
Identifying User Interests within the Data Space – a Case
Study with SkyServer

Hoang Vu Nguyen◦ Klemens Böhm◦ Florian Becker◦

Bertrand Goldman� Georg Hinkel◦ Emmanuel Müller◦•

◦
Karlsruhe Institute of Technology (KIT), Germany

{hoang.nguyen, klemens.boehm, georg.hinkel, emmanuel.mueller}@kit.edu and florian.becker@student.kit.edu

�
Max Planck Institute for Astronomy, Germany

•
University of Antwerp, Belgium

goldman@mpia.de emmanuel.mueller@ua.ac.be

ABSTRACT
Many scientific databases nowadays are publicly available for
querying and advanced data analytics. One prominent example
is the Sloan Digital Sky Survey (SDSS)—SkyServer, which offers
data to astronomers, scientists, and the general public. For such
data it is important to understand the public focus, and trending
research directions on the subject described by the database, i.e.,
astronomy in the case of SkyServer. With a large user base, it is
worthwhile to identify the areas of the data space that are of inter-
est to users.

In this paper, we study the problem of extracting and analyz-
ing access areas of user queries, by analyzing the query logs of
the database. To our knowledge, both the concept of access areas
and how to extract them have not been studied before. We address
this by first proposing a novel notion of access area, which is in-
dependent of any specific database state. It allows the detection of
interesting areas within the data space, regardless if they already
exist in the database content. Second, we present a detailed map-
ping of our notion to different query types. Using our mapping on
the SkyServer query log, we obtain a transformed data set. Third,
we aggregate similar overlapping queries by DBSCAN and gain
an abstraction from the raw query log. Finally, we arrive at clus-
ters of access areas that are interesting from the perspective of an
astronomer. These clusters occupy only a small fraction (in some
cases less than 1%) of the data space and contain queries issued by
many users. Some frequently accessed areas even do not exist in
the space spanned by available objects.

1. INTRODUCTION
Nowadays, many scientific databases are made publicly avail-

able to reach a large community of users. Popular examples are
SkyServer from astronomy and GBIF from biosystematics. With a
large user base, it is of great benefit to identify the parts of the data
space that many users are interested in. This data space is formed

c© 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

by the database schema, which defines the domain of each column
and their relationships. Note that the data space is not constrained
to the actual database content. For instance, Figure 1(a) plots the
subspace formed by two columns plate and mjd of relation SpecOb-
jAll of SkyServer. One can see that the database content does not
span the whole data space, leaving an empty area, i.e., part of the
data space containing no data object.

A good indicator of the interestingness of a (sub)area of the data
space is the frequency it is referred to in user queries. Identifying
common interests of many users is useful for traditional applica-
tions such as performance tuning and query personalization [4, 17,
22]. However, it also is important for learning the database usage,
which tends to represent the focus of the respective scientific com-
munity. In fact, our study of the SkyServer query log reveals that
the interests of users in the data space often correspond to a small
part of the database content. Furthermore, users even are interested
in empty areas of the data space. Inspecting data objects queries
actually have retrieved does not give rise to such insights. The fol-
lowing example is an excerpt of our results.

EXAMPLE 1. As shown in Figure 1(a), the content of relation
SpecObjAll is within the area

(266 ≤ SpecObjAll .mjd ≤ 5141)

∧ (51578 ≤ SpecObjAll .plate ≤ 55752)

of the subspace (SpecObjAll.plate, SpecObjAll.mjd) of the data
space. An area returned by our algorithm that is accessed by
18, 904 queries is

(296 ≤ SpecObjAll .plate ≤ 3200)

∧ (51578 ≤ SpecObjAll .mjd ≤ 52178) ,

i.e., a small part of the content of SpecObjAll.
In Figure 1(b), the area of the subspace (PhotoObjAll.ra, Pho-

toObjAll.dec) that queries refer to spans not only its database con-
tent, but also its empty area. The number of such ‘empty area’
queries is significant, see Table 1 in the evaluation.

Figure 1(c) depicts a scenario similar to that of Figure 1(b).
However, here the empty areas of the subspace accessed by queries
are not contiguous and are larger than the part occupied by the
database content.

