
1

Improving Accuracy and Robustness of
Self-Tuning Histograms by Subspace

Clustering
Andranik Khachatryan, Emmanuel Müller, Christian Stier and Klemens Böhm

Abstract—In large databases, the amount and the complexity of the data calls for data summarization techniques. Such
summaries are used to assist fast approximate query answering or query optimization. Histograms are a prominent class of
model-free data summaries and are widely used in database systems. So-called self-tuning histograms look at query-execution
results to refine themselves. An assumption with such histograms, which has not been questioned so far, is that they can learn
the dataset from scratch, that is – starting with an empty bucket configuration. We show that this is not the case. Self-tuning
methods are very sensitive to the initial configuration. Three major problems stem from this. Traditional self-tuning is unable to
learn projections of multi-dimensional data, is sensitive to the order of queries, and reaches only local optima with high estimation
errors. We show how to improve a self-tuning method significantly by starting with a carefully chosen initial configuration. We
propose initialization by dense subspace clusters in projections of the data, which improves both accuracy and robustness of
self-tuning. Our experiments on different datasets show that the error rate is typically halved compared to the uninitialized version.

Index Terms—Query Optimization, Selectivity Estimation, Adaptive Histograms, Subspace Clustering.
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1 INTRODUCTION

Histograms are a fundamental data summarization
technique. They are model-free, that is – they do not
assume any specific distribution of the data. His-
tograms are used in Query Optimization, which is a
core task for any database system. Other applications
of histograms are Approximate Query Processing, Spatio-
Temporal Queries, Top-K Queries, and Skylines. All of
these are widely used in commercial and scientific
applications. We will use a query optimization sce-
nario throughout this paper. Query optimizers need
estimates of query predicate selectivities to accurately
estimate the costs of different plans. The majority
of commercial and non-commercial DBMS rely on
histograms to obtain selectivity estimates. The selec-
tivities are essential when comparing physical ac-
cess methods, e.g. scan vs index seek, as well as
when choosing the method and the order of joins [4].
Therefore, improving histograms a has direct positive
impact on query optimization.

When the query predicate refers to more than one
attribute, a joint distribution of attributes is needed to
obtain the selectivity estimates.
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There are two different paradigms of histogram
construction: Static and Self-Tuning histograms.

Static Histograms and Dimensionality Reduction.
[5] provides a comprehensive review on histograms.
Static histograms [23], [8], [1], [28], [21] are con-
structed by scanning the entire dataset. They need
to be rebuilt regularly to reflect any changes in the
dataset. Different notions of histogram optimality
have been proposed [10], [12], [5]. However, optimal
histogram construction is computationally expensive.
Building a static multi-dimensional histogram in full
attribute space can also be expensive, both regarding
construction time and the space occupied – even when
we are not restricting ourselves to optimal histograms.
Histograms need to be precise, have small memory
footprint and have scalable construction/maintenance
times. This is hard to achieve, and traditionally his-
togram construction has aimed for scalability against
number of tuples, sacrificing scalability against num-
ber of dimensions [5]. Dimensionality reduction tech-
niques try to solve the problem by removing less
relevant attributes [7], [6], [11]. Another approach
is the SASH [18] framework, which handles mem-
ory allocation, refinement and reorganization of his-
tograms. It also decides which attributes to build the
histogram on. Skipping of attributes is done for the
whole data space, similarly to dimensionality reduc-
tion techniques. Overall, SASH is a framework above
histograms, as it has to rely on some kind of histogram
as underlying data structure (e.g., MHist from [23]).

Dimensionality reduction techniques, however, do
not solve the problem in general. Consider a database
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relation Cars( Model, Manufacturer, Year,
Color) 1. The following correlations are possible:

• Model and Manufacturer, e.g., Golf implies
Volkswagen.

• Model and Year, e.g., the Volkswagen Beetle was
built until 2003.

• Manufacturer and Color, e.g., Ferraris are typ-
ically red.

This example shows that, even for a 3-dimensional
dataset, correlations can appear in the projections2

of attribute-value space. Moreover, correlations can
be local, e.g., there is strong correlation between
Manufacturer and Color for some values of the
attributes, but for rest of the values those attributes
are close to being independent. The conventional
approach has been to ignore such local correlations
and aim for a full-dimensional histogram. This can
be wasteful and negatively affect the precision and
the memory footprint of the histogram.

Storing the correlation between Manufacturer
and Model does not necessarily mean building a
full histogram on these two attributes. If the corre-
lation is strong only for a small sub-region of the
two-dimensional attribute-value space, we can store
only supplementary statistics for this sub-region. The
problem with conventional histogram construction
algorithms is that they do not have mechanisms to
detect local correlations.

It should be stressed that the phenomenon of locally
relevant attributes is commonplace. For example, the
Sloan Digital Sky Survey (SDSS) dataset [25] contains
local correlations, i.e., specific regions of the sky
showing high values for specific filters (cf. Section 5).
There are techniques which take advantage of such
correlations if the system knows about them. An
example is the ”filtered statistics” in Microsoft SQL
Server: one can build a histogram on Manufacturer
given the filter Color= ’Red’. The problem with
such techniques is that, to enable them, the user has
to know about the correlation. This is practically im-
possible for large, complex, multi-dimensional data.

Traditional Self-Tuning Histograms. In contrast to
static histograms, self-tuning histograms [3], [27], [19],
[13] use query feedback to learn the dataset. They
amortize the construction costs, because the histogram
is constructed on the fly as queries are executed.
Self-tuning histograms have been demonstrated to be
competitive alternatives to static histograms in terms
of estimation accuracy [3], [29], [27], [5]. They are
adaptive to query patterns of the user, and stay up-
to-date to the data, i.e., unlike static histograms, one
does not need to re-build them regularly. As one rep-
resentative, we consider the data structure of STHoles

1. In the rest of the paper, we focus on the generic case when
the domain of the attributes is numeric. Categorical attributes, like
Model in current example, can be mapped to integers.

2. Projection is any proper subset of the full set of attributes.

[3], which is very flexible and has been used in
several other histograms [27], [24], [13]. STHoles tries
to find rectangular regions in the dataspace which
have close to uniform density. However, similarly to
traditional index structures such as R-Trees [9], they
fail in high dimensional data spaces due to the curse
of dimensionality [2] and are affected by the order of
tree construction steps [26].

Self-Tuning Histograms and Subspace Clustering.
We focus on the general assumption with self-tuning
methods, namely that they can learn the dataset from
scratch – starting with no buckets and relying only
on query feedback. We show that this is not the
case. The first few queries define the top-level bucket
structure of the histogram; if this structure is bad,
then, regardless of the amount of further training,
the histogram is unlikely to become good. In general,
the self-tuning procedures should be used to refine
the histogram. When a few good top-level buckets of
the histogram are given, self-tuning can be used to
successfully ”zoom in” into these buckets. However,
the converse is not true. Given many buckets with
small volume, it is hard to construct an adequate top-
level of the tree.

