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Ábel Elekes
Karlsruhe Institute of Technology

Am Fasanengarten 5
Karlsruhe, Germany 76128

abel.elekes@kit.edu

Simone Di Stefano
Karlsruhe Institute of Technology /

Echobot Gmbh
distefano@echobot.de

Martin Schäler
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ABSTRACT
Text classi�cation helps to categorize large number of documents
in Digital Libraries. Text classi�cation results highly depend on the
quality of labeled training data. In practice, the process of manually
annotating documents is a hidden cost that is o�en overlooked. We
propose a general preprocessing method for scenarios in which
training data is scarce. It clusters semantically similar terms by
including both a semantic distance measure and a probabilistic
model of any task-speci�c term distributions. By preprocessing
the training data with our method, one increases the mean clas-
si�cation performance of all tested classi�cation approaches in
text classi�cation tasks having 500 or 1000 training samples. �e
largest observed increase is 15%. When more training samples are
available, we report signi�cant improvements in most scenarios as
well.
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1 INTRODUCTION
Text classi�cation (TC), i.e., to assign prede�ned categories to
text documents [14], is a highly relevant task in Digital Libraries,
since it is an e�ective way to organize enormous number of docu-
ments. [29] [2] [28] It has other important applications, like spam
�ltering [15] or health prediction [21]. Various companies o�er
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services to classify documents such as Twi�er feeds for relevant
signals, like risk factors or new trends.

Nowadays, TC is mainly done by machine-learning (ML) ap-
proaches [22]. One can train classi�ers for an arbitrary class and
expect good results as long as there is su�cient training (i.e., la-
beled) data [14]. However, the costs for generating training data
for ML solutions are o�en signi�cant and rarely discussed. E.g., the
recent AI breakthroughs such as autonomous driving are based on
enormous human tagging e�ort[5]. In the �eld of TC, academic
research focuses on improving the classi�cation accuracy of an-
notated benchmark data-sets for comparability reasons. But, in
practice, the generation of such a data set and the necessary size
are important cost factors. Hence, the costs of generating large
bodies of labeled data for all potentially relevant classes are a se-
vere issue in many TC use cases: �e more data a classi�er uses for
learning, the be�er it tends to predict classes.

An alternative TC approach is the way how humans categorize
text, by taking knowledge on semantic relationships between words
into account. Word embedding models [16] – in theory – contain
such relationships. So we wonder: How to extend TC approaches
with exogenous knowledge on word semantics contained in such
models to compensate the scarcity of labeled data? We target at
a general preprocessing step compensating the scarcity of labeled
data and ultimately increasing text classi�cation accuracy.

Challenges. �e complexity and variability of human language
makes TC a non-trivial task, in particular if there is not much
labeled data, which is usually the case in Digital Libraries [20].
Existing TC approaches may represent a document in a feature
space as a multi-dimensional vector – with one dimension per
existing word. Even for small datasets, this representation can have
thousands of dimensions. �is results in two issues, which reduce
the accuracy. First, classi�ers trained with small data samples lack
robust statistical information and tend to over�t the training data.
Second, unknown documents very likely contain words not covered
by the classi�cation model - a.k.a. out of vocabulary (OOV) words.

Next, the semantic relationships of word embedding models need
to be considered with care. Namely, not only words with a similar
meaning are semantically related, but also antonyms: Words like
’good’ and ’bad’, which obviously are not interchangeable, tend
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to be very similar in word embedding models. �us, approaches
such as [13] that simply replace OOV words with the most similar
labeled one, have li�le or even negative e�ect on classi�cation
accuracy.

Contributions. In this work, we present a lexical substitution
approach for preprocessing that compensates the scarcity of la-
beled data. It is an orthogonal extension to virtually any existing
TC approach, to improve classi�cation accuracy. Our approach
mimics how human annotators preprocess texts. It replaces words
unknown to the classi�er with known ones and substitutes seman-
tically similar words for statistical robustness, based on the main
contribution of this paper: a novel semantic-distributional word
distance measure. Our preprocessing approach is a contribution to
TC for the following reasons:
(1) It combines semantic and distributional information of words.
(2) It uses Bayesian Hypothesis Testing to decide when to substi-

tute a word.
(3) It is generally applicable in combination with any TC algorithm,

because we only replace words in the training data.
(4) It improves classi�cation accuracy in all evaluated datasets

when trained on at most 1000 samples and in most scenarios
with bigger samples as well.