The access areas found can be used in various ways: They could
help funding agencies to align the spending of their resources with
community interests. In the context of SkyServer, priority could be

given to projects exploring the area of the sky many astronomers/
scientists/students/the public are interested in. Further, they could
help researchers to identify ‘gaps’ in the current scientific knowl-
edge systematically and to select new, good research topics that are
up to what many people are targeting.

The problem studied in this paper is to identify areas of interest
to many users within the data space, at the right level of abstraction,
from the query log. Our approach rests on the following pillars:

• The database offers a flexible query interface such as SQL.
Such databases and means to query it flexibly are fundamen-
tally important in many scientific domains.

• The database serves a large number of users, i.e., a large com-
munity. This ensures the value of the common interests ex-
tracted.

• Most users do not have personal contact with the database
owner. Hence, he/she does not have an objective picture of
what users really are after. In other words, the anecdotical
evidence that he/she may have is not necessarily representa-
tive of the interests of the user group as a whole.

• Most users of a scientific database are knowledgeable on its
domain, e.g., by working with domain experts with whom
they have collaboration. This implies that most queries is-
sued by users are meaningful. Furthermore, such databases
limit the number of queries each user is allowed to issue
within a window of time. This makes queries well-designed,
but also hinders us to re-issue a large number of queries to
collect statistics.

In such a setting, the problem we study can be more precisely
phrased as: Given the query log containing SQL statements is-
sued by users, how to extract their intents, i.e., the areas of the
data space many users wanted to access, without accessing (re-
querying) the database?

We see three main challenges in the way of solving this problem.
First, we need to come up with a formal definition of access area,
i.e., the area of the data space that a query refers to. The definition
needs to be sufficiently abstract, so that it is not confined to a spe-
cific data model or even a certain database schema. Further, it must
not be confined to the database content and enable the discovery
of empty areas of the data space many users care about. Second,
given an abstract definition of access area, we need to come up with
a mapping of queries to their access areas, or, in other words, a real-
ization of the definition on all query types actually occurring. This
is far from obvious, due to the expressiveness of modern query lan-
guages. In fact, it turns out that in some cases the mapping is overly
complex and sophisticated analysis is required. Third, we need a
procedure to aggregate the access areas of a large set of queries.
Clustering seems promising, but to do so, we need a distance mea-
sure. Such a distance measure needs to be defined, since existing
ones for queries focus on their structure [4]. Here in turn, the focus
has to be on the content (i.e., access areas) and the similarity of
overlapping areas for a meaningful abstraction of a set of queries.

This paper represents our solution to each of these challenges. In
particular, we introduce the novel concept of access area, which is
independent of any specific data model and any database state. Be-
ing independent of the database content brings a performance gain
compared to actually rerunning the queries. In addition, our notion
of access area lets us achieve our important goal: We discover ar-
eas of the data space that are of interest to users, irrespective of the
number of data objects falling into these areas. Second, we provide

a mapping of our notion to all query types occurring in the Sky-
Server query log, i.e., we enable extraction of access areas in prac-
tice. We also show that extracting access areas is not straightfor-
ward for queries with joins, aggregate queries, and nested queries.
Third, we exploit query overlap for the aggregation of access areas
of a large set of queries.

At this point, our main interest is on the application side, i.e., to
find out whether our approach makes sense for domain experts (it
does), whether the results obtained so far are plausible (mostly yes),
and whether they allow for new insights regarding user interests
(not so much at this point, but there are promising starting points for
refinements). We have learned this from a case study on SkyServer
and interviewing both a person responsible for SkyServer and an
‘independent’ astronomer. In the study, we extract access areas
from the SkyServer query log and cluster the transformed data with
DBSCAN. The clustered access areas found occupy only a small
fraction (in some cases less than 1%) of the data space and are
accessed by many users. We also detect access areas which do
not even contain any data objects. Such areas can be rather large
(see Figure 1(c)). Finally, our astronomer does not only deem our
approach helpful for the owner of the data, but also for users.

While our focus so far has been on SkyServer, our concepts are
applicable to any database, i.e., no confinement to RDBMSs. Fur-
ther, since no SkyServer-specific features have been hard-coded in
our implementation, it is applicable to any SQL database and fa-
cilitates any future extension to cope with databases in other do-
mains. We repeat that our concern with this paper is to propose
an approach that leads to interesting results. Tuning the approach,
e.g., by experimenting with other distance functions or clustering
algorithms systematically, is beyond our current scope.