In particular, we observe that this trend strength-
ens as the dimensionality of the dataset grows. Self-
tuning histograms share the same problem with static
histograms: they either pick some attributes statically
and build the histogram on them, or ignore the issue
of locally correlated data by storing full-dimensional
buckets. We show that in the later case the histogram
is unable to learn important local correlations of data
during future training. This, again, can be attributed
to a bad initial top-level bucket structure.

To solve this top-level construction problem, we
start with an initial configuration which is obtained
using subspace clustering [17], [22], [20]. A subspace
is an axis-parallel projection (i.e., a projection to a
subset of the dimensions) of the data. As a first step
[14], we have proposed a method to transfer arbitrary
subspace clustering results into an initial histogram
structure. We have focused on the clustering aspect
and have evaluated the performance of several clus-
tering algorithms. The main result of [14] is that
Mineclus [30] performs best among six subspace clus-
tering algorithms as an initializer. Thus, we take it as
our basis for this paper. [15] indicates that the order
of the learning queries may affect the quality of the
histogram, and offers subspace clustering-based ini-
tialization. However, our previous work does not in-
vestigate the specific reasons why non-initialized self-
tuning encounters problems, nor does it investigate
the mechanisms how subspace clustering improves the
estimation accuracy. We investigate these reasons and
mechanisms here, and highlight the potential of self-
tuning when coupled with initialization.

Summing up, we show that self-tuning has the
following issues:
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• Sensitivity to learning. This includes sensitivity
to the type, shape, volume and order of the
queries.

• Stagnation. The histogram reaches only local op-
tima due to missing initial configuration at the
top levels of underlying data structures. It does
not improve regardless of the amount of further
training.

• Dimensionality. Inability to learn local corre-
lations, which remain hidden in projections of
multi-dimensional datasets.

We demonstrate that these problems exist and for-
mally analyse the reasons why they occur. In particu-
lar, we show how the histogram can stagnate by being
unable to detect clusters. The reason for stagnation is
that a cluster is much harder to detect when one does
not know the boundaries of the cluster and has to
”assemble” it from smaller parts. We show that such a
process (trying to assemble the clusters ”bottom-up”)
can often stall. This is true even if the cluster has a
very simple structure.

We propose an initialization method which reduces
the error rates of the histogram for large, multi-
dimensional datasets. In addition, we show formally
that initial buckets can make self-tuning less sensitive
to learning. For the initialization we use subspace
clustering in order to detect dense clusters in arbitrary
projections of high-dimensional data [20], [14]. In
a nutshell, these subspace clusters provide essential
information for top level buckets and their relevant
dimensions.

When conducting this work, we have spent most of
our effort to understand why the problems described
above occur. After that, we propose a solution which
addresses them all at once. Initialization by subspace
clustering is a natural yet innovative solution to the
three problems of self-tuning.

We think that separating the problem analysis from
the solution makes our contributions even more clear.
First, we analyse in detail the problems with self-
tuning: this analysis can be a starting point for others
to come up with solutions to problems of self-tuning
which would differ from ours. Second, we show that
subspace clustering is a promising concept that can
be combined with the histogram construction process.
Again, this can prompt further research, where ideas
from subspace clustering are applied in histogram
construction.

2 SELF-TUNING HISTOGRAMS AND THEIR
PROBLEMS

We use STHoles [3] as a representative of self-tuning
histograms and describe its main properties and prob-
lems. We do this in four steps. First, we describe
how the histogram partitions the data space and
estimates query cardinalities. Then we describe how
new buckets are inserted into the histogram. Third,

we describe how the histogram compacts itself by
removing buckets to free up space. Last, we derive
the open challenges in this processing.

2.1 Histogram Structure and Cardinality Estima-
tion.
STHoles partitions the data space into a tree of rectan-
gular buckets. A bucket b stores the number of tuples
in it – n(b). It does not include the tuples in child
buckets. Similarly, the volume vol() of a bucket is the
volume of the rectangular space occupied by it, with-
out the child buckets. Figure 1 shows a histogram with
4 buckets (solid rectangles) and a query (the dashed
rectangle). STHoles estimates the cardinality of query
q using the Uniformity Assumption. This means that it
assumes the tuples inside the buckets to be distributed
uniformly:

est(q,H) =
∑
b∈H

n(b) · vol(q ∩ b)
vol(b)

(1)

where H is the histogram.

br

b1
b3

b2

q

(a) STHoles with 4 buckets.
The dashed rectangle q is a
query.

br : 2

b1 : 4

b3 : 3

b2 : 3

(b) The bucket
tree with tuple
counts.

Fig. 1: An STHoles histogram.

When estimating the number of tuples in q (Fig-
ure 1), STHoles computes the intersections with his-
togram buckets. q intersects with br and b2. Using (1),
we estimate the number of tuples in br ∩ q to be ≈ 0.
The estimated number of tuples in b2 ∩ q is a little
less than 1.5. So the overall approximated number of
tuples will be ≈ 1.5. We can see that the real number
of tuples is 3.

Adding buckets. After the query is executed, the
real numbers of tuples falling into br ∩ q and b2 ∩ q
become known. The histogram refines itself by drilling
new buckets. The process consists of adding new
buckets and updating the frequencies of existing
buckets. Figure 2 shows the histogram with two buck-
ets added. Because the intersection of br ∩ q is not a
rectangle, it is shrunk across one dimension until it
has a rectangular shape. Note that the frequencies of
br and b2 are also updated to reflect the new infor-
mation about the tuple placement in the histogram.

Removing buckets. As Figure 2 has illustrated,
STHoles adds buckets after a query is executed and its
results are known. In our example, two new buckets,
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br

b1
b3

b2

b4

b5

(a) b4 and b5 are the newly
added buckets.

br : 1

b1 : 4

b3 : 3

b2 : 1

b5 : 2

b4 : 1

(b) The bucket tree with
b4 and b5. Note that the
tuple counts of b2 and br
are adjusted as well.

Fig. 2: Inserting buckets into STHoles.

b4 and b5, have been added to the histogram. Buckets
take up storage space, and storage space is limited.
In order to accommodate new buckets, the histogram
needs to compact itself.

STHoles frees up space by merging similar buckets.
The idea is to assume that the histogram in its current
form contains perfect information about the dataset,
and to try to merge buckets so that the histogram
changes as little as possible.

For a given merge, if the histogram before the
merge is H , and it is H ′ after the merge, then the
penalty µ of performing the merge (and thus substi-
tuting H with H ′) is

µ(H,H ′) =

∫
u∈D
|est(u,H)− est(u,H ′)|du (2)

where D is the data domain.
We write

(b1, b2)→ b′ (3)

to denote that the bucket b′ is the result of merging
the buckets b1 and b2.