�e novelty of our approach lies in the combination of semantic
and distributional similarity. As a result, even if there is plenty of
labeled data for learning, we observe be�er classi�cation results
than without preprocessing in various tasks. Nevertheless, the
improvement in classi�cation accuracy with our method is most
signi�cant when labeled data is scarce.

2 RELATEDWORK
�e core idea of our method is term extraction [22]. It clusters terms
to reduce the dimensionality of the feature space while incorpo-
rating semantic information. �is means that we create clusters
of terms (dictionaries) which contain semantically similar words
and then substitute words in a cluster with a word representing it.
Previous methods either use distributional information (Distribu-
tional Clustering) or information on semantic relatedness (Semantic
Clustering).

2.1 Distributional Clustering
Baker proposes to cluster terms using a distributional metric based
on a variant of the Kullback-Leibler divergence [3]. �e metric
expresses the discriminative information loss when clustering two
terms together. �eir experiments have shown that feature dimen-
sionality can be heavily reduced without losing much classi�cation
accuracy. Nonetheless, their evaluations have not shown any im-
provement over unprocessed datasets. Based on [3], Slonim and
Tishby [23] propose an improved clustering algorithm using the
Information Bo�leneck Method. �ey maximize the mutual informa-
tion of a word and its cluster with respect to their relative distri-
bution over the categories. �ey report accuracy improvements of
up to 18% when using the same number of cluster features instead
of word features. However, such signi�cant di�erences between
the word- and cluster-based approaches are only observed with an
extremely reduced set of features (as few as 25). [7] focuses on a
reduced set of features as well, while [4] do report improvements

for only one out of three tested datasets when applying distribu-
tional clustering. [1] achieve signi�cant improvements over an
SVM-based method using distributional clustering and a learning
logic technique, but it is unclear whether these improvements are
due to the distributional information or to other e�ects.

2.2 Semantic Clustering
With the popularity of word embeddings, semantic clustering has
been widely researched. [13] uses the cosine similarity between
word vectors to cluster terms using K-Means. �eir results suggest
that certain values of K might yield a slightly be�er classi�cation.
[26] use word-embedding-based clustering in combination with
neural networks. �ey use the Euclidean distance in the embedding
vector space to map similar phrases (n-grams) to the same neural
units. Classi�cation has been evaluated on short texts. �eir work
reports slight improvements in classi�cation over other approaches.

Recently it has become common to use pre-trained word embed-
dings and to �ne-tune them to integrate task-speci�c information
[11] [6]. However, this does not work at all for smaller data sets.
�is is because �ne-tuning changes only the embeddings seen in
the training data. Hence it distorts the word structure of the pre-
trained model when using small training data sets. �is ultimately
hurts its generalization performance [8] [31].

2.3 Implications
As opposed to our method, any existing term clustering approach
refers to one group. In other words, they do not integrate language
semantics or do not consider the distributional properties of the
classi�cation task. As our experiments in Section 4 show, including
both kinds of information is very suitable for short text classi�cation
and is crucial for consistent improvements in TC accuracy. It also
complements the novel �ne-tuning approaches well: In contrast to
them, our method is most e�ective with small training data.

Moreover, there is another advantage of combining the two
clustering methods which is highly relevant in the Digital Library
community, described in the following. Embedding models contain
neural networks with millions of parameters. �is makes under-
standing their clustering decisions just by evaluating the underlying
model virtually impossible. In contrast, this is not the case for dis-
tributional methods where we can clearly interpret why two words
are clustered together or not based on the distributional statistics.
Such with the combination of the two approaches we are able to
employ the robustness of embedding models while retaining the
explainability of the method to the user.

