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Abstract Trends in modern multicore architecture design requires software develop-
ers to develop and debug multithreaded programs. Consequently, software developers
must face new challenges because of bug patterns occurring at runtime and due to
the non-deterministic behavior of multi-threaded program executions. This calls for
new defect-localization techniques. There has been much work in the field of defect
localization for sequential programs on the one side and on the localization of specific
multithreading bugs on the other side, but we are not aware of any general technique
for multithreaded programs. This paper proposes such an approach. It generalizes data
mining-based defect-localization techniques for sequential programs. The techniques
work by analyzing call graphs. More specifically, we propose new graph representa-
tions of multithreaded program executions as well as two mining-based localization
approaches based on these representations. Our evaluation shows that our technique
yields good results and is able to find defects that other approaches cannot localize.

Keywords Software-defect localization - Multithreaded programs - Call graphs -
Applied data mining - Graph mining

1 Introduction

Problem Statement For some years, chips with several cores have been standard even
in desktop computing. Multicore chips facilitate significant speedups of programs by
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multithreaded implementations. However, software developers now are confronted
with issues not known from sequential programs. The behavior of multithreaded pro-
grams is non-deterministic, and thread-specific constructs introduce new kinds of bugs
[4,21]. Multithreading defects may result in defective orderings of events. Many new
tools have been developed to cope with these issues. Some support the manual search
for defects, but do not localize them [2,23]. On the other side, there are localization
techniques that pinpoint positions in the source code that are defective. Race detectors
[8,25,27] detect race conditions by analyzing the locks of a program. However, their
localization capability is limited to defects resulting in wrong sequences of memory
accesses caused by the wrong use of parallel program-language constructs. We argue
that this is too narrow—in particular, defects in multithreading programs can also
originate from non-parallel constructs. Example 1 illustrates this.

Example 1 A method without any parallelism decides on the maximal number of
threads to be created in the next step. A defect in this method can lead to a wrong
number of threads, e.g., one that exceeds the maximum number of threads that is
possible. O

The example illustrates that multithreading-specific defects are not necessarily
caused by multithreading constructs. This is important, as the problem addressed
in this paper is to locate multithreading defects, including this kind of defect. The
defect in the example itself is nothing new and is rather unimportant for the point of
the example. A distinctive feature of our technique is its generality, e.g., that it also
takes sequential parts of the code into account. It makes use of data mining, which is
well suited to localize those defects. This is because the reasons for defects are even
more versatile in parallel programs. An approach that identifies anomalies in general,
without being too specific, is particularly useful. For instance, it should be able to find
defects like the one in the example.

Problems Encountered To address a wide variety of defects, a defect-localization
technique has to build on a general model. Various data-mining based techniques use
dynamic graphs as input [5,7,20] that represent the program flow (see Sect. 3). They
are recorded during program execution. The techniques require both correct and failed
executions. Localization is based on mining for characteristics of the graphs corre-
sponding to correct executions, but not to failed ones, and vice versa. Such techniques
have shown to be well suited for defect localization in sequential programs [7,20]. Par-
allel programs, however, require a more sophisticated representation than conventional
ones. The order of events in a multithreaded program i.e., the interleaving, changes
for repeated executions. Representations must take this into account. It is unclear how
this ordering should be modeled in the graphs. We will describe several possibilities
to do so. Another open question is if and how threads should be modeled. It then
has to be investigated how the model affects localization quality and performance. A
problem when analyzing parallel programs is that instrumentation is needed to trace
executions. Instrumentation may change the interleaving and make interleavings dis-
appear. Finally, we will propose two localization techniques, one relying on traditional
data mining and one that additionally uses frequent subgraph mining (FSGM). FSGM
detects all subgraphs in a set of graphs that are embedded in at least a certain number
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of graphs. This minimal number of occurrences is abbreviated with minsup (short for:
minimal support), a parameter of the algorithm. With FSGM, more sophisticated rela-
tionships might be revealed. But this has not been investigated before quantitatively.
Part of the FSGM algorithm is to check the occurrence frequency of candidates against
the database. To facilitate this check, a subgraph isomorphism test is needed, which
is NP-complete [13].

Contributions This paper is the first in-depth investigation of data-mining based defect
localization in multithreaded programs. From a data-mining perspective, it is a descrip-
tion of a significant application, studying how an important real-world problem can
be tackled by means of (known) data-mining methods, and how good these solu-
tions are from an application viewpoint. More specifically, our contributions are as
follows:

— New Graph Representations. We discuss how to model threads and interleavings
in call-graph extensions. We propose three different graph representations that
extend vanilla call graphs, but have different kinds of temporal edges in addition,
to model the interleaving.

— Use of a Noise Maker. A noise maker is a tool that produces interleavings arti-
ficially. To our knowledge, this is the first study using a noise maker during the
trace of executions to generate the data-mining input. Using a noise maker has two
reasons: First, an instrumentation is needed to trace executions. This affects the
interleaving. A noise maker can produce interleavings that have disappeared due
to a conventional instrumentation. Second, noise makers produce executions with
different interleavings systematically.

— Localization techniques. We present two localization techniques to derive the sus-
piciousness of methods. This is an estimation how likely a method is to contain
a defect. Both techniques use information gain to quantify how discriminative a
method invocation is with respect to the outcome of the execution (correct, failed).
The two techniques are different in that one makes use of frequent subgraph min-
ing (FSGM), to gain additional knowledge about the context of a call, while the
other one does without this step.

— Analysis of Manifestations. Farchi et al. [10] survey concurrent bug patterns. To
understand the value of the graph representations proposed here, we analyze how
these bug patterns manifest themselves in the different representations.

— Evaluation of Precision. We evaluate how precisely our techniques locates defects,
using the multithreading-specific, comprehensive benchmark described in [9]. One
result of our experiments is that our approach identifies the defective method in five
of eight programs right away and performs well in the other cases. We stress that our
approach has identified one defect not mentioned in the benchmark documentation.

Clearly, any FSGM-based approach faces scalability issues. In the context of defect
localization however, previous work has covered a hierarchical approach to defect
localization that uses FSGM and scales well [7]. There, the localization takes place
at different levels of detail (e.g., methods vs. classes vs. packages). That work is
orthogonal to this current one and could be combined with it. However, since our
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approach without such extensions has turned out to work well on the benchmark
programs, we have not seen the immediate need to evaluate this combination.