Paper outline: In Section 2, we provide our definition of acess
area. In Section 3, we review related work. In Section 4, we de-
scribe our implementation. In Section 5, we present our distance
function. Section 6 features our case study; Section 7 concludes.

2. ACCESS AREA
The access area of a query captures the area of the data space

that the user is interested in. We now formalize this concept. To
ease our presentation, we first introduce some notation. Then we
discuss two straightforward ways to define access areas and point
out their drawbacks. Finally, we propose our notion of access area.

2.1 Preliminaries
We consider a relational database DB which consists of multiple

relations; each relation has several columns.

Data spaces.
The data space of a relationR ∈ DB which consists of columns

a1, . . . , at is defined as

space(R) = dom(a1)× . . .× dom(at)

where dom(ai) is the domain of column ai. In other words, the
data space of R is the Cartesian product of the domains of its
columns. Note that the data space of R is not confined to the
database content. Further, when t = 1, i.e., R contains one col-
umn only, space(R) = space(a1) = dom(a1). In the rest of
this paper, unless specified otherwise, we use R to denote both the
relation R and space(R).

The data space of DB is defined to be the Cartesian product of
all of its relations. The data space of each relation is a subspace of
the data space of DB.

5141

55752

plate

mjd

Area with data

Area with data accessed by many queries

266

51578

0

(a) SpecObjAll.plate (smallint) vs. SpecObjAll.mjd
(int)

360

85

-25

-50

-90

ra

dec

Area with data

Area with data accessed by many queries

Empty area accessed by queries

210

10

120 10
0

(b) PhotoObjAll.ra (float) vs. PhotoObjAll.dec (float)

3 0 -1 6.5 1

Area with data

Area with data accessed by many queries

Empty area accessed by queries

(c) Photoz.z (real)

Figure 1: Some access areas extracted from SkyServer query log.

Area of data content and empty area of a data space.
Consider again relation R with columns a1, . . . , at. For each

column ai, if ai is numerical, we let content(ai) be the minimum
bounding box of its data values. If ai is instead categorical, we let
content(ai) be the set of values of ai.

The area of data content of R is defined as

content(R) = content(a1)× . . .× content(at) ,

i.e., the minimum bounding hyper-rectangle of the data content.
The empty area of space(R) is empty(R) = space(R) \

content(R). Roughly speaking, empty(R) is the part of space(R)
which is not occupied by any database object. Note that this is a
conservative way of estimating empty(R). A more stringent no-
tion could help to identify larger empty areas accessed by users.

Atomic predicates.
Atomic predicates are those without deeper propositional struc-

ture. Though having many forms, we focus on atomic predicates
having the form of “a θ c” where a is a database column, c is a
constant, and θ is either <,≤, =, >,≥, or <>. We name this type
of predicate as column-constant atomic predicate.

Queries.
Consider a query q in the log, which is issued against a state T

of database DB. Typically, q consists of SELECT, FROM, and
possibly WHERE, GROUP BY, HAVING and ORDER BY
clauses. The ORDER BY clause is not relevant for our purpose
since it does not influence which parts of the data space actually are
accessed. Thus, from now on, we exclude the ORDER BY clause.

Assume that q accesses relations R = {R1, . . . , RN} where
Ri 6= Rj if i 6= j. Note that this excludes self-joins, which do
not occur in the SkyServer query log that we considered. This
type of join typically results in different aliases of the same relation
and causes unreliable comparison of similarity between queries [4].

Each relation Ri ∈ R can appear either in the FROM clause or in
any other clause, possibly in embedded subqueries. The area of
DB accessed by q is a subset of R1 × · · · × RN , which is called
the universal relation of q:

DEFINITION 1. The universal relation of q is defined as:

U = R1 × · · · ×RN .

The set of tuples of U at state T of DB is denoted as (U , T).

Each output column of q may or may not belong to the relations
accessed, since new output columns may be created, e.g., columns
holding constant values. We denote the set of columns appearing
in the WHERE clause of q as AW , the ones in the GROUP BY
clause asAG, the ones in the HAVING clause asAH , and the ones
in any (nested query of) other clauses as AS . We note that AW ,
AG, andAH may be empty. We defineA = AW ∪AG∪AH∪AS .