3 METHOD
�ere are various real-world problems where labeled training data
is scarce. An inherent limitation of any TC method that does not
rely on external knowledge is that, when applied to unseen samples,
it can only gain robust information from words that appear in the
training data frequently enough. One option to increase classi�ca-
tion accuracy is to increase the number of labeled documents. But
this can be costly or even infeasible.
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Cluster 1 + - Cluster 2 + - Cluster 3 + -
anarchical 0 1 absurdly 0 1 illegitimate 0 12
capitalism 0 1 admi�edly 1 0 legitimate 35 9
colonialism 0 4 amazingly 1 0 ruse 0 1
… … …

Table 1: Clusters Generated with Naive Approach

Cluster 1 + - Cluster 2 Cluster 3 + -
anarchical 0 1 genuine 1 0 illegality 0 1
imperialism 2 1 legitimate 35 9 illegitimacy 0 1
imperialist 0 4 logical 3 3 illegitimate 0 12
… … …
Table 2: Clusters Generated with Our Method

3.1 Intuition
�e intuition behind our method is to improve the ability of TC
algorithms to generalize. We do so by transforming the input data
so that task-speci�c synonyms are merged. Task-speci�c synonyms
are words that are used synonymously with respect to the classi-
�cation task. All words in a group of synonyms are mapped onto
one and the same representative word. So unseen words can be
handled, and random e�ects due to words with few occurrences in
the training data are reduced, as shown in the following example.

Example 1. Consider a sentence-classi�cation task, namely that
we want to detect changes in company management. A classi�er
might fail to classify “�e corporation announced a new CEO for
2017” as positive, even if it has seen the sentence “�e company
announced a new executive for 2017” in the training data, because
it is unaware of synonyms.

A straightforward approach is to use word embedding models
and cluster words based on their semantic similarity, however this
naive approach has severe limitations as explained in the next
section.

3.1.1 Limitations of Naive Approaches. [13] report minor im-
provements when clustering words based on word similarity alone,
and our own evaluations on di�erent datasets were disappointing.
TC accuracy o�en has been worse than with the original datasets.
We see two reasons for this: �e �rst one is the inability to distin-
guish antonyms and synonyms with the word-embedding model.
Second, there is the problem of task-speci�c synonyms. While the
�rst problem could be addressed using more sophisticated methods
to generate word embeddings [25] or to detect antonyms [18], the
second one is inherent to the outlined approach. Consider again
Example 1 of detecting changes in management, a real-life classi�-
cation problem that we studied together with an industry partner.
In this speci�c case, we do not tag changes of project manager
positions as positive in the training data, since our task is on iden-
tifying �uctuations in upper management. Hence, even if they are
close in the embedding space, we would not want to merge the
word ‘manager’ with other management positions that are relevant,
such as ‘CEO’. In this case ‘manager’ and ‘CEO’ are not considered
synonyms. Note that this is only due to this speci�c classi�cation

Figure 1: �e Preprocessing Method

task. In other scenarios in turn, it would make sense to merge these
job names, i.e., consider them as task-speci�c synonyms.

3.1.2 Integrating Distributional Information. We found that we
can address both problems described above, i.e., antonyms and task-
speci�c synonyms, by integrating information on how the words
are distributed among the positive and negative training examples.
Consider the clusters that the naı̈ve method has generated on the
MPQA dataset shown in Table 1. ’illegitimate’ and ’legitimate’ are
part of the same cluster, even if they clearly are no task-speci�c
synonyms for distinguishing positive and negative expressions. �e
table also shows how o�en each word appears in a negative and
positive training sample. It is obvious that illegitimate and legiti-
mate are signi�cantly di�erently distributed among the positive and
negative samples – a strong indication that they are not used syn-
onymously in this task. In the following we describe a probabilistic
way of weighting the distributional indications against a probably
imperfect measure for semantic relatedness. Table 2 shows the
clusters our method generates. Note that the words imperialist and
imperialism are not merged, even if imperialist appears more o�en
in the positive class, while imperialism has more occurrences in
the negative class. �is illustrates the strength of our probabilistic
approach: Due to the few counts for both words, the di�erence in
the distribution is not signi�cant enough and does not outweigh
the low semantic distance in our formula.