Paper outline: Sect. 2 introduces our localization techniques, Sect. 3 the new graph
representations. Section 4 analyzes how different bug patterns manifest themselves
in the graphs just introduced. Section 5 evaluates the approach. Section 6 discusses
related work, and Section 7 concludes.

2 Localizing Defects with Call Graphs

Data mining on program executions represented as graphs has been successful to
localize defects in sequential programs [3,5,7,20]. In line with [30], we distinguish
between failure, infection and defect. A failure is an observable incorrect output of
a program. Infections are invalid program states. A defect is a position in the source
code where a change is necessary to make a failure disappear. We now explain the
localization techniques used in this paper. Our approach is dynamic. This means that
the program analyzed has to be executed, and information on the execution is collected.
In a nutshell, the idea behind our approach is to execute the program repeatedly, and
to identify differences in the runtime behavior between correct and failed executions.
Executing the program may reveal particularities of executions which have failed.
Static approaches in turn do not execute the program. Thus, static approaches are
typically not able to analyze runtime behavior. Some kinds of defects, e.g., wrong
loop boundaries, are very hard to detect with static approaches, because it would be
necessary to understand the program. Turning to race detectors, static approaches
suffer from a high number of false positives [25]. Hence, will describe two dynamic
techniques in the following we.

2.1 Overview

Algorithm 1 is an abstract description of the two dynamic techniques studied in this
paper. The first step (Line 3) is to record the graphs. This is done by instrumenting
a program and tracing executions. In contrast to program-execution tracing, as in,
say, [16], we use an instrumentation based on ASPECTJ. The instrumentation over-
head will make some interleavings disappear, but we counter this effect by means
of a noise maker. See Sect. 3.3 for details. Tracing can be done on different levels
of abstraction, e.g., basic blocks or methods. This paper uses the method level. This
abstraction level determines the granularity of the output. If we used an instrumenta-
tion that recorded the trace on basic block level, we could output basic blocks instead
of methods. Of course, this would lead to significantly higher instrumentation over-
head.

Each method is represented as a vertex, each call as an edge. Note that certain
defects can not be seen directly at this level, e.g., a wrong variable assignment.
Such defects may cause infections that affect the graph, but this is not guaran-
teed.
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We assume that an oracle is available that can decide if an execution is failed or
correct, Line 4. For most software projects, tests are available that can serve as such
an oracle. Localization techniques often need failed and correct executions, because
they rely on differences between them. The traced graphs have to be reduced (Line
5), i.e., transformed to graphs that are much smaller. This is because the original
graphs easily become too large to be mined. We explain our reduction technique
in Sect. 2.2. Finally, we calculate a list of methods sorted by their suspiciousness
P. To derive the suspiciousness, we do data mining. A software developer now
can inspect the methods of the list top-down, until he has identified and fixed the
bug.

Algorithm 1 The localization process
G=0
: for all test € test suite do
g < trace of execution of test
assign test outcome o(g) € { failed, correct} to g
G + G U reduce(g)
end for
calculate P(m) for each method m
return list of methods sorted by P(m)

QR NP W

2.2 Weighted Totally Reduced Call Graphs

Program executions may have a huge number of method calls. The graphs recorded
initially represent each method call as a distinct edge, referred to as call edge (— ),
with a new sink vertex. Each vertex is labeled with the fully qualifying name including
its parameters. All existing mining-based localization approaches that use graphs do
a reduction. We for our part use the weighted total reduction [5], which has yielded
good results for sequential programs.

Definition 1 (Weighted Total Reduction) The weighted total reduction notated as
Rioral_w maps an unweighted graph g to a weighted graph g’. All vertices vl, v2
with the same label in g are mapped to exactly one vertex v’ in g’. If there is an edge
(1, v) in g then there is an edge (¢/, v’) in g’. An edge in g’ has a weight that counts
how many times an edge in g has been mapped to it.

The modeling of recursion is straightforward: In the R;pq1 4 reduced call graph,
recursion manifests itself in the form of a self-edge.

2.3 Deriving Suspiciousness

In order to derive the suspiciousness, we do feature selection based on the well-known
information gain (InfoGain). The InfoGain of an attribute quantifies how well its
values allow to discern between the values of a class attribute. In our case the class
attribute is the outcome of the oracle (correct or failed). The process of deriving the
suspiciousness is similar to [6]. In contrast to [6] however, we do not use gain ratio
for the feature selection, but the well-known information gain (InfoGain). Gain ratio
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is able to deal with data sets where the distribution of class-attribute values is biased.
However, since we balance this distribution (see Sect. 5), gain ratio does not yield any
advantage over InfoGain.

The input of the information-gain algorithm is a table, as follows: Each row repre-
sents an execution of the program analyzed. There is a column for each edge of any
graph. The graph class (i.e., correct or failed) is stored in the last column. The other
cells contain the weight of the respective edge (column) in the graph. If the graph does
not have this edge, then the value in the cell is 0. Calculating the information gain is
an unsupervised process, and it is calculated for the entire data set without a training
set. We calculate the InfoGain for each column except for the last one. Let D be the
set of tuples of the table, and let C be the set of classes, i.e., C = {correct, failed}
in our case. m is the number of classes in C, C;, fori = 1,...,m is aclass in C.
C; p is the set of tuples that have class C;. The probability for a tuple in D belong-
ing to class C; is p;, which is approximated by p; = |C; p|/|D|. Info(D) (Eq. 1)
quantifies the expected information needed to classify a tuple. Info(D) is known as
entropy.