The WHERE clause can contain one or more atomic predicates
on the columns of some relation(s) in R. Likewise, the HAVING
clause can contain one or more atomic predicates on the columns
of some relation(s) in R, typically in combination with aggregate
functions like SUM, AVG, etc. Additional predicates can appear
in (nested queries of) any other clause. Together, all these pred-
icates and their connections form a constraint on U , in the form
of a Boolean expression. We refer to this Boolean expression as
P . Note that P is independent of any database state. As shown in
Section 4, it is not always easy to extract P from q. Instead, this
depends on the type of q as well as on the definition of access area.
For now, we simply use P for the sake of exposition. We have:

DEFINITION 2. The result set of q at state T is the tuples of
(U , T) which satisfy P . We denote it as (U , T)P .

Following Definition 2, we have (U , T)TRUE = (U , T).

2.2 Naïve Definitions of Access Area
At first sight, one can define the access area of a query q to be

either (a) the area of the data space covered by its result set, or (b)
the part of DB accessed during the execution of q, as follows.

Option (a).
The access area of q is its result set at state T , i.e., (U , T)P .

Under this scheme, an access area can be empty when the user is
interested in an area where no object exists. Using this definition,
we could define the access area of q as the minimum bounding box
of (U , T)P . Typically, (U , T)P is not available in the query log.
This means that we have to re-issue q against the database, most
likely at a different state T ′. So this definition suffers from two
drawbacks. First, we may lose important information on the con-
straint P that the user had defined, as two very different queries
can share the same result set (or minimum bounding box) indepen-
dently of their constraints, i.e., their original intents. Second, if
T ′ 6= T , it may be the case that (U , T ′)P 6= (U , T)P . Thus, this
definition is not meaningful for our purpose.

Option (b).
The access area of q is the part of DB at state T which has been

accessed during the execution of q. In general, the query engine
determines the part of the database to be accessed. To accomplish
this, it relies on different statistics, e.g., query workload, network
statistics, to decide on an execution plan for the query. In conse-
quence, this definition of access areas leaves them dependent on
factors that do not pertain to queries themselves. This is undesir-
able for capturing intents of users. Further, it is also difficult to
impossible to compute access areas with an off-the-shelf commer-
cial DBMS.

2.3 Our Definition of Access Area

DEFINITION 3. Let a database state T of DB allowed by the
database schema be given. A tuple t ∈ U is said to influence the
result set (U , T)P of q iff:

(U \ {t}, T)P 6= (U , T)P .

That is, if t is removed from U , the result set of q at state T will
change. Our definition of access area now is as follows:

DEFINITION 4. The access area of q is:

{t ∈ U : ∃T allowed by DB s.t. t influences (U , T)P} .

That is, the access area of q is given by the set of all tuples con-
tained in the universal relation U that influence the result set of q
in some state allowed by the database schema. Following Defini-
tion 4, the access area of a query q represents the part of the data
space the user is interested in, without limiting it to a certain state.
For instance, let us consider the following example query:

SELECT ∗
FROM T
WHERE u BETWEEN 1 AND 8

According to Definition 4, the access area of this query is
σu≥1∧u≤8(T), even if u /∈ [1, 8] for all tuples of relation T in its
current state. This is because, for any tuple that satisfies 1 ≤ u ≤ 8,
a database state can exist, allowed by the schema, such that the tu-
ple influences the result.

Therefore, our definition of access area copes with queries that
do not return any row as well as with those that resulted in exe-
cution errors, e.g., “Maximum 60 queries allowed per minute” or

“limit is top 500000” in the SkyServer scenario. This is crucial as
it makes sense to capture what the users intended to access, inde-
pendent of the actual database content and load constraints.