3.2 Processing Overview
Figure 1 shows the proposed preprocessing method. �e notation
follows the Yourdon/DeMarco notation standard. Boxes represent
input/output data, ellipses functions and stripes databases. Arrows
represent the �ow between the states or data. �e sections where
we describe the steps/the data are in brackets.

Our novel distance measure (derived in Section 3.3) is de�ned for
each word pair that appears in the training data and the pretrained
word-embedding space. A small value stands for a high probability
of the two words being task-speci�c synonyms. To replace syn-
onyms with a (random) representative word, a clustering algorithm
is applied to the distance matrix over the vocabulary. OOV-words
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are replaced by the representative word of the nearest cluster if the
distance is under a prede�ned threshold value.

3.3 Deriving a Semantic-Distributional Word
Distance Measure

�e derivation of our measure consists of the following steps.
(1) Modeling of word occurrences as being generated by a

Bernoulli process. (Section 3.3.1)
(2) Interpretation of assigning words to the same cluster as a

probabilistic hypothesis. (Section 3.3.2)
(3) Using Bayesian Hypothesis Testing to assess the plausibility

of (2). (Section 3.3.3)
(4) Incorporating semantic information by using Bayesian pri-

ors. (Section 3.3.4)

3.3.1 Word Occurrences as a Bernoulli Process. To derive the
distributional dissimilarity between pairs of words, it is common
to view word occurrences as being generated by a probabilistic
process. A probabilistic model commonly used to describe word
occurrences distributed over a dichotomy of classes is the Bernoulli
process [12]. Suppose that a wordv ∈ V appears n times in a labeled
dataset D. X is a random variable representing the occurrences of
v in the positive class. Assuming an underlying Bernoulli process,
the probability that, for n total occurrences, v appears k times in
the positive class is:

B(n,k,θ ) B Pr(X = k ; θ ) =
(
n

k

)
θk (1 − θ )n−k

where θ ∈ [0, 1] is the distribution parameter. For a random vari-
able drawn from a Bernoulli process with n trials, we also use the
notation

X ∼ B(n,θ )

3.3.2 Merging Words as a Probabilistic Event. We now perceive
the decision when to assign two words to the same cluster as a
probabilistic event. Ultimately, this implies modeling the decision
of how useful it is to the underlying classi�cation task to substitute
a word v1 with a word v2 or vice versa. From now on, instead of
speaking of “substituting words”, we speak of “merging words”,
since the substitution direction is irrelevant.

We now model the decision process (merging or not merging)
probabilistically. To do so, we associate either decision with the
probabilities of two hypotheses H0,H1. �ey represent the plausi-
bility of merging or not merging respectively.

Hypothesis Formulation. Let Xi ,X j be the random variables that
represent the occurrences of vi ,vj ∈ V . Let ni ,nj be the total
number of occurrences observed for vi ,vj respectively.

Hypothesis H0. (No Merge) In H0, we assume that the observed
word occurrences Xi ,X j are generated by two distinct latent, inde-
pendent Bernoulli processes, i.e.,

H0 : Xi ∼ B(ni ,θ1),X j ∼ B(nj ,θ2),θ1 , θ2

In this scenario, we do not assume any relatedness of Xi ,X j , i.e.,
we do not merge v1 and v2.

HypothesisH1. (Merge) �e probability of the second hypothesis
H1 should express how well we can explain the observed data if
we assume that a common, latent generative process generates the
occurrences of both words Xi , X j :

H1 : Xi ∼ B(ni ,θ1),X j ∼ B(nj ,θ2),θ1 = θ2

High probabilities indicate thatvi andvj are generated by similar
processes and can be merged without losing any discriminatory
information.

�e goal now is to calculate the probabilities of the competing
hypotheses H0,H1, given the observed data. We do this in Sec-
tion 3.3.3 using Bayesian Hypothesis Testing. But before applying
such methods, we establish estimates for the parameters (θ ) of the
underlying Bernoulli processes.