Info(D) == pilog,(p) ()
i=1

In order to classify a tuple, the data set can be split as described in the fol-
lowing: Let {ai, a2, ..., a,} be the values of attribute A. D can be split in v sub-
sets {D1, D3, ..., Dy} so that D; contains tuples with value a; for A. Ideally this
split would yield an exact classification. But in general, the class values of the
tuples in D; will not be uniform. This means that additional information is needed
to exactly classify a tuple. A measure of this additional information is Infoga,
Eq. 2.

v

D.
Infos(D) =" %Info(Dj) 2)
j=I

Finally, the information gain InfoGain is calculated as follows.
InfoGain(A, D) = Info(D) — Infoa(D)

We interpret the information gain as suspiciousness. Methods can call several other
methods, so there usually is more than one edge with the same source vertex. For this
reason, we set the suspiciousness of a method as the maximum of all information-gain
values of outgoing edges. It is intuitive to assign this value to the source of an edge (the
call site), as the sink is the method called and is not active in the call. We report the
whole edge (not only source vertices) to the software developer to provide background
information for the ranking. It can happen that the information gain is the same for
several methods. In this case we use a second ranking criterion. It is the number of
lines of code (LOC) of Method m in descending order. The number of LOC is a simple
criterion to estimate suspiciousness [24].
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2.4 Obtaining Contexts with FSGM

Various localization approaches [3,5,20] apply FSGM to derive suspiciousness. The
approach in Sect. 2.3 in turn only relies on call frequencies. But this may not be
sufficient. Example 2 illustrates why FSGM can be helpful.

Example 2 Think of a call a — b that happens in all executions, be they correct or
not. Its frequency is unrelated to the outcome. But the call can still be suspicious in
a specific context: Imagine a second edge a — c¢. Method c sets a global Boolean to
False, and this leads to a state where b should not be called. In the context of the call
a — c, the call @ — b must not be present and should be suspicious. O

The reason to apply FSGM is to discover contexts such as the edge a — c¢ in the
example. In Example 2, a subgraph including both calls is more frequently contained
in graphs representing failed executions. The difference in the frequencies will be
helpful when calculating the suspiciousness.

2.5 Deriving Suspiciousness with Contexts

Table 1 shows the input for the information-gain based feature selection with contexts.
As before, each row of the table represents an execution of the program analyzed, and
the last column contains the class of the graph. The other columns are the set of all
edges in all frequent subgraphs, Lines 2—6 in Algorithm 2. The first column is edge
a — b in Subgraph 1, the third column is the same edge but in Subgraph 2. In case
a subgraph is not contained in a graph, all corresponding cells are 0, as for SG1 and
Graphy in Table 1. The next step of the algorithm is to derive the suspiciousness
of methods. Line 9 calculates the information gain. The remainder of the algorithm
derives the suspiciousness based on the information gain. Line 10 is needed, because
an edge usually appears in different contexts. Analogously to the variant without
contexts, we assign the maximum of all information-gain values of outgoing edges to
a method (Line 14).

Table 1 Feature table with

contexts SG1 SGq SGo
ntex a—b a—c a—b cee Class
Graphy 2 1 2 e failed
Graph 0 0 4 s correct
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Algorithm 2 Deriving Suspiciousness

Require: frequent subgraphs of execution traces SG
1: E(SG) ={}
: for all frequent subgraph sg € SG do
for all edges e € sg do
E(SG) + E(SG)U{e}
end for
end for
: assemble feature table; rows: executions; columns:
E(SG) U graph class; cells: edge weights
: for all edges e € E(SG) do
9:  calculate InfoGain(e)
10:  P(e) = maz{InfoGain(e)le = (u,v) € E(SG),
Vui,vi,t € [I,n] iur = =up Avi =+ =0vn}
11: end for
12: S={}
13: for all methods m do
14:  P(m) = maz{P(e)le = (m,mz)}
15: S+ P(m)us
16: end for
17: return suspiciousness values S

NP w

[0

For the evaluation we used the CloseGraph [29] implementation of the ParSeMiS!
suite. In comparison to other FSGM algorithms, CloseGraph does not output all
frequent subgraphs, but only closed ones. A subgraph g is closed if there is no super-
graph of it with the same support. The closed frequent subgraphs still contain the
information that is of interest for localization. At the same time, the result set is rela-
tively small. FSGM has been applied for defect localization in sequential programs,
but it has not been verified if it improves the localization for multithreaded programs.

Calls that are part of the infection may manifest themselves in a graph. It is likely
that methods belonging to these calls have a high rank. Such a ranking may be helpful
for a software developer, because the infection leads him to the defect. However, any
method ranked higher than the defective one makes the result worse. It will be an
interesting outcome of the evaluation to see to which degree infections influence the
result.

3 Call Graphs for Multithreaded Defect Localization

In this section we first study how threads can be represented in graphs. We then pro-
pose three representations of multithreaded programs. Finally we highlight important
technical issues.

3.1 Representation of Threads in Graphs

It is important to represent the interleaving in the graphs, because multithreading bugs
may affect it. The interleaving of a multithreaded program is the order of operations.
This includes the information which thread an operation is executed in. Because of the

1 http://www2.informatik.uni-erlangen.de/research/ParSeMisS.
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Fig. 1 Work load

dynamic allocation of resources, the executing thread is not known a priori. We say
that an operation is associated with a thread in a specific execution if it is executed
within the thread. The following paragraph features an illustration.

Thread Association Figure 1 shows excerpts of graphs for two different executions (a)
and (b). A label contains the name of a method and the ID of the executing thread. The
executions have different thread associations, leading to different weights. Suppose
that one execution is correct, and the other one has failed. While Fig. 1a, b are different,
this does not necessarily have to do with the class of the graphs. Example 3 illustrates
a situation leading to this kind of noise.

Example 3 Suppose that the threads T1 and T2 are of the same class. Their job is to
pull work from a queue. In case of Fig. la the load is balanced between the threads.
Figure 1b shows an execution where the methods a and b are executed three times in
thread T2 and only once in thread T1. The reason why executions swap to thread T2
could be that thread T1 has been suspended, and for this reason T2 was instructed one
more time, say T2 was faster. O

It seems natural to model thread IDs as vertex labels. But since our localization
technique relies on differences in the graphs, differences as in Fig. 1 might wrongly
be assumed to be suspicious, while, they are due to noise. The takeaway from the
discussion is that it is not obvious how to deal with thread association when it comes
to the graph representation.