2.4 Extraction of Access Areas
To extract the access area of q, we have to obtain U andP . While

extracting U is rather simple, extractingP is more intricate. In fact,
it is not always possible to extract P exactly. When this is the case,
we derive a Boolean expression in conjunctive normal form which
approximates P . With the derivation of P or its approximation,
we typically transform q to an intermediate format. In particular,
concurrently with identifying the access area of q, we transform q
to a query q’ as follows:

SELECT ∗
FROM R1, R2, . . . , RN
WHERE
F (p1(a1,1, a2,1, . . . , aT1,1), . . . , pK(a1,K , a2,K , . . . , aTK ,K))

where

• {a1,1, . . . , aTK ,K} ⊂ A,

• pi for every i ∈ [1,K] being an atomic predicate defined on
columns {a1,i, a2,i, . . . , aTi,i}, and derived from P ,

• F being a conjunctive normal form of the atomic predi-
cates {p1, . . . , pK}, i.e., a conjunction of disjunctions. For
instance, assume that K = 4, F (p1, p2, p3, p4) could be
(p1 ∨ p2) ∧ (p3 ∨ p4).

We note that the WHERE clause is optional and can be empty.
With the above transformation, the access area of query q’ is

the one of q, which is σF (p1,...,pK)(R1 × R2 × · · · × RN), or
σF (p1,...,pK)(U).

For illustration, the following query is already in intermediate
format:

SELECT ∗
FROM T
WHERE (T . u <= 5 OR T . u >= 10) AND T . v <= 5

So no transformation is required and we can obtain its exact ac-
cess area easily.

However, in practice, an exact transformation is not always
straightforward for most query types, especially nested queries in
combination with (NOT) IN, (NOT) EXISTS, (NOT) ALL and
(NOT) ANY. Instead, sophisticated analysis is required. More
details are in Section 4. Having introduced our notion of access
area, we discuss related work in the next section and point out why
it is not suited to address the problem.

3. RELATED WORK
Processing and extracting useful information from SQL queries

has been studied for some time. In this paper, we divide related
work into the following categories: extracting information from
queries, processing query logs, and distance measures for queries.

3.1 Extracting Information from Queries
Ceri and Gottlob [6] studied transforming SQL queries into rela-

tional algebra. Their goal is to preserve the constraints defined by
typical SQL structures such as EXISTS, IN, and aggregate func-
tions. However, since they did not focus on extracting access areas,
they have not introduced methods to convert complex Boolean ex-
pressions, such as those involved in set operations (with IN, ANY,
etc.), to simple ones with atomic predicates. Such simple Boolean

expressions in turn are required to constrain the data space, and
hence, for the extraction of access areas.

Parsing, relaxing and rewriting of queries are investigated in [9,
14, 18, 21]. Their primary goal is to either point out logical flaws
in query sub-expressions, rewrite queries into an optimized, more
declarative form that avoids empty results and improves query per-
formance. Thus, they do not address the problem studied here.

A more intuitive way of representing queries is reported in [11].
The meaning (or intent) of queries is captured by an UML-like no-
tation. This notation breaks down the query structure to show re-
lationships between different fragments. Yet, the proposed method
does not have a mechanism to further reduce complex fragments,
such as EXISTS, to simple ones.

There also is related work to information extraction of queries
from fields such as Natural Language Processing (NLP), Informa-
tion Retrieval (IR), and Machine Learning (ML). For example, [15]
and [19] propose to transform SQL queries to a different format—
the one of natural language. In particular, queries are represented
by graphs using a query template mechanism. The critical elements
of SQL queries are extracted, and different strategies are presented
to construct textual query descriptions from these elements. How-
ever, these studies also do not target at simplifying Boolean expres-
sions to facilitate the extraction of access areas.

3.2 Processing Query Logs
Due to the vast amount of data produced by search engines and

the pervasive tracking of user click-streams, researchers have stud-
ied query log processing to some extent. For instance, [17] and [22]
aim at furthering our understanding of the behavior of users through
their information-seeking activities. These articles demonstrate
why query log processing is useful for data analytics. In more de-
tails, [17] transforms web logs into a format suitable for importing
into databases. In addition, it builds a data warehouse from these
cleaned and structured log files and provides an ad-hoc tool for an-
alytic queries on this warehouse. [22] explores different statistics,
which can be drawn from query logs such as query popularity, term
popularity, average query length, and distance between repetitions
of queries. [3, 4] on the other hand target OLAP logs with the
objective to compare different users sessions.