MaximumLikelihood Estimation. When there is no further knowl-
edge about the generative process, a commonly used method to
estimate the parameters of the underlying distribution is Maxi-
mum Likelihood Estimation (MLE). As shown in [19], in case of a
Bernoulli process with n trials and k successes, the MLE is

θ̂MLE = arg max
θ ′

B(n,k,θ ′) = k

n

Let ki ,kj be the numbers of occurrences of vi ,vj in the positive
class. For H0, the MLEs for each Bernoulli process generating Xi
are the following ones:

H0 : θ̂H0,i =
ki
ni

For the second hypothesis, we assume that the independent obser-
vations Xi ,X j have the same underlying distribution parameter.
Assuming that this hypothesis is true, the MLE for H1 is

H1 : θ̂H1 = θ̂H1,1 = θ̂H1,2 =
ki + kj

ni + nj

In the next section we describe how to use Bayesian Hypothesis
Testing to assess the probability of either hypothesis.

3.3.3 Bayesian Hypothesis Testing. Bayesian Hypothesis Testing
is a tool to estimate the probability of competing models. In our
context, we want to compare how well the occurrences of two words
vi ,vj in a document set D is explained before and a�er merging
these, with decisions being represented by H0 and H1. We start
with the proposition that either H0 or H1 are true, i.e.,

Pr(H0 ∨ H1 | D) = Pr(H0 | D) + Pr(H1 | D) = 1 (1)

�e probability ofH0, i.e., two di�erent Bernoulli processes generate
the words, can be expressed using the Bayesian Rule:

Pr(H0 | D) =
Pr(D | H0) Pr(H0)

Pr(H0) Pr(D | H0) + Pr(H1) Pr(D | H1)
(2)

Pr(H1 | D)
(1)
= 1 − Pr(H0 | D)

Note that, since Hypotheses H0 and H1 are complementary, com-
puting the probability of either one is su�cient. Without loss of
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generality, we now only use Pr(H0 | D) since it also is a dissimilar-
ity measure, i.e., higher probabilities mean higher distributional
incompatibility. We �rst simplify Pr(H0 | D) as follows:

Pr(H0 | D) =
Pr(D | H0) Pr(H0)

Pr(H0) Pr(D | H0) + Pr(H1) Pr(D | H1)

=
1

1 + Pr(H1)
Pr(H0)

Pr(D | H1)
Pr(D | H0)︸                 ︷︷                 ︸
Cκ

= (1 + κ)−1

First we derive an estimate for κ and then we will insert it back in
the estimate for Pr(H0 | D) at the end of our argumentation. κ is
called the Bayes Factor and is o�en used as an alternative to the
probability to express the plausibility of H0 over H1. From now on,
we will refer to Pr(H0 | D) as semantic-distributional dissimilarity
or semantic-distributional distance.

3.3.4 Estimation of the Semantic-Distributional Distance Mea-
sure. In this section, we derive an estimate for each probability
of the Bayesian model, i.e., each probability on the right side of
Equations 2. We will denote probability estimates with ˆ as follows:

P̂(H0 | D) B (1 + κ̂)−1 ; κ̂ B
P̂(H1)P̂(D | H1)
P̂(H0)P̂(D | H0)

Moreover, ki ,ni ,kj ,nj denote the word frequencies in the posi-
tive class and in the whole dataset of vi and vj respectively.

Estimation of model likelihoods. We proceed by using Bayesian
Hypothesis Testing to derive estimates for the probability Pr(H0 |D).
To do so, we estimate the likelihoods Pr(D | Hi ), i = 0, 1. We make
the following assumptions:

(1) Word occurrences follow a Bernoulli distribution with the
probability-density function B(n,k,θ )

(2) For word co-occurrences we assume conditional indepen-
dence (c. i.).