Thread-IDs The assignment of thread IDs is non-deterministic, i.e., they are not valid
over several program runs. So it is not possible to use them to compare different graphs.
Another problem when labeling vertices with thread IDs is that threads can lead to
repeated substructures [6]. Often similar tasks are assigned to more than one thread,
as in Fig. 1. With the representation used there, a pattern appears repeatedly. This
increases the graph size, but does not provide additional helpful information. All this
means that there is no obvious way how to model thread IDs. The following subsection
proposes alternative ways to deal with threads in the modeling.

3.2 Evaluation of Graph Representations
The previous section has shown that modeling multithreaded program executions as

graphs is not trivial. We now introduce three new notions to address the specifics of
multithreaded software, namely next-call, inter-thread and intra-thread relations.
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Definition 2 (Next-Call Relation) Two methods u and v have a next-call relation iff
(i) # and v have the same call site, and (ii) the call to v happens immediately after the
call to u without any call from any other call site in between.

Definition 3 (Inter-Thread Relation) Given two calls ¢1: x; — y1, ¢2: x2 — Y2,
there is an inter-thread relation between y; and y» iff (i) ¢1 and ¢ happen immediately
after each other, without any other calls in between, and (ii) x1, x are not in the same
thread.

Definition 4 (Intra-Thread Relation) There is an intra-thread relation between two
methods y; and y; if there are calls ¢ : x; — y1, ¢2 : X2 — y2 such that (i) ¢, c2
happen immediately after each other, and (ii) x; and x, are in the same thread.

We now propose graph representations for each relation. These graphs are exten-
sions of total reduced call graphs. Some characteristics apply to all three graphs. For
these points we use the term temporal and use the subscript sepp.

Notation 1 (Temporal Edges) The realization of next-call relations (inter-thread
relations, intra-thread relations) is the next-call edge (inter-thread edge, intra-
thread edge). We represent these edges as u — . v (next-call edge), u —i; v
(inter-thread edge), and u — i, v (intra-thread edge) for vertices u, v. An edge weight
models how often the respective relation has come into existence in the execution that
the graph represents.

Note that temporal edges model the point of time of the invocation of the sink.
To distinguish edges of Ry w from temporal edges, the different types of edges
have different labels. Each graph in Fig. 2 shows an excerpt of the same execution.
(al), (a2) show next-call graphs, (b1) and (b2) inter-thread graphs and (c1), (c2) intra-
thread graphs. The graphs are call graphs extended by the corresponding temporal
edge (dotted). For simplicity we have omitted initial steps: Execution of the main
method and initialization of two threads are not shown. The graphs (al), (bl) and (c1)
are correct executions, and (a2), (b2) and (c2) are failed executions. Suppose that the
defect behind the failed executions is as follows: The sequence of calls to a and b
should have been protected, but it is not. Method invocations, such as calls to a and
b in the example, have to be protected if, say, a reads the value of a shared variable
g, and b writes g. Otherwise, g may be read by method a of two different threads

Table 2 Event order

correct failed

Thread Call Thread Call
Threadl run — a Threadl run — a
Threadl run — b Threadl run — ¢
Thread2 run — a Thread2 run — a
Thread2 run — b Threadl run — b
Threadl run — ¢ Thread2 run — b
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next-call inter-thread

intra-thread

Fig. 2 Variants of reduced graphs; correct: (al), (b1), (cl); failed: (a2), (b2), (c2)

T1, T2.Before T2 processes the value read, T1 writes a new value to g in method
b, leaving T2 with an orphaned value.

Table 2 shows the order of events corresponding to the graphs illustrated. For
simplicity the table does not take into account that executions can be parallel. The
event orders shown can come into existence if the example program is executed on a
single processor.”

Next-Call Graphs A next-call edge is of interest for multithreaded defect localiza-
tion, because a change of its weight between different executions might be due to an
incorrect interleaving.

Example 4 The bug in Fig. 2 (a2) is that a is executed from Threadl and Thread2
before Threadl executes b. The incorrect execution order manifests itself in the call
graph: The edge a —,, b has weight 1. In the correct execution, Fig. 2(al), this edge
has weight 2. This tells us that b is called two times immediately after a is called (and
from the same call site). This complies with the order events should be executed in. O

Thus, the interesting edge a —,. b in Example 4 has different weights in the
correct and the failed execution. The information-gain step within the localization
process looks out for this kind of difference.

Inter-Thread Graphs Next-call graphs make the defect from Example 4 explicit. But
the example also shows that not all next-call edges are helpful to localize a defect. Edge

2 In this paper we use the terms processor core and processor interchangeably.
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a —pc x is such an edge that is not related to the defect. It is of advantage to reduce
the number of edges without losing important information. This is the rationale behind
inter-thread graphs. One can think of such an edge as representing thread switches.
Observe that, for the executions illustrated, the inter-thread graphs have fewer edges
than the next-call graph. Example 5 illustrates how inter-thread graphs help to localize
the defect shown in Fig. 2.

Example 5 Edge a —; b in Fig. 2(b2) is the manifestation of the defect: It indicates
that after the call of a there is a thread switch. In the correct execution order this edge
is not present. O

Intra-Thread Graphs The intuition behind the intra-thread relation is to reduce the
number of edges, compared to the previous representations.

Example 6 In the correct execution (Fig. 2(c1)), there is an edge a —;,, b with weight
2. This is the sequence of calls that should have been protected and that has happened
twice. In the failed execution, this edge is not present. O

Locating Defects with Temporal Edges The process to derive the suspiciousness of
temporal edges is different from the derivation for call edges. The vertices of a temporal
edge may be suspicious for two reasons. The first case is that there is a defect at a call
site of the methods connected by a temporal edge. For instance, an i f-statement that
decides if a method is called has to be protected together with the call itself. The other
case is that two methods influence each other. This happens if no lock or the wrong
one has been acquired for a sequence of operations that should be protected. In both
cases the interleaving with respect to the involved methods may be defective.

Fixing Defects Related to Temporal Edges The previous paragraph opens a way to
fixing a defect pinpointed to by a temporal edge, i.e., a temporal edge with high
suspiciousness. Algorithm 3 illustrates this process.