Singh et al. [23] give a detailed analysis of the first five years
since SDSS SkyServer went on-line. They clean and normalize
web and SQL log files over several months, resulting in data struc-
tures including IP Name, Sessions, and Templates (skeleton SQL
templates). They further compare SQL queries using fragments,
N-grams, and the Jaccard Coefficient, and categorized the queries
into those issued by bots or by mortals.

QueRIE, a query recommendation system [2, 8, 7, 20], is de-
signed to work directly with SkyServer query logs. It uses two dif-
ferent approaches to achieve high accuracy in recommending new
and interesting queries to users. The first approach extracts the
most important SQL query fragments, while the second one uses
the tuples a query retrieves.

SDSS Log Viewer [26] visualizes the SQL queries from the log
files. To achieve the visualization, the author develops a process
to transform the SkyServer SQL log files into a tabular format that
can be stored in a database. Each query is tokenized in order to ap-
ply a visual encoding scheme and to extract the critical fragments.
Depending on these fragments, queries are classified into four cate-
gories representing the type of “sky area” a query accesses: Rectan-
gular Sky Area, Circular Sky Area, Single Point/Object, and others.
Besides this, depending on the intention of the user, the author cre-
ates three categories for the major sets of queries: Scan Queries,
Search Queries, and Retrieve Queries.

All of the above approaches do not solve the problem we study
as they (a) neglect the notion of access area in each query, and (b)
lack mechanisms to map queries to access areas.

3.3 Distance Measures for Queries
Existing distance measures for queries model them as either

strings [25], feature vectors [1, 2, 12], sets of fragments [13], or
graphs [24]. With all these representations, clustering is expected
to be feasible. But these clusters either do not represent specific
parts of the data space, or the mapping would need to be specified
in the first place. In contrast to these, we focus on a similarity no-
tion that allows us to aggregate a set of overlapping access areas.

4. REALIZATION
Different types of queries need different types of predicate ex-

traction, i.e., different mappings to their access areas. Further, as
we will explain in this section, for some types, non-trivial analysis
is required to extract their access areas. As the SQL grammar has
a high complexity, and as many variations exist between different
database management systems, it lies beyond the scope of this pa-
per to cover every possible valid SQL statement. Instead, we focus
on the log file of one large database and extract the access areas
from the statements in this log file. We consider 12, 375, 426 Sky-
Server queries issued by users from 127 countries, starting from
April 2012. We note that since the number of queries considered
is large and their origins are diverse, we do not expect any ma-
jor gaps when working with another public database or returning
to SkyServer in the future. Further, our model can always be ex-
tended later to include yet unhandled types of queries or types of
predicates, schema specific functions, as well as different SQL di-
alects. It is also possible to extract the information from an incom-
ing stream of logged queries, to detect changes in this data stream
and to notify the system operator about the occurrence of new pred-
icates and query types.

For our system implementation, we use the log file from the 9th

data release of SDSS, which has been the latest release when we
started this project. Currently, we classify the queries logged into
several categories to facilitate processing. Nevertheless, we apply
the same procedure for any query type. That is, following Sec-
tion 2.4, before extracting the access area of a query, we transform
it into a query of the intermediate format, if necessary. Then we
process the transformed query to obtain the access area. The de-
tails are as follows.

4.1 Simple Queries
Queries belonging to this category are those without (a) joins, (b)

GROUP BY and HAVING clauses, and (c) nested subqueries.
In other words, each query q of this type either already is of the
intermediate format or can be straightforwardly converted to the
intermediate format (which involves in converting its constraint P
to a conjunctive normal form). For each simple query, since its
predicates can be extracted exactly, we can easily obtain its exact
access area. For example, the following query

SELECT u
FROM T
WHERE u >= 1 AND u <= 8 AND s > 5

is a simple query with access area σu≥1∧u≤8∧s>5(T).
From an implementation point of view, we need special han-

dling of queries containing specific operators, namely BETWEEN
and NOT. In particular, for each predicate with a BETWEEN op-
erator, we need to derive two new predicates to replace the orig-
inal one. For example, T.u BETWEEN 5 AND 10 is converted to

T.u ≥ 5∧T.u ≤ 10. For predicates containing the NOT operator,
we transform them by inverting the respective predicate. For exam-
ple, NOT (T.u > 5 ∧ T.v ≤ 10) becomes T.u ≤ 5 ∨ T.v > 10.