Among available merges, the one with the lowest
penalty is picked. Each bucket can merge only with its
parent bucket or its siblings. During the parent-child
merge, the tuple count of the parent node is increased
by the child node tuple count. Then, the child node
is removed. The sibling-sibling merge is slightly more
complicated. Figure 3 shows merging buckets b1 and
b2. The minimal rectangle which contains both is
computed. As it intersects with b3 which also is a
sibling of b1 and b2, the rectangle is extended to
include b3 as well. In this way, the bucket b123 on
Figure 3 (b) is obtained. Its frequency is computed
based on the frequency of the parent node, n(b1), n(b2)
and n(b3). Then the new bucket is added, and b1, b2
are removed. Note that b3 stays as a child bucket of
b123.

3 PROBLEMS WITH SELF-TUNING

Let us now describe the problems associated with
this self-tuning process. We focus on Sensitivity to
Learning and Stagnation: we analyze how they occur
and how initialization helps to avoid them. We only
briefly stop on Dimensionality, as this problem is

b1
b2

b3b12

(a) The b12, which encloses
both b1 and b2, partially inter-
sects with b3.

b1
b2

b3b123

(b) Thus, we extend it to fully
include b3 as well, obtaining
the rectangle b123.

Fig. 3: Merging two sibling buckets.

relatively well known to the histogram construction
and clustering communities.

3.1 Sensitivity to Learning
Informally, Sensitivity to Learning is the phenomenon
that changing the order of the learning queries has a
significant impact on the histogram precision.

We will call the workloads W1 and W2 permutations
of each other if they consist of same queries, but in
different order. We will write W2 = π(W1), where
π is some permutation. Given a histogram H and
a workload W , we will write H|W to indicate the
histogram which results from H after it learns the
query feedback from W .

At first sight, histograms resulting from two work-
loads where one is a permutation of the other one,
H|W and H|π(W ), should produce very close esti-
mates. We first show on an example how permutation
of queries can result in histograms which considerably
differ in structure.

Example 1. Figure 4 demonstrates what happens
when we change the order of the queries. The bucket
limit for the histogram is two buckets. Each row
shows a sequence:
• the left column of the figure shows the order in

which the queries arrive (denoted by numbers),
• the middle column is the situation after both

queries are executed and buckets are drilled,
• the right column is the final configuration after

one bucket is removed to meet the 2-bucket bud-
get.

Clearly, the top-right histogram is better than the
bottom-right one. It captures the data distribution
well, while the one in the bottom-right misses out
some tuples and has one bucket with regions of
different densities.

Looking at the bucket-drilling procedure of
STHoles, we can see why this happens. The histogram
attempts to integrate the new information into the
existing bucket structure, even if it means shrinking
the new query rectangle. The rectangle corresponding
to Query 1 in the bottom row is not a good bucket
candidate because it contains regions with different
densities. Nevertheless, it is added to the histogram.
The second query (bottom row again) intersects
with the first rectangle, and the resulting bucket is
a shrunk version of the query. In other words, the
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1

2

2

1

Fig. 4: Two queries and the histograms corresponding
to them. Each row represents a different query order.

second query which brings along useful information
about the tuple distribution is deformed (bottom row,
middle), only because existing buckets are favored
over new ones.

In order to compare histograms we need a metric.
A commonly used metric is the absolute error metric:

εD(H) =

∫
u∈D
|real(u)− est(u)|du (4)

where real(u) and est(u) are the real and estimated
cardinalities of point query u using the histogram H ,
and D is the attribute-value domain (D is usually
fixed and we sometimes omit it for brevity). Low error
means a better histogram.

Definition 1 (δ-sensitivity). We call a histogram H
δ-sensitive to learning w.r.t workload W if for some
permutation π

|εD(H|W )− εD(H|π(W ))| > δ (5)

δ-sensitivity means that changing the order of learn-
ing queries changes the estimation error by more
than δ. Intuitively, if a workload W is informative
(i.e., contains enough queries and does not miss out
chunks of data), our expectation would be that a good
histogram should not be very sensitive to workload
permutations, that is, the δ should be small compared
to ε(H|W ) and ε(H|π(W )).

3.2 Stagnation

Stagnation is the phenomenon of a histogram not
being able to find a good bucket layout. There are
several reasons why stagnation can occur. In this
section we focus on one of the reasons, which is
related to the ”adaptiveness” of the histogram. We
show that an adaptive histogram can get stuck in
a locally optimal bucket layout and be unable to
improve it even with an unlimited number of learning
queries. This problem of getting stuck in local optima
is commonplace among learning algorithms.

Stagnation occurs when the histogram does not
have enough memory to detect certain clusters. It
allocates the memory to other, unimportant data re-
gions, due to the order of learning queries. As we will

show, this can result in a situation when the histogram
keeps the buckets in these unimportant regions and
performs merges in important regions. Consequently,
important clusters can remain undetected.

We show that in the process of detecting a bucket
configuration which guarantees a certain estimation
precision, we typically need more memory than what
is needed to store a configuration with the same
guarantee. The simplest example is a large, uniform,
rectangular cluster, which requires only one bucket
to store. However, we prove that it is impossible to
detect this cluster using small rectangular queries if
the memory budget is only one bucket.

We first give some auxiliary definitions, then define
the notions of Cluster Detectability Threshold and of
Storage Threshold. Cluster Detectability Threshold is the
memory needed to detect the cluster. Storage Threshold
is the memory needed to store the cluster so that the
estimation error does not exceed a certain threshold.

Definition 2 (Histogram error on a cluster). The
estimation error of the histogram H on cluster C is
defined as εC(H) (equation (4)).

Definition 3 (Bucket Count). The number of buckets
in the histogram H is denoted by b(H).

Definition 4 (Storage threshold). A cluster C has
storage threshold σ(C, β) for error threshold β if it
is possible to construct a histogram H using σ(C, β)
buckets such that

εC(H) ≤ β

In other words, the storage threshold is the mini-
mal number of buckets which allows to capture the
distribution with error ≤ β:

σ(C, β) = min{b(H)|εC(H) ≤ β} (6)

Definition 5 (Cluster Detectability Threshold). The
detectability threshold of a cluster C for error thresh-
old β, denoted by ω(C, β), is the minimal memory
budget required to construct a histogram H such that

εC(H) ≤ β

There is a caveat in the definition of Detectability
Threshold. Namely, having ω(C, β) buckets only makes
possible to detect C (in the sense that the error will
be less than a given threshold). Having this much
memory does not guarantee that the given algorithm
will detect the cluster under a specific workload, it
only says that there is at least one workload which
makes possible to detect the cluster.