Algorithm 3 Locating a Defect with Temporal Edges

Require: temporal edge e
if call to source or sink of e is conditioned but not protected then
protect call and if-statement together
else
protect operations of source and sink that use a shared variable with common lock
end if

3.3 Obtaining Graphs of Multithreaded Programs

With sequential programs, call graph based localization techniques trace executions
with different inputs. The reason to use different inputs is to obtain failed and correct
executions. In case of a multithreaded bug, due to non-determinism, the output for a
given input may change with different interleavings. It may be sufficient to execute
the program many times with the same input to obtain correct and failed executions.
Some interleavings are rather unlikely to happen. It may even be the case that a defect
never happens, or it occurs all the time on a specific system; the interleaving may vary
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heavily on different systems. But it is possible to systematically explore the space of
interleavings with a noise maker. We use the noise maker of the ConTest tool [4].
This tool adds instrumentation points before and after each concurrent event. It inserts
“noise” at the instrumentation points, i.e., the Java methods yield, priority and
sleep. The number of interleavings grows exponentially with the number of threads.
This makes it infeasible to produce all possible interleavings. However, ConTest tries
to produce a different interleaving in each run.

Instrumentation may change the program behavior. Any instrumentation introduces
overhead, and this overhead might make some interleavings disappear. Bugs that do
not appear any more if the program is instrumented are called Heisenbugs [14]. The
reason for this disappearance is the following: To implement the trace graph, we need
a global data structure, and this is problematic. The instrumentation for each thread
has to access the global structure, and this of course has to be synchronized. Because
of this, the possible interleavings of the instrumented program may be different from
the original ones. But through the use of a noise maker, those interleavings are likely
to occur again.

3.4 API-Calls

We now explain how we deal with calls of methods which are not part of the code
currently under observation, e.g., the JRE library. In principle, when analyzing a
program, one can take libraries into account. To keep our approach focused, we do
not consider defects in libraries—they should be eliminated on their own. Since we
localize defects by identifying suspicious edges, we cannot leave aside API calls: They
might reveal a defect of the call site. In our graph representations, there is a vertex
for each method of a library called because we record any call to an API. However,
the size of the graphs is of matter when applying FSGM. Therefore, the API calls can
become a bottleneck. If the computation time of CloseGraph exceeds a limit (1 h),
we propose the following: Stop the computation, aggregate all vertices that represent
an API method to one dummy vertex and restart the computation. This is analogous to
the work of Eichinger et al. [7].

4 Manifestation of Defects

A design pattern is a guideline to solve recurring problems. Bug patterns in con-
trast describe recurring programming mistakes. The manifestation of a defect differs
in the proposed graph representations, and it is important to look at how different
patterns manifest themselves. On the one hand, the defect can have an immediate
effect on the graph, be it on the structure, be it on a weight. On the other hand, the
defect might not manifest itself in the graph, but an infection it has caused might.
Farchi et al. [10] propose a taxonomy of eight multithreading bug patterns, and we
rely on in it this paper. In the following, we review these patterns and say how they
manifest themselves. We do this to provide a theoretical evaluation of our graph rep-
resentations and how well they cope with the various multithreaded bugs. The bench-
mark from [9] we will use in Sect. 5 has been created to cover the bug patterns
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described here. From our data-mining based perspective, it is important to under-
stand the manifestations. In the field of defect localization, one usually generates the
representations himself, like we do. This means that we have full control over the
representation. Understanding the data can help to improve the representation and the
mining process.

Pattern: “Wrong Lock or no Lock”/“Two-Stage-Access” These two patters describe
failures caused by obtaining the wrong lock or no lock at all, so that a code segment
is not protected although it should be. This can cause defective interleavings, see the
examples in Fig. 2. As the manifestations differ for the different graph representations,
we look at them separately.

Call Graphs without any temporal edge: Neither the structure nor the weights of a
call graph change when the execution order changes. So we cannot see this pattern
directly. We might however, see a manifestation of an infection.

Next-Call Graphs: The reason for protecting events is to have them as atomic units.
Suppose that calls to Methods a and b shall be protected, in this order. If the order is
maintained, a next-call edge will go from a to b, otherwise not.

Inter-Thread Graphs: If the sequence of calls that should have been protected is
interrupted after the call to method a, there is an inter-thread edge from a to the
method that has interrupted the sequence.

Intra-Thread Graphs: Analogous to next-call graphs.

The so-called two-stage access bug pattern is a special case of the wrong-or-
no-lock pattern. If variables are shared between events, these events often must
be protected as a whole. The pattern describes situations where the software
developer has wrongly assumed that protecting each operation separately is suffi-
cient. The manifestation of this bug pattern is analogous to the wrong-or-no-lock
pattern.

Pattern: “Not Atomic” Programmers tend to assume that certain operations, like the
++-operator, are atomic, but in fact they are not. We look at program executions at
the method level. The pattern instead describes bugs at the level of operations. The
graphs do not show any direct manifestation. But if the variable is used later, we
might see effects of the wrong value, e.g., calls not executed or the wrong number of
times.

Pattern: “Double-checked Locking” Code used for lazy object initialization, which
has been explicitly proposed [28], tends to lead to the double-checked locking bug, as
follows: To achieve fast execution, only the initialization itself is synchronized. The
most common code path, a check if the initialization has taken place, is unsynchro-
nized. —The proposed code may lead to situations where an object reference is not
null, but the object is only partially initialized. This happens due to a reordering by
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the compiler. The reordering is not transparent on the source-code level, and thus one
can see the effect only through infections.

Pattern: “Sleep Bug Pattern”/“Loosing a Notify” In parallel programming, it is often
useful to do calculations in dedicated child threads. At a specific point, the result of
a child thread must be available to the parent. To ensure that the child has finished
its work, the join method should be used. Otherwise the parent thread may hold
an initial or old result value. Any interleaving where the calculation of the child is
finished when the result is read is correct with respect to the sleep bug pattern. This
leaves us with a possibly huge number of interleavings that differ without affecting the
correctness. For this reason, differences in the graphs for correct and failed executions
usually are not helpful, but infections may be. If a result is not available in time,
the variable storing it will hold an initial or old value that might infect the program
execution.

The sleep bug pattern does not induce a data race. A data race happens if a variable
is overridden, but with this pattern the value is not written in time. Hence, a race
detector cannot find this pattern.

