforcement of such
constraints.

Bertino et al. [4, 5] describe the RBAC-WS-BPEL authorization model. The model
consists of a role hierarchy, permissions to execute activities, an assignment of permissions
to roles, and constraints expressed as relations that must hold for the users executing two
given activities. The permissions are coded as XACML. For the constraints, a special
language called BPCL is introduced. The authors also define a simple architecture that
includes a policy-enforcement point for user requests and a policy-decision point that
stores the two different kinds of policies. BPCL supports arbitrary predicates as constraints.
However, evaluation of the predicates is not addressed. The architecture does not address
the integration with identity management.

Paci et al. [40] extend this architecture in order to assign roles based on identity attributes
in a privacy-friendly way. They introduce a component called identity manager that stores
cryptographic certificates attesting the user’s attributes. Based on a cryptographic protocol
performed by the enforcement service and a client component running on behalf of the user,
the enforcement service can determine whether the user has the attribute values required to
perform a certain task. This approach does not address privacy with respect to identifiers
when enforcing constraints. We consider additional identity-management features, such
as web-service calls using identity information. In contrast to [40], we only consider
privacy issues arising from the use of identifiers, but not issues caused by using attributes.
Concerning authorization, the approach could be integrated into our architecture. However,
[40] does not suffice when attribute values are used for other, application-specific purposes.
This is because the solution in [40] only considers attributes used in authorization policies.

9 Conclusions and Future Work

We have motivated and described an architecure that combines federated identity
management and business-process management, based on standards in the two domains.
We have described how this architecure is embedded in the overall architecture of a trust
network. Finally, we have explained our implementation of this architecture using the ZXID
library and other open-source components. Hence, we offer native support for identity BPs.
This allows to easily create applications that adapt their functionality to the individual
user. Our case study shows that the functionality provided by our BPMS would be hard to
implement manually.

Future work will address mechanisms that provide more privacy and allow more user
control over disclosure of identity information, e. g., filtering identity information sent to
third parties based on process- and user-specific settings. We will also investigate how one
can provide identity information to BP instances.

Acknowledgement

The research leading to these results has received funding from the Seventh Framework
Programme of the European Union (FP7/2007-2013) under grant agreement no 216287
(TAS3 - Trusted Architecture for Securely Shared Services).

32 J. Müller and K. Böhm

References

[1] Modular PERMIS Project. http://sec.cs.kent.ac.uk/permis/.

[2] OpenSAML website. https://wiki.shibboleth.net/confluence/display/OpenSAML/.

[3] ZXID website. http://www.zxid.org.

[4] Elisa Bertino, Jason Crampton, and Federica Paci. Access Control and Authorization
Constraints for WS-BPEL. In Proceedings of the IEEE International Conference on
Web Services, pages 275–284, 2006.

[5] Elisa Bertino, Lorenzo Martino, Federica Paci, and Anna Squicciarini. Security for
Web Services and Service-Oriented Architectures. Springer, 2009.

[6] Conor Cahill. Liberty Open Source Toolkit.

[7] Kim Cameron. The Laws of Identity. www.identityblog.com/?p=352, 2006.

[8] David Chadwick. Federated Identity Management. In Foundations of Security Analysis
and Design V, pages 96–120. 2009.

[9] David W. Chadwick. Securing Web Services: Practical Usage of Standards and
Specifications, chapter Dynamic Delegation of Authority in Web Services. IGI Global,
2008.

[10] David W. Chadwick and Kaniz Fatema. A privacy preserving authorisation system for
the cloud. J. Comput. Syst. Sci., 78(5):1359–1373, September 2012.

[11] D.W. Chadwick, Wensheng Xu, S. Otenko, R. Laborde, and B. Nasser. Multi-session
separation of duties (msod) for rbac. In Data Engineering Workshop, 2007 IEEE 23rd
International Conference on, pages 744–753, 2007.

[12] Anis Charfi, Benjamin Schmeling, Andreas Heizenreder, and Mira Mezini. Reliable,
Secure, and Transacted Web Service Compositions with AO4BPEL. In Proceedings
of the European Conference on Web Services, pages 23–34, 2006.

[13] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services
Description Language (WSDL) 1.1. W3C Note, World Wide Web Consortium,
[Online], 15 March 2001.

[14] Thomas Erl. Service-Oriented Architecture – Concepts, Technology, and Design.
Pearson Education, 2005.

[15] Heiko Görig. Context-based Access Control for BPEL (Engines). Diplomarbeit,
Universität Stuttgart, 2009. (in German).