Lemma 1. For any cluster C and error threshold β,

ω(C, β) ≥ σ(C, β)

For all proofs, see [16].
In the forthcoming discussion we show that

for several simple and common data distributions,
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ω(C, β) > σ(C, β) for certain (relevant) values of β.
Together with the result of Lemma 1, this allows
us to state that detecting a cluster is never cheaper
memory-wise than storing it, and very often it is more
expensive.

We will assume that there is a root bucket in the
histogram which encloses the entire dataspace, and
that this bucket is fixed. When we say that the bucket
limit is one bucket we mean it is one bucket plus this
root.

Real-world data distributions differ significantly in
their characteristics, as do the patterns by which the
users query the data. The challenging scenario for
self-tuning histograms is when the clusters are large,
while the volume of the queries is relatively small
compared to the volume of the clusters. We model this
by assuming the queries are homogeneous – with unit
volume, and the clusters which need to be detected
are larger. We also assume that the queries and the
clusters are aligned to a grid. Aligning queries and
clusters makes cluster detection easier. Therefore, the
problems related to cluster detection that we reveal
here persist if we drop the assumption about grid-
aligned queries and clusters.

Let the dataset be [1, . . . , N ] × [1, . . . , N ], then the
query rectangles have the form [i, j] × [i + 1, j + 1]
where i, j ∈ {1, . . . , N − 1}.

Lemma 2. C is a uniform cluster with dimensions m×k.
For this cluster, σ(C, 0) = 1 and ω(C, 0) = 2. This means
that

1) It possible to store the cluster using one bucket.
2) It is possible to detect the cluster using two buckets.
3) It is impossible to detect the cluster using only one

bucket when m ≥ 2 and k ≥ 2. With one bucket, it
is possible to detect a m× 1 or a 1× k cluster.

Definition 6 (Stagnation). We say that a histogram
stagnates at error level β with reducible error ∆ if the
histogram error is ε(H) = β, the error of H does not
change by more than ε << ∆ by subsequent learning,
and there exists a histogram H ′ with b(H) buckets
such that ε(H ′) = β −∆.

When the histogram stagnates but the reducible
error is low, there is not much one can do. So when
talking about stagnation, we mean the cases when ∆
is comparable to β, say ∆ ≥ 0.3 · β.

Let us calculate the stagnation level of a uniform
cluster of dimensions m×m, m ≥ 2. Lemma 2 states
that at most a single row or a column of the cluster can
be detected when b(H) = 1. Assuming that the cluster
has unit density, the error of a histogram covering a
row of the cluster is (m− 1) ·m. In the meantime, the
histogram H ′ with one bucket covering the cluster has
error 0. Thus, H stagnates at error level β = (m−1)·m
with reducible error ∆ = β = (m− 1) ·m.

Next, we discuss a scenario when stagnation occurs
with a certain probability. The idea is that, once a part

of the cluster has been detected, it does not merge
with other parts, which prevents the detection of the
whole cluster. This is related to sensitivity to learning:
certain query orders result in a bucket configuration
which cannot be improved by subsequent learning.

Again, we have a rectangular cluster C, of dimen-
sions k×l, k, l ≥ 3. The cluster contains a dense ”core”
C̃ of unit volume (Figure 5(a)). Except for the core, the
cluster has unit density, the core density is γ.

CC̃

(a) The cluster C with
dense core C̃ .

b̃ b1

b2

A

(b) A partial bucket cov-
erage for C.

Fig. 5: A cluster with a dense core, and a partial bucket
coverage of it.

Lemma 3. If the histogram contains a bucket covering
exactly the core C̃, and the core density γ > 3, then the
cluster C is not detectable with budget b(H) = 2.

The Lemmas 2 and 3 show two simple clusters on
which the histogram stagnates if it does not have
enough buckets for the cluster detection. The stag-
nation in Lemma 2 is unconditional. The stagnation
in Lemma 3 is conditional on the workload: if the
workload queries the cluster core, it cannot detect the
whole cluster any more. The difference between the
clusters in Lemma 2 and 3 is the dense sub-region
in C. A bucket budget of 2 suffices for detection
of a uniform cluster. When there is a dense sub-
region in the cluster, which becomes detected, two
buckets become insufficient to detect the cluster. This
is because the dense sub-region does not merge with
the rest of the cluster, and essentially the histogram
has to detect C using only one bucket. This can be
generalized to a case when the cluster has more than
one dense sub-region – the more such dense sub-
regions within a cluster, the harder it is to detect the
cluster.

3.3 Dimensionality
Histogram construction in multi-dimensional spaces
is a challenging problem [3]. In particular, finding
locally correlated groups of tuples becomes harder as
we increase the dimensionality of the space [23], [3].
One reason is that in higher-dimensional spaces not
all attributes are relevant for a given region, i.e., some
attributes are just random noise in certain regions,
while they are relevant in others. This observation is
named the curse of dimensionality [2].

Results from [2] directly imply that histogram con-
struction becomes more difficult with increasing di-
mensionality, as follows: Let m be the dimensional-
ity of the dataspace, Pm a sample of data points,
Qm a sample of query centers, and dist a distance
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measure. We define DMINm = min{dist(Pm, Qm)},
and DMAXm = max{dist(Pm, Qm)}. DMINm is the
distance from a query center to the nearest data point,
DMAXm is the distance to the farthest data point.

A lemma in [2] states that, if

lim
m→∞

var
dist(Pm, Qm)

E[dist(Pm, Qm)]
= 0 (7)

then, for every ε > 0,

lim
m→∞

P [DMAXm ≤ DMINm · (1 + ε)] = 1 (8)

Equation (8) says that, as the dimensionality of the
dataspace increases, the distances to the nearest and
to farthest points from a query center converge. In
our terminology, given a cluster and a query cen-
ter, a bucket with diameter DMINm in all dimen-
sions contains no points, and a bucket with diam-
eter DMAXm in all dimensions contains all points
of the cluster. As m grows, DMINm and DMAXm

become closer and closer. Full-dimensional buckets
become ”unstable”, in the sense that slight variations
in the bucket diameter can result in drastic change
in the number of enclosed tuples. As we have seen
in Section 3.1, self-tuning histograms are sensitive to
the query order, that is, changing the order and the
shape of the queries slightly can result in different
bucket configurations. In particular, as Example 1
in Section 3.1 shows, changing the query order can
affect the diameters of resulting buckets. Therefore,
in high-dimensional space, full-dimensional buckets
obtained via self-tuning are unlikely to accurately
capture clusters. Subspace buckets, in turn, do not
suffer from this problem, because the dimensionality
of the buckets remains fixed – it does not depend
on m. There are two considerations which are im-
portant in our context, both established in [2]. First,
the condition in (7) holds for various real-life datasets
and query workloads. Second, although (8) establishes
convergence in the limit, the experiments in [2] show
that for values of m as low as 15, DMIN and DMAX
become sufficiently close.