The so-called losing a notify bug pattern is very similar to the one of the sleep-
bug pattern. If a call to notify is executed before the corresponding wait, the
notification is lost. The waiting code remains sleeping. As with the sleep-bug pattern,
the software developer implicitly assumes an ordering of events without ensuring it.
The effects on the graph are similar.

Pattern: “Blocking Critical Section”/“Orphaned Thread” This bug pattern describes
situations where a thread is assumed to return control, but does not do so. This can
cause the system to freeze if all other threads are waiting. A behavior that easily can
be seen in inter-thread graphs: There is no outgoing inter-thread relation from the
blocking thread, hence the weight of the edge is lower than the number of calls to the
corresponding start method. For the other graph representations, the manifestation
depends on the specifics of the bug. The hang of the system can come along with a
different program flow. For instance, a missing invocation of a method might have
caused the hang. The so-called orphaned thread bug pattern manifests itself in the
same fashion. In this pattern, there is a master thread that coordinates the actions of
some worker threads, a common design for multithreaded programs. A way to induce
the pattern is to place messages on a queue, which the worker threads then work of.
In case the master thread terminates abnormally, the worker will be stuck waiting for
input from the queue. Neither the blocking critical section pattern nor the orphaned
thread pattern result from wrong memory accesses. This is why a race detector cannot
find them.

To design a graph representation that suits the needs of localization well, it is
important to understand how the chosen representation reacts to defects. We apply
mining algorithms on graphs, not on the source code. However, we want to identify a
location in the code. One interesting point is that various bug patterns cannot be seen
directly, but possibly through infections. An infection may change the program flow.
This is why it is important to include the sequential behavior of a program: Changes
in the program flow can be seen in the call graph.
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5 Evaluation

In this section we first describe the programs used for evaluation, namely the bench-
mark from [9]. It is written in Java, but contains many bugs that apply to other
languages as well. The benchmark programs cover the different bug patterns known
from the literature. They are comparable in size to the widely used Siemens tools
[15], which, however, do not feature parallelism.

5.1 Programs used for Evaluation

We now explain the benchmark programs, but only briefly due to space limitations.
Observe that these programs are difficult to analyze: For instance, experiments of
Eichinger et al. [6] show that the race detector implemented in the MulticoreSDK [22]
does not find any of the defects in AllocationVector, DeadlockException, Liveness and
MergeSort. (The other programs we have used in our evaluation and explained next
are not covered by the evaluation of Eichinger et al. [6].)

Account (Pattern: wrong/no lock) The program is a bank simulation that executes
deposit, withdrawing and transfer actions on several accounts. Each account is held
by adedicated thread. The transfer action involves two accounts. It accesses the amount
variable of a second account. As the access is not locked, other actions are executed
during (parallel to) the access to the recipient account. This causes dirty reads.

AirlineTickets (Pattern: not atomic) The program simulates the selling of tickets, and
there are 10 % more tickets available than there are seats. To model the sale, a variable
that reflects the number of seats sold is incremented. An i f-statement immediately
follows. This sequence of statements should have been protected to avoid data races.

AllocationVector (Pattern: two-stage access) The program simulates allocation and
deallocation of memory blocks, a typical OS activity. Allocating a block consists of two
actions: finding a free block and the allocation itself. Each of the two methods/actions
is protected separately, but they should have been protected together. The effect is that
two threads can allocate the same memory.

BubbleSort (Pattern: not atomic) This program is a bubble-sort implementation.
Threads iterate over the input array and swap two elements if they are not sorted;
a separate method does the swapping. Although the method itself is protected, the
comparison that may lead to its call and the call itself are not protected together. Two
threads might do the comparison, the outcome is the same in both cases, and the
swapping method is called from both threads.

BubbleSort 2 (Pattern: not atomic, sleep bug pattern) This program again is a bubble-
sort implementation. Critical interleavings may occur. For example, in case of an
array sorted descendingly there is only one interleaving that ensures a proper sort-
ing. It occurs if all run-methods are executed in the order their corresponding
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start-methods are called. This actually is a sequential execution, with no paral-
lelism. The run-method is the place where the defect occurs: A new thread instance
t is generated here that might run too early. So, at first glance, this method is the appro-
priate place to call join and wait until all the work is done before 7 runs. But this
would cause a thread to wait for its end within its run-method, a deadlock situation.
There is no way to change the program so that it makes use of parallelism and always
has a correct interleaving. Further, there is another defect, which is not mentioned in
the benchmark documentation, an atomicity violation. As with the other BubbleSort
program, the method that swaps numbers is protected, but the 1 f£-statement just before
the call to that method is not protected together with the call. (We point out that our
approach has localized this previously unknown defect.)

DeadlockException (Pattern: blocking critical section) This program creates several
worker threads, and the number of threads is limited. A thread starts by incrementing
a global counter, followed by a mathematical operation (the actual work) and finally
decrementing the counter. As the operation might throw an exception, causing the
method to be left abnormally, the counter might not get decremented.

Liveness (Pattern: liveness bug/orphaned thread) This program simulates a server-
client application, where each client is processed in a thread, and the maximum number
of threads is limited. If there are more requests than client threads available, incoming
requests are queued. These suspended clients are resumed when other client threads
finish their work. As the queuing can be delayed, it can happen that all threads finish
their work, and there still are suspended threads. The bug pattern is a special case of the
orphaned thread pattern, except that the master thread does not terminate. However,
when the failure appears, we are left with threads that are orphaned.

MergeSort (Pattern: not atomic) This program tries to realize a parallelized merge-
sort. The maximal number of threads is fixed. If there are available threads left, threads
can generate subthreads. If two or more threads read the number of available threads
concurrently, they will generate subthreads, and more than the maximum number
of threads might be generated. The documentation of the benchmark suggests that
protecting a sequence of statements that read the number of available threads and
generate subthreads depending on the outcome would fix the bug. But within the code
to protect, there is a call to join from the subthreads. With this, the protected area
could only be left if the subthreads finished their work. But to do this, the subthreads
would have to execute the same protected code, leading to a deadlock.