�ese are common, realistic assumption in NLP research [10] [9].
We parametrize the Bernoulli distribution with the Maximum like-
lihood estimates from before. For Pr(D | H0), the estimate is:1

P̂
(
Xi = ki ,X j = kj | θ1 = θ̂H0,1,θ2 = θ̂H0,2

)
c.i.
= B(ni ,ki ,θH0,1) · B(nj ,kj ,θH0,2)

=

(
ni
ki

)
θ̂kiH0,1

(
1 − θ̂H0,1

)ni−ki
·(

nj
kj

)
θ̂
kj
H0,2

(
1 − θ̂H0,2

)nj−kj
Analogously, for Pr(D | H1) the estimate is

P̂(D | H1) =
(
ni
ki

) (
nj
kj

)
θ̂
ki+kj
H1

(
1 − θ̂H1

)ni+nj−ki−kj
We then insert P̂(D | Hi ), i = 0, 1, in the estimate κ̂ for κ

κ̂ =
P̂ (H1)
P̂ (H0)

·
θ̂
ki+kj
H1

(
1 − θ̂H1

)ni+nj−ki−kj
θ̂kiH0,1

(
1 − θ̂H0,1

)ni−ki
θ̂
kj
H0,2

(
1 − θ̂H0,2

)nj−kj
1We consider only the probabilities for vi and vj , since all other word probabilities
are equal for both hypotheses and do not a�ect the calculation of κ̂

Integration of semantic knowledge in the priors. �e only proba-
bilities le� for estimation are the priors Pr(H0), Pr(H1). In Bayesian
models, the prior probabilities are o�en used as an interface to
incorporate prior, expert knowledge in the models. When there
is no further knowledge about the prior probabilities Pr(H0) and
Pr(H1), one commonly assumes that every hypothesis is equally
probable, i.e., P̂(H0) = P̂(H1) = 0.5 [30]. But we can use the in-
formation provided by word-embedding models to approximate
the priors. �e calculation of word vectors implies predicting the
probability of a word appearing in a given context. �e cosine
similarity of two word vectors can be interpreted as an approxi-
mation of the probability that two words vi , vj appear in similar
contexts [16, 17]. It ranges from −1 (unrelated words) to 1 (identical
words). If the cosine similarity expresses the relatedness between
two words, the cosine distance values can be used for dissimilarity.
For an embeddingW we de�ne the following distance measure:

distW (v,v ′) =
1 − cos-sim(vecW (v), vecW (v′))

2 ∈ [0, 1],

where vecW (v) represents the vector corresponding to v in em-
beddingW.

For words farther away in the embedding vector space we favor
the �rst hypothesis, i.e., the words should not be merged. We
therefore introduce a parameter α ∈ [0, 1] that speci�es how much
the cosine distance lets the priors deviate from 0.5.

P̂(H0;α) B α ·
(

1
2 − distW (vi ,vj )

)
+

1
2

P̂(H1;α) B 1 − P̂(H0;α)

With parameter α included in the equations, we can tune our pre-
processing procedure. For α = 0, the cosine distance is completely
neglected, and the hypotheses are assumed to be equally prob-
able. For α > 0, the priors deviate from 0.5 proportionally to
α · dist(vi ,vj ). In Section 4 we calculate the classi�cation accuracy
with di�erent values of α to �nd the best one for each dataset.

A�er inserting the above priors in κ̂ , we obtain:

κ̂ = κ(α) =
1
2 − α ·

(
1
2 − distW (vi ,vj )

)
α ·

(
1
2 − distW (vi ,vj )

)
+ 1

2

· P̂(D | H1)
P̂(D | H0)

Finally, we de�ne the semantic-distributional distance that in-
corporates both distributional and semantic information on the
words:

Λα,W (vi ,vj ) B P̂(H0 | D) = (1 + κ̂(α))−1

We note that Λα,W (vi ,vj ) is de�ned using the cosine distance
of word vectors in an embeddingW. �erefore, in order to produce
valid distances, vi and vj must be part of the vocabulary voc(W).