4.2 Join Queries
Most types of JOINs can be converted simply by keeping the

relation and pushing any join condition to the WHERE clause
(CROSS JOIN, INNER JOIN, EQUI JOIN, NATURAL JOIN).
Other types need further consideration, as follows.

EXAMPLE 2. Consider a query q with FULL OUTER JOIN:

SELECT ∗
FROM T FULL OUTER JOIN S ON (T . u = S . u)

Here, the relations involved are T and S, i.e., U = T ×S. Regard-
ing the constraint on U , we observe that FULL OUTER JOIN keeps
all tuples of both relations, even if there is no match for T.u = S.u.
Thus, any tuple in T ×S can influence the result set of the original
query. That is, there is no constraint on U . Hence, we convert the
query to:

SELECT ∗
FROM T , S

The access area then is σ(T × S).

From Example 2, we see that identifying P goes beyond simply
extracting the predicates as-is.

EXAMPLE 3. Consider a query q with RIGHT OUTER JOIN:

SELECT ∗
FROM T RIGHT OUTER JOIN S ON (T . u = S . u)

Again, we have U = T × S. However, identifying P is more com-
plex. We observe that this query returns all tuples in S, together
with those tuples from T which match at least one tuple in S. That
is, it is equivalent to:

SELECT ∗
FROM T , S
WHERE T . u IN (SELECT S . u FROM S)

The above query is nested, and we have a special procedure to
handle it, which comes in Section 4.4. Queries with LEFT OUTER
JOIN are handled analogously.

4.3 Aggregate Queries
There is a variety of aggregate queries in practice, too many to

be covered fully. Thus, we confine our study to aggregate queries
that can be found in the SkyServer query log. Such queries have
the following form:

SELECT ∗
FROM [. . .]
WHERE [. . .]
GROUP BY [. . .]
HAVING AGG(a) [< | ≤ | = | > | ≥ | <>] c

That is, the HAVING clause is of the form AGG(a) θ cwhere a is
a column and θ is either<,≤, =,>,≥, or<>. Further, c is a con-
stant. The FROM clause can consist of any number of relations.
In addition, the WHERE clause is a conjunctive normal form of
atomic predicates. The GROUP BY clause in turn can consist of
any combination of columns. Here, GROUP BY and WHERE
clauses are optional. We consider the aggregate functions SUM(),
COUNT(), MIN(), MAX(), and AVG() in our implementation,
though we note that MAX() does not appear in the log.

Overall, we find an exact transformation that preserves access
areas for queries of the above format. As a representative, we illus-
trate our handling of such queries for the SUM function. To this
end, we observe that there are several scenarios; some of which are
shown below. The others are in [5].

LEMMA 1. Consider the following query:

SELECT T . u , SUM(T . v)
FROM T
GROUP BY T . u
HAVING SUM(T . v) > c

where c is a constant. Assume that dom(T.v) = [inf , supp] where
supp could be +∞, and inf could be −∞. We have:

• If supp > 0, the access area is T .

• If supp ≤ 0 ∧ c > supp, the access area is ∅.

• If supp ≤ 0∧ c ∈ dom(T.v), the access area is σT.v>c(T).

• If supp ≤ 0 ∧ c < inf , the access area is T .

PROOF. Consider an arbitrary tuple t ∈ T (i.e., t is a tuple in
the data space of T).

Case 1: supp > 0. Let k be an integer such that

k >

⌈
2(c− t.v)

supp +max{inf , 0}

⌉
.

Consider a database state in which T contains t and k other tuples
{t′1, . . . , t′k}; each tuple t′i satisfies that t′i.u = t.u and t′i.v =
supp+max{inf ,0}

2
. Since t′i.v ∈ dom(T.v), this state is allowed

by the database schema. We have: t.v +
k∑
i=1

t′i.v > c. Thus, t

influences the result set, i.e., the access area is T .
Case 2: supp ≤ 0. We have the following cases:

• c > supp: For every x′ ∈ dom(T.v), it holds that: t.v +
x′ ≤ t.v < c. This implies that t can never be part of the
access area. Thus, the access area is ∅.