All programs of the benchmark provide an oracle and a class that triggers the
execution. We use the same parameters for all executions and execute each program
500 times. Then we balance the execution traces, so that the same number of failed and
correct traces is left. If <100 traces are left, we execute the program and balance the
traces again until more than 100 traces are left. Executing the program a second time
has been sufficient in most cases. We use the standard parameters for ConTest and
a noise frequency of 1,000. This value means that noise is added to each concurrent
event. It is the maximum value possible, and lower values do not affect each event. A
possible reduction of the overhead could be to use alower noise frequency for ConTest.
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Our approach has a runtime overhead that is produced by the call-graph trace on the
one hand and the overhead from ConTest on the other hand. E.g., executing Account
500 times took 5:18 min when we used ConTest and the instrumentation for inner-
thread graphs. Executing the instrumented version without ConTest took 2:17 min;
500 runs with the original, not instrumented version of Account took 1:24 min The
other instrumentations have a similar overhead compared to the inner-thread graph
instrumentation: 500 runs with ConTest took 5:11 min for inter-thread graphs and
4:57 min for next-call graphs. So the runtime overhead is not a bottleneck of our
approach, and we did not see the need to further evaluate it.

5.2 Results

In the following, we analyze how well our approach performs. We examine how many
methods a software developer has to investigate and compare this for the three graph
representations. Table 3 shows the results of our experiments for the different graphs
and localization techniques. For instance, an entry of 2 means that the corresponding
approach has ranked the defective method second. We explain for each program used
how the defect manifests itself, and we investigate the effect of the number of execu-
tions used for the analysis. It can happen that it is not possible to derive a result ().
This is the case if the suspiciousness of all methods is zero, the defective method is
not in the result set, or the result set is empty. Table 4 shows if the ranking in Table 3
is caused by a temporal edge or a call edge.

It is possible that the graphs become too large for FSGM. For the programs Liveness
and MergeSort we were not able to analyze the temporal relations. With these relations,
we faced scalability issues with FSGM and stopped any experiment after 1 h. All
experiment were run on a standard Windows 7 desktop machine: 2.4 GHz dual core
CPU (Intel Core i5 M520), with 4 GB RAM.

Account With the inter-thread graph, the edge transfer —;; transfer is ranked at
the second position. This locates the defect, as the failure happens when two instances

Table 3 Evaluation results

Program InfoGain-based Additional FSGM # Methods
Next Inter Inner Next Inter Inner
Account T 2 T t 2 T 8
AirlineTickets 1 1 1 1 1 1 3
AllocationVector 2 2 2 2 2 2 8
BubbleSort 2 2 2 1 1 1 11
BubbleSort 2 2 2 2 2 2 2 4
DeadlockException 1 1 1 1 1 1 14
Liveness 1 1 1 1 1 1 11
MergeSort 1 1 1 1 1 1 15
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Table 4 Edge types

Program InfoGain-based Additional FSGM

Next Inter Inner Next Inter Inner
Account T temp T T temp T
AirlineTickets call call call call call call
AllocationVector call call call call call call
BubbleSort call call call temp temp temp
BubbleSort 2 call call call call call call
DeadlockException call call call call call call
Liveness call call call call call call
MergeSort call call call call call call

execute the method in parallel. Next-call and intra-thread graphs do not reveal the
defect, because they do not make thread changes explicit. For next-call and intra-thread
graphs, we have not obtained any result. This happens as our localization techniques
have not been able to find significant differences between failed and correct executions.
The information gain for all edges is zero, which is caused by the nature of the defect.
The method that facilitates the transfer does not call any method. This is why the
defective code does not show up in the call graph.

AirlineTickets The manifestation of the defect is straightforward: In case of a failure,
the method facilitating the sale is called too often. More precisely, in case of a failure
the method is called more often than in executions the defective interleaving did not
occur in. This is revealed by our approach.

AllocationVector The allocation process stops when a block is allocated twice for the
first time. For this reason, the call frequency changes when the failure appears. This
can be seen in the call graph. The change of the call frequencies is actually not the
defect pattern itself, but an infection. The edge ranked higher than the defective call
is a call to the JRE that only introduces noise. Besides the infection that is ranked at
the second place, we also discover the defect itself, but at a low rank.

BubbleSort With FSGM, the edge ranked first is swap —;emp swap for all graph
variants. This edge gives a good understanding of the defect. Without FSGM, one edge
ey is ranked higher than the defective call. This edge does not exist in the graphs we
used with FSGM. It is an API call, and all calls to the JRE library have been reduced
to a dummy vertex (see Sect. 3.4). The aggregation with other calls to the JRE library
masks the call e,. Although e, does not pinpoint the defect, it is not noise. The call
is part of the infection, and thus it is not unexpected that the edge is ranked at a high
position.

BubbleSort 2 Our approach reveals the atomicity violation. It brings out the defect,
because the number of calls to the method swapping elements of the data structure is
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too high. The method ranked higher than the defective one is the same for all variants.
It is part of the infection and has the same suspiciousness as the defective one, which
is at the second rank, as it has fewer LOC.

DeadlockException The edge that our approach reports at the first rank is the operation
containing a defect. The manifestation in next-call graphs in combination with FSGM
is straightforward: In case of an exception, the method is left, and the operation causing
the exception is executed less often than in runs without the exception. In case of inter-
thread and intra-thread graphs, the output of our algorithm is the edge whose sink is
the method called within the catch clause. This is the first step of the infection. The
actual fix is to modify the catch clause.

Liveness For the variants using FSGM, the sink of the edge reported is the code
segment that resumes suspended clients. Although this segment is not the position of
the most obvious fix of the defect, it still gives a good intuition that the access to the
data structure holding suspended threads is problematic. The variants without FSGM
output different sinks that are not directly related to the defect, but nevertheless the
defective method is ranked first.

MergeSort The whole defective method is problematic. It is not possible to identify a
specific call in the method that would help to fix the defect. Rather, the whole method
needs to be rewritten. Nevertheless, the defective method is ranked first, as it does
several suspicious calls.

We have carried out another experiment to determine how stable the results are with
respect to the number of executions. We have haphazardly chosen AirlineTickets (AT)
and AllocationVector (AV) from the set of benchmark programs and have lowered the
number of executions step by step. Table 5 shows the rank for both programs as well
as for both techniques (with and without FSGM). It can be seen that changing the
number of executions does not have any effect on the result. This in turn indicates that
the number of 100 or more executions is sufficient to get a good covering of the space
of interleavings. We are satisfied with this insight and have not evaluated the effect of
the interleavings that ConTest produces any further.