3.3.5 Correction Term. Although the cosine similarity of two
word vectors can be interpreted as an approximation of the prob-
ability of both words appearing in similar contexts, the method
could be improved by learning a function that maps the cosine dis-
tance onto a more accurate probability estimation for words being
synonyms. However, since we found the cosine similarity part to be
too pessimistic, we add a correction term allowing for more weight
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Dataset |D | |V | ` |D+ | |D− |
MPQA 10,624 6,298 3 3,316 7,308
CR 3,772 6,596 20 2,406 1,366
MR 10,662 20,621 21 5,331 5,331
Subj. 10,000 23,187 24 5,000 5,000

Table 3: Dataset statistics. Legend: |D |: size of dataset, |V |:
number of words, `: average document length, |D+ |: positive
samples, |D− |: negative samples.

in the �nal measure. An additional parameter β ∈ [0, 1] controls
the in�uence of this term:

Λα,β,W (vi ,vj ) = βΛα,W (vi ,vj ) + (1 − β)distW (vi ,vj )

4 EVALUATION
In this section we evaluate our method on di�erent classi�cation
tasks. Accuracy is measured for di�erent classi�ers trained on un-
processed and preprocessed training data. We show that classi�ers
trained on our preprocessed data consistently outperform the ones
trained on the original datasets.

4.1 Evaluation Datasets
To evaluate the e�ectiveness of the proposed method, we conduct
experiments on short-text datasets benchmarked in numerous NLP
studies: Customer Reviews (CR), MPQA, Short Movie Reviews
(Rt10k) and Subjectivity (Subj). 2 A summary of additional informa-
tion about the employed datasets can be seen in Table 3. All these
datasets are cases of binary classi�cation.

4.2 Classi�ers
We use three classi�ers for our evaluations. Our goal is to show
that our preprocessing method increases the accuracy with vari-
ous classi�ers built on top of the preprocessed training data. To
show this, we deploy the same classi�ers used in previous studies
[27]. We only change the respective training data to our prepro-
cessed version. We use two baseline TC methods, the Multinomial
Naive Bayes (MNB) and the Naive Bayes Support Vector Machine
(NBSVM) classi�ers. We parameterize them as recommended in
[27].

�e third classi�er we evaluate is presented in [24]. It is based
on recursive auto-encoders (RAEs) and works on the sentence
level. At the time it was introduced it has produced state-of-the-art
classi�cation accuracy on various datasets. We initialize the word
embeddings of the RAE randomly, as suggested by the authors.3

4.3 Pretrained Word Embeddings
We use Google’s pretrainedword2vec SG model for the evaluation. It
has been trained on a part of Google’s News dataset, which contains
around 100 billion words. �e �nal model consists of 3, 000, 000
word vectors of dimensionality 300.4

2We have downloaded the datasets from h�ps://github.com/sidaw/nbsvm.
3A MATLAB implementation of the classi�er is available at h�p://www.socher.org.
4Details and download at h�ps://code.google.com/archive/p/word2vec/

4.4 Term Clustering
�e term clusters are computed with the built-in agglomerative
hierarchical clustering algorithm in Matlab. 5 Its advantage over,
say, K-Means is that it allows to operate on a dissimilarity matrix
based on any distance function designed by the user. In our case,
this is the semantic-distributional distance. However, any other
algorithm that supports custom distance metrics could have been
used (e.g., DBSCAN).

4.5 Experimental Setup
4.5.1 Methodology. We subdivide each dataset as follows: �e

test sets consist of 1000 samples held out from each dataset for
later testing. To show the e�ectiveness of our method on di�erent
training-set sizes, parameter tuning and classi�er training is per-
formed with training sets of varying sizes: 500, 1000, 1500, 8500 for
MPQA, Rt10k and Subj and 500, 1000, 1500, 2600 forCR. For each size,
we sample �ve training sets randomly, using strati�ed sampling.
For each of these sets, a 10-fold cross-validation is performed to �nd
the best parameter combination, i.e., the combination that yields
the highest average accuracy over all folds. �e classi�er is then
trained on the same dataset that is used for the cross-validation and
tested on the held-out test set (�ve times for each sample size and
classi�er combination). We report on these results in Section 4.6.