[16] David Hollingsworth. Workflow Handbook 2004, volume 10, chapter The Workflow
Reference Model 10 Years On.

[17] David Hollingsworth. The Workflow Reference Model. WfMC Specification TC00-
1003, Workflow Management Coalition, 1995.

Identity Business Processes 33

[18] Waldemar Hummer, Patrick Gaubatz, Mark Strembeck, Uwe Zdun, and Schahram
Dustdar. An integrated approach for identity and access management in a SOA context.
SACMAT ’11, pages 21–30, 2011.

[19] K. Böhm et al. A Flexible Architecture for Privacy-Aware Trust Management. Journal
of theoretical and applied electronic commerce research, 5, 2010.

[20] Ramarao Kanneganti and Prasad Chodavarapu. SOA Security. Manning Publications
Co., 2008.

[21] D. Richard Kuhn and David F. Ferraiolo. Role-Based Access Control (RBAC):
Features and Motivations. 1995.

[22] Liberty Alliance Project. Liberty ID-WSF Security Mechanisms Core Version 2.0,
2006.

[23] Liberty Alliance Project. Liberty ID-WSF Security Mechanisms Core (Version 2.0),
2006.

[24] Liberty Alliance Project. Liberty ID-WSF Web Services Framework Overview Version
2.0, 2006.

[25] Liberty Alliance Project. Liberty ID-WSF Authentication, Single Sign-On, and
Identity Mapping Services Specification, 2007.

[26] Liberty Alliance Project. Liberty ID-WSF Discovery Service Specification, 2007.

[27] Eve Maler and Drummond Reed. The Venn of Identity: Options and Issues in Federated
Identity Management. IEEE Security and Privacy, 6:16–23, 2008.

[28] M. Menzel, I. Thomas, and C. Meinel. Security requirements specification in service-
oriented business process management. In ARES ’09.

[29] Jens Müller and Klemens Böhm. The Architecture of a Secure Business-Process-
Management System in Service-Oriented Environments. In ECOWS 2011.

[30] OASIS. Assertions and Protocols for the OASIS Security Assertion Markup Language
(SAML) V2.0, 2005.

[31] OASIS. eXtensible Access Control Markup Language (XACML) Version 2.0. OASIS
Standard, February 2005.

[32] OASIS. Profiles for the OASIS Security Assertion Markup Language (SAML) V2.0,
2005.

[33] OASIS. SAML 2.0 profile of XACML v2.0. OASIS Standard, 2005.

[34] OASIS. Web Services Security: SAML Token Profile 1.1. OASIS Standard, 2006.

[35] OASIS. Web Services Security: SOAP Message Security 1.1 (WS-Security 2004).
OASIS Standard, 2006.

[36] OASIS. Web Services Business Process Execution Language Version 2.0, 2007.

[37] OASIS. WS-SecurityPolicy 1.2. OASIS Standard, 2007.

34 J. Müller and K. Böhm

[38] OASIS. Security Assertion Markup Language (SAML) V2.0 Technical Overview,
2008.

[39] OpenID Foundation. OpenID Authentication 2.0, 2007.

[40] Federica Paci, Rodolfo Ferrini, and Elisa Bertino. Identity attribute-based role
provisioning for human ws-bpel processes. In Proceedings of the 2009 IEEE
International Conference on Web Services, ICWS ’09, pages 535–542, Washington,
DC, USA, 2009. IEEE Computer Society.

[41] Andreas Pfitzmann and Marit Hansen. A terminology for talking about privacy by
data minimization: Anonymity, Unlinkability, Undetectability, Unobservability, and
Identity Management. Technical report, August 2010. v0.34.

[42] Alfonso Rodríguez, Eduardo Fernández-Medina, and Mario Piattini. A BPMN
Extension for the Modeling of Security Requirements in Business Processes. IEICE -
Trans. Inf. Syst., E90-D, 2007.

[43] Kaijun Tan, Jason Crampton, and Carl A. Gunter. The Consistency of Task-Based
Authorization Constraints in Workflow Systems. 17th Computer Security Foundations
Workshop, IEEE, 2004.

[44] Christian Wolter and Andreas Schaad. Modeling of Task-Based Authorization
Constraints in BPMN. In Business Process Management, 2007.

[45] World-Wide Web Consortium. SOAP Version 1.2 Part 1: Messaging Framework
(Second Edition), 2007.

[46] Eric Yuan and Jin Tong. Attributed Based Access Control (ABAC) for Web Services.
In ICWS 2005, pages 561–569, Los Alamitos, CA, USA, 2005.