Besides the ranking approaches based on information gain that we have evaluated
here, a structural ranking is possible as well. The sequential localization technique
described investigated by Eichinger et al. [5] uses such a ranking. In further experi-
ments (whose details we omit here), we have applied the structural measure described

Table 5 Effects of number

of executions # Executions No FSGM With FSGM
AT AV AT AV
150 1 2 1
100 1 2 1
50 1 2 1
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there, but it has not improved the localization for any of the graph representations.
This is because the structure alone has not been discriminating regarding failing and
correct executions.

In Sect. 2.5 we have raised the question how harmful infections are. For BubbleSort
and BubbleSort 2, an infection has been the reason why our approach has ranked the
defective method second and not first. In case of AllocationVector the infection has
even turned out to be advantageous: The defective method is ranked second and not
lower because of a call that is part of the infection. This call happens within the
defective method.

The evaluation shows that our approach performs well for all experiments. Though
the different graph representations perform equally well, they yield quite different
result sets. Temporal edges have shown to be useful for the localization in case of
Account and BubbleSort. Inter-thread graphs have been most suitable for the defect
localization. In case of Account, this representation is advantageous. We have been
able to find defects of the following bug patters: wrong/no lock, not atomic, two-
stage access, blocking critical section and orphaned thread. In Sect. 3.2, we have
hypothesized that intra-thread graphs can reduce the number of edges, compared to
the other representations. However, the opposite applies. The average number of edges
of intra-thread graphs is 36.39 compared to 25.64 in case of inter-thread graphs. Next-
call graphs have 32.56 edges on average. Next-call graphs are less compact than inter-
thread graph, have not performed better in any of the experiments, and the results
are almost the same. The average number of vertices is 22.43. Note that an execution
has the same number of vertices, no matter if represented as next-call, inter-thread or
intra-thread graph.

6 Related Work

Researchers have proposed different approaches to localize defects and support the
debugging process in multithreaded programs. Static race detectors like Flanagan et
al. [11] try to identify data races by means of a data-flow analysis. The advantage of
static tools is that they do not induce Heisenbugs, and they give the same attention to
rarely executed parts of the source code. But static tools tend to have the problem that
the exact program behavior is not known a priori, and they tend to produce many false
positives. Flanagan et al. [11] require the software developer to insert annotations in
the source code. This makes the tool aware of design decisions but requires additional
effort.

Dynamic race detectors either use a lockset-based approach, a happens-before based
approach or a combination of both, as [25]. If an event happens before another one,
the first one can be the cause for the second one. Data races fulfill the happens-
before relation, and an analysis of the partial ordering of events allows to detect them.
Lockset-based detection analyzes the locks held when a shared variable is accessed.
The idea is that if access to a variable is sometimes protected, but not always, then
the software developer has intended a protection, and a warning is produced. Race
detectors face scalability issues. Luo et al. [22] overcome this with a two-stage analysis.
As a preprocessing step, uninteresting locks are filtered out. Race detectors are limited
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to dataraces and can not localize any other defects. For instance, the approach of Luo et
al. [22] has not been able to locate the defects in AllocationVector, DeadlockException,
Liveness and MergeSort. A problem with race detectors is that precise race detection
slows down the program execution significantly. Pacer [1] introduces a sampling
technique that reduces the overhead of the detector. FastTrack [12] eases the overhead
of race detection by an adaptive representation that provides constant time paths for
the most common kinds of races. Further, it is possible to extend the definition of
data races, in order to address defects caused by several variables. Jannesari et al. [17]
is such an approach that features the concepts of computational units and correlated
sets. A computational unit may consist of several reads or writes. A correlated set is
a set of variables that share a semantic consistency property. The approach is able to
detect races that can only be seen if a set of variables is considered.

ConTest [4] and Chess [23] are tools designed to explore the space of interleavings
and have a so-called replay mechanism. It records the interleaving during an execution
and is able to reproduce it. This is interesting, as bugs might appear only for very few
interleavings and cannot be easily reproduced. The tools use different strategies to
explore the interleaving space: ConTest heuristically inserts yield, sleep and
priority statements, Chess produces interleavings systematically. Both tools do
not localize defects on their own. Rungta and Mercer [26] gives a comprehensive
comparison of different defect localization tools for multithreaded programs. The
evaluation there includes ConTest and Chess.

Tarantula [18] is a dynamic approach for single-threaded programs. It counts how
often a statement is executed in a correct execution and how often in a failed one.
Although the approach is simple, its localization precision is good. But it has not been
transferred to and evaluated on multithreaded programs.

[19] is an approach that is able to fix defects automatically. The authors use genetic
programming and are able to fix programs without requiring a priori knowledge or
specifications. The approach is highly scalable, and 55 out of 105 defects could be
fixed in the evaluation. However, even though the approach scales well, it is requires
high computational effort. The approach was evaluated on C programs and is not
tailored towards multithreading defects. According to the paper, it is unlikely that the
approach is able to fix non-deterministic defects.

Several localization approaches [3,5,20] use dynamic graphs to represent program
executions. To our knowledge, the only approach for localizing multithreaded defects
that also takes sequential parts of the program into account is the one of [6]. They
use graphs to model program executions as well. But their representation does not
model temporal relations, and the work of Eichinger et al. [6] does not investigate the
usefulness of FSGM.

7 Conclusions
Defect localization is a fundamental issue. The time software developer spend on it is
huge, in the case of multithreaded software in particular. State-of-the-art approaches

either deal with sequential programs only or are limited to specific bug patterns. In this
paper, we have proposed an approach without these limitations, based on data mining.
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It performs well for defects that race detectors cannot find. The evaluation has shown
that modeling the ordering of events in the graphs is important. In the evaluation, we
also observed that—for the programs evaluated—FSGM has not been advantageous.
Without FSGM it is possible to analyze even larger programs, because one does not
have to deal with the performance downsides of the respective algorithms.

A possibility to further enhance the graph representations is to annotate the edges
with parameter and return values. Further, another annotation could say which locks
are held at the time of a method invocation. This is part of ongoing studies.
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