4.5.2 Parameter Search. During parameter tuning, we search
on all combinations of the following parameter values,

K = {0, 0.25, 0.5, 0.75, 0.9}
α = {0, 0.25, 0.5, 0.75, 1}
β = {0, 0.1, 0.3, 0.5, 0.7, 1}
θ = {0, 0.5, 2}

We exclude all combinations with β = 0 and α , 0 (see Section
3.3.5). Instead of the absolute number of clusters, we use K as a
fraction of terms the resulting preprocessed dataset is reduced to.
E.g., K = 0.25 means that the unigrams are reduced to 0.25 · |V |,
where |V | is the number of unigrams in the dataset.

4.6 Results and Discussion
Figure 2 shows our evaluation results with three di�erent classi-
�ers. �e horizontal axis represents the size of the training set.
�e vertical axis represents the di�erence between classi�cation
accuracy with lexical substitution and without, i.e., a positive value
indicates improvement of our method over unprocessed datasets. 6

�e red values (le� bar) represent the accuracy di�erence using only
semantic clustering, i.e., not using the distributional information
of the training data. �e blue values (right bar) correspond to the
runs using our novel distance measure. �e dots indicate the mean
accuracy di�erence over �ve runs, the thick error bars stand for
the corresponding 25 percentile mark, i.e., the accuracy di�erence
of 3 of 5 runs. �e thin lines extend to the minimum/maximum.

We report on the results achieved with the best parameter com-
bination, as described previously. �e accuracies used to calculate
the di�erence in performance are the mean accuracies measured
over �ve runs of our algorithm. �e algorithm is run with 4 dif-
ferent training sizes. We can observe average improvements in all
5h�ps://www.mathworks.com/help/stats/cluster.html
6Note, that the value ranges are di�erent between the rows.

https://github.com/sidaw/nbsvm
http://www.socher.org
https://code.google.com/archive/p/word2vec/
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Figure 2: Classi�cation accuracy for each dataset (rows) using three di�erent classi�ers (columns).

datasets, except for the Subj dataset classi�ed with RAE and the
Rt10k dataset classi�ed with MNB, both trained with 8500 samples.
More precisely, of all 240 scenarios tested7, in 197 cases (82 %) our
method improves classi�cation accuracy, in 5 cases (2 %) no change
is observed, and in 38 cases (16 %) the performance slightly dete-
riorates. In 173 cases (72 %) distributional information improves
classi�cation accuracy, in 11 cases (5 %) there is no change, and in 56
cases (23 %) the accuracy is worse. In 46 cases (19 %) distributional
information has a higher added value in terms of classi�cation ac-
curacy than semantic information. �ese cases are mostly ones on
the Subjectivity dataset and on smaller training sets.

As expected, the largest improvements are observed in the smaller
training sets. �e mean classi�cation accuracy increases for all
tested dataset and classi�er combinations when the sample size is
at most 1000 samples. �is con�rms the hypothesis that an exoge-
nous knowledge base can improve classi�cation when there is a
lack of training samples. Next, even with more complex classi�ers
such as the RAE [24], our method could be used to facilitate the
training of models which generalize and, hence, perform be�er.

We also observe higher improvements with growing training
sets, e.g., for CR classi�ed with RAE and NBSVM the biggest av-
erage quality jump is observed in training sets with 1000 samples.
�ere seems to be an optimal training-set size, so that the external

74 Datasets × 4 Training-Set sizes × 5 Runs × 3 Classi�ers = 240

knowledge brought from word embeddings has the most bene�-
cial e�ects. �is is because distributional information becomes
robust enough for the substitutions to be most e�cient, compared
to classi�cation without word clusters.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we have presented a new approach to short text classi-
�cation using lexical substitution based on word embedding models.
�e main contribution is the de�nition of a semantic-distributional
word-distance measure. Together with a standard clustering algo-
rithm, the measure can be used to preprocess input data for any
existing TC algorithm. In our evaluation, the preprocessing in-
creases the mean classi�cation accuracy for any tested classi�er
and dataset combination when trained on 500 or 1000 samples. As
an outlook, we expect further improvements by modelling the re-
lationship between the word distance and the true probability of
being synonyms more accurately.
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