Subspace clustering [17], [22], [20] tackles this prob-
lem by finding local attribute correlations in different
projections of the data.

Finding lower-dimensional buckets is similar to
finding subspace clusters. Subspace clustering meth-
ods access and analyze the entire data set. They specif-
ically look for clusters in subspaces. In contrast, a self-
tuning histogram looks only at the query feedback.
This typically means that it only has limited infor-
mation about the clusters it has to detect. Moreover,
they do not deploy mechanisms which try to detect
subspace clusters. As mentioned, subspace clusters
appear as uniform when we increase the dimen-
sionality of the dataspace. Therefore, we hypothesize
that increased dimensionality of the dataspace will
have negative impact on the quality of a self-tuning
histogram, as subspace clusters will ”dissolve” in

full-dimensional space and become undetectable. We
also hypothesize that initialization, coupled with self-
tuning, enables the histogram to perform better on
multi-dimensional data. We verify these hypotheses
experimentally.

Initialization by subspace clusters does not enable
us to use self-tuning histograms for datasets of ar-
bitrary dimensionality. Multi-dimensional histograms
(both static and self-tuning) do not scale well on
datasets which have more than 4-5 dimensions. In the
presence of this property, if one has a 100-dimensional
dataset, there is no way around building several low-
dimensional histograms and trying to combine them
to obtain reasonable selectivity estimates [5]. Note
however that histograms only need to be built on
those attributes which appear in the query predicate
(the WHERE clause). That is, on a 100-dimensional
dataset where the query predicate refers to, say, four
attributes, a 4-dimensional histogram is sufficient.

However, as our experiments and the example with
the Cars relation show, even for datasets which
are as low as 3-dimensional, the histogram can fail
to accurately capture local correlations of attributes
in projections of the data space. Subspace-clustering
based initialization addresses this issue.

4 SUBSPACE CLUSTERING AND
HISTOGRAM INITIALIZATION

In this section, we describe our solution of histogram
initialization with subspace buckets. Then, we show
formally how this allows the histogram to become less
sensitive to learning. In order to find a solution to
the problems described above (Sensitivity to Learn-
ing, Stagnation, Dimensionality), we first discuss the
shared reasons for those problems and a common
mechanism in subspace initialization that solves these
problems.

4.1 Initialization by Subspace Clusters
Self-tuning is able to refine the structure of the his-
togram. An uninitialized histogram has to rely on the
first few queries to determine the top-level partition-
ing of the attribute-value space. If this partitioning is
bad, the subsequent tuning is unlikely to ”correct” it.
The solution is to provide the histogram with a good
initial configuration. This configuration should:

1) provide a top-level bucketing for the dataset,
which can be later tuned using feedback;

2) capture the data regions in relevant dimensions,
i.e., should exclude irrelevant attributes for each
bucket.

We now describe how to initialize the histogram with
subspace buckets. The subspace clustering algorithm
finds dense clusters together with the set of relevant
attributes. Then these clusters are transformed into
histogram buckets.
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Generally, clustering algorithms output clusters as
a set of points. We need to transform this set of
points into a rectangular representation. Cell-based
clustering algorithms such as Mineclus [30] look for
rectangular clusters.

Definition 7 (Bounding and Minimal Bounding rect-
angles). A rectangle r is a bounding rectangle (BR) of
a set of points P if

∀p, (p ∈ P )⇒ ( p ∈ r)

r̃ is a Minimal Bounding Rectangle (MBR) for P , if
for any bounding rectangle r of P , r̃ ⊆ r.

We could take the MBR of a cluster as a bucket.
However, we have found out in preliminary experi-
ments that this has a drawback, which is illustrated in
Figure 6. The cluster found on the left spans the whole
y-dimension, therefore, it is one-dimensional. How-
ever, its MBR is two-dimensional (dashed rectangle
on the right). In order to understand why the MBR on
the right does not describe the cluster well, think of a
set of 20 points uniformly distributed over the interval
[0, 1]. If we take the a and b to be the minimum and
the maximum of this set, respectively, we will obtain
an interval [a, b] ⊂ [0, 1], with cardinality 20 points.
However, the distribution within [a, b] would not be
uniform, because the points were sampled from [0, 1]
and not [a, b].

In two- and higher- dimensional spaces, taking the
MBR can increase the dimensionality of the cluster, as
demonstrated in Figure 6. This brings in an additional
problem which is specific to histograms. The two-
dimensional MBR introduces additional intersections
with incoming query rectangles without measurable
difference in estimation quality. This is undesirable.

Fig. 6: On the left, the cluster found. On the right, the
dashed rectangle is the MBR of the cluster. The solid
rectangle on the left is the extended BR.

We can bypass this problem using the information
produced by Mineclus. Mineclus outputs clusters as
sets of tuples together with the relevant dimensions.
Any cluster which does not use at least one of the
dimensions of the dataspace is a subspace cluster.
This means that the cluster spans [min,max] on any
unused dimension. To preserve subspace information,
we introduce extended BRs.

Definition 8 (Extended BR). Let cluster C consist of
tuples {t1, . . . , tn} and dimensions d1, . . . , dk. The ex-
tended BR of C is the minimal rectangle that contains

the points {t1, . . . , tn} and spans [min,max] for every
dimension not in d1, . . . , dk.

Definition 9 (Initialization by Subspace Clusters). If
the dataset consists of disjoint clusters C1, . . . Cm, then
the initialized histogram is a histogram with buckets
{b1, . . . , bm}, where the bounding box of bi is the
extended BR of Ci, and the number of tuples in bi
is the tuple count of Ci.

A useful characteristic of Mineclus is that it assigns
importance to clusters. The algorithm has a score
function which decides whether a set of points is
a cluster or not. The clusters themselves are then
sorted according to this score. We found out that, if
we use the important clusters as first queries in the
initialization, we have a better estimation quality.

4.2 Initialization Analysis

Here we analyze how initialization by subspace clus-
ters helps the histogram obtain a better structure with
lower error.

4.2.1 Initialization and Sensitivity to Learning
We first conduct our analysis on a simplified scenario,
then explain how more general cases can be reduced
to this simple case.

Suppose that there is only one rectangular cluster,
C, which has uniform density. The tuple density
outside the cluster is considerably less than the cluster
density. What matters in all the computations is the
density difference between two regions, so without loss
of generality we can set the outside density equal to
0.

First, we initialize the histogram with a bucket b0
which has a bounding box that equals the bounding
box of C. We call this histogram H0. The error of
histogram H0 is ε(H0) = 0 (ε is defined in Equation
(4)). H0 is depicted in Figure 7.

D
b0 = C

q

Fig. 7: The histogram H0, with cluster C as a bucket.
The dashed rectangle is the incoming query q.