BP Engine

BP Instance BP Instance BP Instance

Modeling Tool

WS interface

Worklist handler
BP Instance BP Instance External WS

Interfaces for SACMAT-Paper

Interface 1

Interface 2

Interface 3/4

Figure 1 Basic Architecture of a BPMS

Identity Business Processes 35

 E
xe

cu
ti

o
n

 E

n
gi

n
e

B
P

 In
st

an
ce

B

P
 In

st
an

ce

B
P

 In
st

an
ce

P
EP

-H
T

W
o

rk
lis

t
H

an
d

le
r

Human Tasks

P
IP

-B
P

P
D

P
-B

P

Id
P

P

D
P

Tr

u
st

P

D
P

P
EP

-W
S

Web Services

Tr
u

st
-P

o
lic

y
St

o
re

Id
I A

cc
es

s

W
S

cr
ea

te
/c

o
m

p
le

te

h
u

m
an

 t
as

ks

ac
ce

ss
 a

tt
ri

b
u

te
s

in
co

m
in

g/
o

u
tg

o
in

g

 W
S

ca
lls

Id
I f

o
r

ac
ti

vi
ty

Id
I (

p
as

t
ac

ti
vi

ti
es

)

SS
O

au

th
z

(s
in

gl
e

ac
ti

vi
ty

)
ge

t
tr

u
st

 r
an

ki
n

g

u
se

r
p

o
lic

ie
s

in
co

m
in

g/

o
u

tg
o

in
g

W

S
ca

lls

Id
P

se
rv

ic
e

d
is

co
ve

ry

Figure 2 Architecture of a BPMS with FIM Support

A Performing Correlation for Incoming WS Calls

In Subsection 5.5.3, we raised the question how the PEP-WS can determine the BP instance
and activity an incoming WS call is directed to. This is necessary so that the PEP-WS can

36 J. Müller and K. Böhm

Algorithm 1 PEP-WS performing a call to an identity WS
Require: activity, instanceId, svctype, payload
identity ← PDPBP.getIdentity(activity, instanceId)
services← Discovery.getServices(svctype, identity)
maxScore← −∞
bestService← null
policy ← PolicyStore.getPolicy(identity)
for all service in services do
score← TrustPDP.getScore(service)
if score > maxScore then
maxScore← score
bestService← service

if maxScore < 0 then
return error

result← bestService.call(payload)

perform authorization before the message is actually processed by the BP instance. We
sketched a way to accomplish this, and now describe it in more detail.

r1: <receive>
Payload P

r1: <receive>
Payload P,
Msg ID m1

r1‘: <invoke>
m1, i1, r1

r1‘‘: <receive>
Authz?

Authz?

Figure 3 Original <receive> activityr1: <receive>
Payload P

r1: <receive>
Payload P,
Msg ID m1

r1‘: <invoke>
m1, i1, r1

r1‘‘: <receive>
Authz?

Authz?

Figure 4 Fragment inserted for the <receive> activity

Consider a process with a <receive> activity r1, which receives a message with
payload P (Figure 3). For each such activity, the BP definition is instrumented as follows:

• The interface of r1 is extended, so that the incoming message also contains a message
ID m1 created by the PEP-WS.

• After r1, an <invoke> activity r′1 is inserted, which calls the PEP-WS to inform it
about the BP instance (i1) and activity (r1) that m1 was directed to.

Identity Business Processes 37

• Another <receive> activity r′′1 is inserted after r′1. It retrieves the authorization
decision from the PEP-WS. If authorization is granted, execution of the BP instance
continues normally. If not, execution of r1 starts again.

Figure 4 shows the result of the instrumentation in a form similar to BPMN. The
corresponding instrumentation in WS-BPEL is straightforward. Assume r1 originally looks
as follows:

<receive partnerLink="PL1" portType="PT1"
operation="sendToPL1" variable="v1" name="r1" />

This is transformed into the following:

<sequence>
<repeatUntil>
<sequence>
<receive partnerLink="PL1Ext" portType="PT1Ext"
operation="sendToPL1" variable="v1ext" name="r1" />

<assign><!-- Copy m1, i1 and r1 into
a variable context --></assign>

<invoke partnerLink="PEPWS"
portType="PEPWSContextNotification"
operation="informAboutContext"
inputVariable="context" />

<receive partnerlink="PEPWS"
portType="PEPWSContextNotificationCallback"
operation="sendAuthzDecision"
variable="authzDecision" />

</sequence>
<condition>
<!-- authz granted -->
</condition>

</repeatUntil>

<assign>
<!-- copy payload part of v1ext into v1 -->

</assign>
</sequence>