Lemma 4. For any workload W and b(H) ≥ 1, the his-
togram H0|W will have zero error, that is, ε(H0|W ) = 0.

This lemma shows that, once the bucket b0 has been
drilled, any sequence of queries cannot ”spoil” the
histogram structure. The bucket b0 itself is stable, i.e.,
it does not disappear because there will always be
better merge candidates (with less merge penalty). In
terms of Definition 1, for any δ and any workload W ,
the initialized histogram is not δ-sensitive to learning.
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This is because the estimation error is always 0,
regardless of the workload.

On the other hand, if we start with no buckets at
all, the histogram bucket structure will depend on the
query order (see Example 1). If the workload consists
of queries distributed uniformly, then the cluster may
eventually get detected (if b(H) ≥ 2). However, detect-
ing the cluster can take a large number of queries to
achieve, and in the meantime the histogram error will
be > 0, and, again, will depend on the order of the
queries.

We showed on a simple dataset with one dense
cluster that capturing the cluster in a bucket makes
the histogram insensitive to learning, for an arbitrary
query workload and arbitrary number of maximum
buckets allowed. In the absence of such a bucket, the
histogram is sensitive to learning.

We can generalize Lemma 4 and show the same for
a number of disjoint clusters C1, . . . , Cl. Next, the in-
cluster density does not have to be constant, all that
is needed is that the density drop from the cluster
to outside the cluster is large enough to “discourage”
the histogram from performing merges which include
a bucket from within the cluster and one from outside.

In practice, of course, the data can be very complex.
Having demonstrated here why initialization makes
the histogram less sensitive to workloads for simple
data distributions, we leave the complex cases for the
experimental evaluation, and now turn to the issue of
Stagnation.

4.2.2 Initialization and Stagnation

We have shown in Section 3.2 that detecting a cluster
is never ”cheaper” than storing it (Lemma 1), and that
even for simple data distributions, the detectability
threshold can be higher than the storage threshold
(Lemmas 2 and 3). To store the clusters from Lemmas
2 and 3 optimally, the histogram has to allocate a
bucket that corresponds to the cluster boundaries.
Initialization helps to avoid stagnation by starting the
histogram with hard-to-find buckets, which are the
cluster boundaries.

A general analysis for arbitrary clusters and data
distributions is hardly feasible. However, very often
one is dealing with clusters which have smaller sub-
clusters with significantly different density. We infor-
mally discuss how initialization improves detectabil-
ity for data distributions which are noticeably more
complex than the ones we discussed in Section 3.2.
Suppose we have a rectangular cluster which has
several dense sub-regions which we want to capture.
Figure 8 shows a cluster with several dense sub-
regions.

We argue why initialization is helpful in this case.
We will discuss two separate scenarios.

1) The density of C is relatively low, and we do
not need it as a bucket in the histogram.

C

C2

C3
C1

C4

Fig. 8: Cluster C with several dense sub-regions.

2) The density of C is relatively high, and we need
it as a bucket in order to have low error.

1. The density of C is low. In this case it is
more important to use a bucket for one of the sub-
clusters. The Mineclus algorithm finds dense clusters.
The minimum density threshold is controlled by a
parameter, and the clustering algorithm will discard
clusters with low density.

2. The density of C is high. In this case we want to
have C as a bucket in the histogram. We may or may
not want to have all C1, . . . C4 as separate buckets,
depending on the density distribution elsewhere and
the available memory. Lemmas 2 and 3 demonstrate
that detecting the larger bounding box of the cluster
with a limited amount of memory can be hard.

Initialization finds the boundaries of C. Further
learning deals with the smaller clusters. If the clus-
tering algorithm finds C, then it is likely to be a
useful bucket in the histogram. Initialization allows
to capture the cluster boundaries using only one
bucket, which is memory-efficient. Self-tuning in con-
trast needs a larger memory budget to be able to
detect C. If this budget is not available, the histogram
stagnates.

5 EXPERIMENTS

So far, we have described the problems with self-
tuning approaches and our solution based on initial-
ization using subspace clustering. In the following,
we will empirically show that initial subspace clusters
make self-tuning more accurate and robust. First, we
show that our solution based on initialization pro-
vides a clear accuracy improvement over the unini-
tialized histogram (Section 5.2). Then we focus on
the challenges from Section 3, namely – Sensitivity to
Learning, Dimensionality, and Stagnation.

We do not compare our initialized histogram with
static histograms. The reason is that our reference
point is the uninitialized and sufficiently well-trained
adaptive histogram. An extensive comparison of var-
ious histograms can be found in [29]. This includes
comparison of static histograms with STHoles.

5.1 Experimental Setup
We have used two synthetic and one real-world data
set. Dataset parameters are summarized in Table 1.

Synthetic data sets. The two synthetic datasets
used are the Cross dataset and the Gauss dataset. The
Cross dataset contains two one-dimensional clusters,
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Dataset Type Dimensionality Tuples
Cross Synthetic 2 22,000
Gauss Synthetic 6 110,000

Sky Real-World 7 ≈ 1.7 million

TABLE 1: Dimensionalities and tuple counts of our
datasets.

each cluster spanning a different dimension. Each
cluster contains 10,000 tuples. Another 2,000 tuples
are random noise. It is shown in Figure 9. The Cross
dataset is very simple, in the sense that it is possible to
perfectly describe it using 5 buckets. There can still be
an estimation error due to randomly generated data (it
is not perfectly uniform), but the error should be very
low. It can be used to find out whether initialization
makes any difference when the structure of the data
is simple and a low estimation error is expected.
The Gauss dataset is a 6-dimensional dataset. It con-
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Fig. 9: The Cross dataset.

tains subspace clusters which are multi-dimensional
Gaussian bells, drawn in a k-dimensional subspace,
2 ≤ k ≤ 5. The dimensions the clusters appear in
are chosen at random. The dataset assigns 100,000
tuples to clusters, and 10,000 tuples are generated
randomly as noise. The lower-dimensional clusters
are easier to detect for the clustering and hard to
detect using full-space queries. Figure 10 shows a 2-
dimensional variant of the Gauss dataset. Here, the
clusters themselves appear in the full-dimensional
space.

Fig. 10: A 2-dimensional variant of the Gauss dataset.

The Sloan Digital Sky Survey dataset. As a real-
world dataset, we use one of the datasets published by
the Sloan Digital Sky Survey (SDSS) [25]. It contains
approximately 1,7 million tuples of observations. We
call it the Sky dataset. We have removed the “class”
column from the data, and the remaining dataset is

7-dimensional. The first two dimensions are the coor-
dinates of the object in the sky, the next five columns
contain brightness data – passed through different
filters. Complex data correlations exist in the Sky
dataset. There are several full-dimensional clusters, as
well as subspace clusters in different projections of the
data.

Queries, Buckets, Metrics. We generate queries
which span a certain volume in the data space. The
query centers either follow a uniform distribution,
or they follow the data distribution, that is – are
sampled from the data. If not stated explicitly, the
query-center distribution is the uniform distribution.
We also have conducted experiments with different
workload-generation patterns, and the trends have
been the same. Hence, we mostly stick to the pattern
”random centers, fixed-volume queries” because this
allows to compare results across experiments.

The precision of a histogram usually depends on
the available space. We vary the number of histogram
buckets from 50 to 250 like most other researchers do
[27], [24], [3], [29].

To evaluate a histogram, we compare the cardinality
estimates produced by the histogram to the real
cardinality of the query. A cardinality estimate which
is close to the real cardinality enables the optimizer
to accurately estimate the costs of different plans,
and to choose a good plan. Therefore, the quality
of a histogram is conventionally measured by the
error the histogram produces over a series of queries
[3], [24], [27], [29], [12]. Given a workload W and
histogram H , the Mean Absolute Error is:

E(H,W ) =
1

|W |
∑
q∈W
|est(H, q)− real(q)| (9)

where real(q) is the real cardinality of the query. In
order for the results to be comparable across datasets,
we normalize this error by dividing it by the error of
a trivial histogram H0 (cf. [3]). H0 contains only one
bucket which simply stores the number of tuples in
the database.

NAE(H,W ) =
E(H,W )

E(H0,W )
(10)

Unless stated otherwise, the workload is the same for
all histograms and contains 1,000 training and 1,000
simulation queries. The first 1,000 queries are only
for training, and the error computation according to
Equation (10) starts with the simulation queries.

5.2 Accuracy

In the first set of experiments we show that initializa-
tion improves estimation quality. Figures 11, 12 and
13 show the error comparison for the Cross, Gauss and
Sky datasets. For all datasets, the initialized histogram
outperforms the uninitialized version.
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Fig. 11: Errors of initialized vs uninitialized his-
tograms, Cross[1%] setting.
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Fig. 12: Errors of initialized vs uninitialized his-
tograms, Gauss[1%] setting.

As mentioned, the Cross dataset is simple and can
easily be described with 5 to 6 buckets. Nevertheless,
Figure 11 shows that initialization has a significant
effect, improving the estimation accuracy. This is an
experimental confirmation of the analysis conducted
in Section 4.2. Initialization finds the 5-6 buckets
which are essential for the good histogram structure,
while a random workload of even 1,000 training
queries is not enough for the uninitialized histogram
to find this simple bucket layout. Figure 12 shows
the error on the Gauss dataset, which contains more
complex structures in the database in the form of
Gaussian bells hidden in different projections of the
data space. Comparing with the Cross dataset, we can
see that the estimation error for both uninitialized
and initialized histograms is higher. This is expected
and is due to the fact that Cross is a piecewise-uniform
dataset and Gauss is not. On the Gauss dataset we
can see the effect of the subspace clustering much
better, as the initialization now provides a consid-
erably bigger benefit compared to the Cross dataset.
Figure 13 shows the comparison on the Sky dataset.
Here, the errors are higher than both for Cross and
Gauss datasets. The benefit of subspace clustering is
again clear: The initialized version has about half the
error rate compared to the uninitialized version.

In all cases, the initialized histogram outperforms
the uninitialized version. Moreover, for the Gauss and
Sky datasets, the initialized histogram with only 50
buckets is significantly better than the uninitialized
histogram with 250 buckets. Only on the simple Cross
dataset the uninitialized histogram with 250 buckets
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Fig. 13: Error comparison for Sky[1%] setting. The
meaning of the green line ”Initialized (Reversed)” is
explained in Section 5.3.

reaches the quality of the initialized histogram with
50 buckets.

Clustering. The Mineclus algorithm uses parame-
ters α, β, width to find clusters. α is used to determine
the minimal density threshold of the cluster. If the
fraction of tuples that fall into a region is less than α,
the region is not considered a cluster. width is used
to determine the minimal width of the clusters, and
β controls the importance of the cluster size vs its
dimensionality. Our goal when choosing clustering
parameters was to find dense clusters which are not
too small. In our experiments, β did not have much
influence on the clustering quality. We have varied α
from 0.01 to 0.1. Higher values typically corresponded
faster running times and worse initialization results.

alpha beta width error Clustering Time Sim. time
0.01 0.10 10 0.27 502.40 199.94
0.05 0.10 10 0.37 87.16 191.30
0.10 0.10 10 0.45 29.40 198.06
0.01 0.30 10 0.31 411.00 205.60

TABLE 2: Some parameter values, errors and running
times (in seconds) for the Sky dataset.

Table 2 shows running times and errors for some
parameter values. The dataset is the Sky dataset. The
histogram has 100 buckets. For a reference, the error
of uninitialized STHoles on this dataset is 0.62. As the
table shows, clustering times can differ significantly
for different parameter values. However, we point
out that we use clustering as a means of demon-
strating that initialization is important for self-tuning
methods. Mineclus can be optimized in several ways
to utilize the fact that its output is used only for
histogram initialization. First, we need only the clus-
ter boundaries and approximate number of points in
each cluster, not the exact clusters. Second, Mineclus
attempts to assign all tuples to clusters, and usually a
small fraction of points take the most time to decide
which cluster to assign to. For our purposes, however,
all tuples do not need to be assigned to clusters – all
we need is approximate cluster boundaries. With such
potential optimizations in mind, we conclude that the
larger running times in Table 2 can be significantly
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reduced if a specialized algorithm based on subspace
clustering is used instead of Mineclus.

5.3 Robustness
We now revisit the challenges described in Section 3.
The following experiments highlight the reasons why
our initialized version outperforms traditional unini-
tialized histograms. Essentially, we investigate the
sensitivity to learning and the effects of dimension-
ality of the data space on self-tuning.

Sensitivity to learning. To show that STHoles is
sensitive to learning, we conducted experiments using
permuted workloads as defined in Section 3. To show
the effect of changing the order of queries, recall how
we initialize the histogram. We generate rectangles
with frequencies from the clustering output and feed
this to the histogram in the order of importance. This
importance is an additional output of the clustering
algorithm. In the experiment in Figure 13, we use
the same set of clusters to initialize the histogram,
but in a reverse order of importance. Clearly, there
is a significant difference between the normal initial-
ization and the reverse one. This shows two things.
First, permuting a workload changes the histogram
error significantly (Sensitivity to Learning). Second, it
shows the importance of the order of initialization, as
the ”correct order” has a noticeably lower error com-
pared to the reversed order. Finally, Figure 14 shows

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

50 100 150 200 250

N
or

m
al

iz
ed

 E
rr

or
 (

G
lo

b
al

)

Number of STHoles Buckets

Initialized
Uninitialized

Fig. 14: Error comparison for Sky[2%] setting.

the Sky dataset with 2% volume queries instead of 1%.
By comparing the results to the ones in Figure 13, we
can see the effect of changed query volumes. Except
for the case with 50 buckets, the error of the initialized
version is essentially the same in both figures. Thus,
the initialized version is considerably less sensitive
to the change of query volume than the uninitialized
histogram.

Dimensionality. To find out the effect of varying
the dimensionality of the dataset, we have run exper-
iments on 3, 4, and 5-dimensional variants of the Cross
dataset. The idea has been to keep the density and
the structure of the clusters constant, while varying
the dimensionality of the cluster. An n-dimensional
Cross dataset contains n clusters, each cluster is n− 1
dimensional (analogous to the 2-dimensional Cross

dataset). The dataset parameters are summarized in
Table 3.

Dataset Dimensionality Tuples
Cross3d 3 9,000
Cross4d 4 360,000
Cross5d 5 13,500,000

TABLE 3: The higher-dimensional variants of the Cross
dataset.
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Fig. 15: Error comparison for Cross3d, Cross4d, and
Cross5d datasets.

Figure 15 shows the errors of histograms, with and
without initialization, on Cross3d, Cross4d and Cross5d
datasets. A first thing to notice is that the error of the
uninitialized histogram increases consistently by the
same amount. The error of the initialized histogram
stays the same for the three and four dimensional
cases and is considerably lower that the uninitialized
version.

For the five-dimensional Cross5d dataset the num-
ber of tuples has been too high, and the clustering al-
gorithm could not handle the dataset with the param-
eter settings we had used for the lower-dimensional
datasets (there was memory overflow). So we changed
the clustering settings until we found settings which
could handle the dataset. It is likely that this is the
reason why the error of the initialized histogram here
is higher than that of the 3 and 4 dimensional ones.
It still is considerably lower than the error of the
uninitialized histogram.

Running Mineclus on the Sky dataset, we have
found 20 clusters, referred to as {C0, . . . , C19} subse-
quently. Out of those, 11 were full-dimensional and
9 were subspace clusters. Table 4 sums up the the
information of the clusters in the 7-dimensional Sky
dataset. We list the irrelevant dimensions that the
clusters do not use for bucket representations (col-
umn ”Unused”). Clearly, there are global structures
detected in the full space. But we also have detected
very specific correlations between some of the di-
mensions w.r.t. a subset of tuples in the database.
We have conducted experiments with varying bucket
counts, from 50 to 250, as follows. After every 100
queries (out of 2,000 total), we dump the histogram
structure and look for subspace buckets. For all bucket
counts, the uninitialized histogram has not created a
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Cluster Unused Tuples Cluster Unused Tuples
C0 none 207,377 C10 1 98,438
C1 none 178,394 C11 none 21,495
C2 none 153,161 C12 none 17,522
C3 none 121,384 C13 1, 2 153,311
C4 none 114,699 C14 1 17,437
C5 none 83,026 C15 1, 2 77,112
C6 1 218,770 C16 1, 2 39,799
C7 none 54,760 C17 1, 2, 7 21,913
C8 none 50,846 C18 1, 2, 3, 7 24,084
C9 none 40,067 C19 1, 2, 3, 5, 6 19,236

TABLE 4: Clusters found in the Sky dataset, the di-
mensions they do not use and number of tuples in
each cluster.

single subspace bucket. The initialized version starts
with several subspace buckets, which eventually are
merged as the simulation goes on. The only case when
subspace buckets are preserved through 2,000 queries
is the initialized histogram with 250 buckets. We find
this quite interesting, as the number of merges during
2,000 query-simulation with 250 buckets is very high,
and 4 subspace clusters “survive” that many merges.
With the initialized histogram we observe that the
higher the number of buckets, the longer the subspace
buckets survive.

Our conclusion from these dimensionality exper-
iments is the following: STHoles is unable to find
subspace buckets on its own. To do so, it needs
initialization. Thus, our conjecture from Section 3.3 is
true – subspace clusters are hard to find using the
information provided by query feedback.

Stagnation. So far, we have used the same train-
ing workload both for initialized and uninitialized
histograms. Looking at the Sky dataset in Figures 13
and 14, we can see that the uninitialized histogram
has twice the error rate of the initialized version.
One wonders whether additional training can help to
overcome this difference. By providing extra training
queries for the uninitialized version, we can find out
whether the effects of initialization are temporary or
persistent. The setup for this experiment is as follows:

1) Start by training both initialized and uninitial-
ized histograms with the same 1,000 queries.

2) Continue the training of the uninitialized ver-
sion with an additional 18,000 queries.

3) Evaluate both histograms using the same 1,000
query workload.

Figure 16 plots the errors of the uninitialized and
heavily-trained as well as of the initialized his-
tograms. The initialized version consistently outper-
forms the heavily-trained histogram. Comparing Fig-
ures 13 and 16, we see that the error rate of the
heavily-trained version is actually a bit higher than
that of the normally trained histogram (both are unini-
tialized histograms). The reason is twofold. First,
due to Stagnation, extra training does not provide
benefits after a certain number of queries. Second,
there is variance due to different workloads – an-
other manifestation of Sensitivity to Learning. This is
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Fig. 16: Error comparison of heavily-trained vs Initial-
ized histograms, Sky[1%] setting.
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Fig. 17: Histogram errors for different amounts of
training queries, Cross4d[1%], 100 buckets.

an experimental verification of the results obtained
in Section 3.2. Histogram learning stagnates after a
number of learning queries. We have observed this
effect throughout datasets and different workloads.

Next, we vary the number of training from very lit-
tle (50 queries) to normal (1,000 queries). The dataset
is Cross4d , the bucket count is fixed to 100 and
the amount of training queries is one out of {50,
100, 250, 1000}. We have altered the default STHoles
behavior for this experiment. In all other experiments,
histogram refinement continues during the simula-
tion. In this experiment, the histogram stops learning
after the training workload is executed. The error is
calculated as before – the average of 1,000 simulation
queries. Figure 17 shows the error of the initialized
and uninitialized histograms. The reason we observe
such a picture is that there are few, but well defined
clusters in the Cross4d dataset. Initialization finds
them, and further learning is essentially useless. In
contrast, the uninitialized histogram benefits from
training. However, 1,000 queries still are not enough
to detect the four large clusters.

Additional Experiments. Additional experiments
can be found in [16]. One of the experiments is on
a 18-dimensional dataset from particle physics with
5 million tuples. Initialization reduces the error by
30%-50%. However, the simulations take consider-
ably longer to complete than on lower-dimensional
datasets.

Conclusion and remarks on Future Work can also
be found in [16].



14

REFERENCES

[1] L. Baltrunas, A. Mazeika, and M. H. Böhlen. Multi-
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