• c ∈ dom(T.v): If t.v > c, we construct a database state
in which T contains t only, which conforms to the database
schema. Further, t influences the result set. In contrast, if
t.v ≤ c, we can deduce that t cannot influence the result set.
Therefore, the access area is σT.v>c(T).

• c < inf : The access area is T .

This concludes our proof.

In the following lemmas, for simplicity, we assume that the do-
main of each column involved is large enough such that with re-
spect to its data type, it can be considered as (−∞,+∞). This
holds in general since queries tend to not have predicates contain-
ing values near the bounds of domains.

LEMMA 2. Consider the following query:

SELECT T . u , SUM(T . v)
FROM T
WHERE T . v < c1
GROUP BY T . u
HAVING SUM(T . v) > c2

where c1 and c2 are constants. We have:

• If c1 > 0, the access area is σT.u<c1(T).

• If c1 ≤ 0 and c2 ≥ 0, the access area is ∅.

• If c1 ≤ 0 and c2 < 0: If c2 < c1, the access area is
σT.u<c1∧T.u>c2(T). Otherwise, it is ∅.

PROOF. Consider an arbitrary tuple t ∈ T (i.e., t is a tuple in
the data space of T). If t.v ≥ c1, t.v is not part of the access area.
Hence, we will only consider the case where t.v < c1.
c1 > 0: Let k be an integer such that k >

⌈
2(c2−t.v)

c1

⌉
. Con-

sider a database state in which T contains t and k other tuples
{t′1, . . . , t′k} where t′i.u = t.u and t′i.v = c1

2
. Since c1

2
is a valid

value of T.v, this state is allowed by the database schema. We have:

t.v +
k∑
i=1

t′i.v > c2. Thus, the access area is: σT.v<c1(T).

c1 ≤ 0 and c2 ≥ 0: For every x′ < c1, it holds that: t.v + x′ ≤
t.v < c1 ≤ c2. This implies that t can never be part of the access
area. Thus, the access area is ∅.
c1 ≤ 0 and c2 < 0: Consider an arbitrary x′ < c1. If t.v ≤ c2,

we have: t.v + x′ < t.v ≤ c2, i.e., t is not part of the access area.
As a result, if c2 < c1, the access area is: σT.u<c1∧T.u>c2(T).
Otherwise, it is ∅.

LEMMA 3. Consider the following query:

SELECT T . u , SUM(T . v)
FROM T
WHERE T . v > c1
GROUP BY T . u
HAVING SUM(T . v) > c2

where c1 and c2 are constants. The access area of this query is
σT.u>c1(T).

PROOF. Consider an arbitrary tuple t ∈ T (i.e., t is a tuple in
the data space of T) where t.v > c1.
c1 > 0: Let k >

⌈
c2−t.v
c1

⌉
. We have: k · c1 > c2. Analogously

to Lemma 2, the access area is: σT.u>c1(T).
c1 ≤ 0: Let k > dc2 − t.ve. Consider a database state in which

T contains t and k other tuples {t′1, . . . , t′k} where t′.u = t.u and
t′.v = 1. This state is allowed by a database schema. In addition,

t.v+
k∑
i=1

t′i.v > c2. Thus, the access area still is: σT.u>c1(T).

In our implementation, we have covered all cases for the SUM
function. For each query with SUM(a) θ c in the HAVING clause,
we check if a belongs to some relation in the FROM clause. If it
does not, we ignore it. Otherwise, we apply special mappings. The
above cases are examples of such mappings. The detailed handling
of other cases as well as other aggregate functions is in [5]. There
we also confine things to one aggregate function per HAVING
clause. This is not a problem in reality, as the more general case
does not occur in the SkyServer query log at all.

4.4 Nested Queries
Queries of this type manifest themselves either explicitly with

operators such as EXISTS, IN, ANY, ALL, or implicitly in some
nested predicate, e.g., T.u = (SELECT S.u FROM S WHERE S.v =
12). As with aggregate queries, we do not discuss every possible
aspect of nested queries and refer to [5] for further information. In-
stead, we focus on several issues, and confine the presentation here
to the EXISTS operator. To keep the exposition simple, we dis-
cuss nested queries of the following form, which covers all nested
queries appearing in the log:

SELECT ∗
FROM [. . .]
WHERE [. . .]
OPT EXISTS (q1)
. . .

OPT EXISTS (qm)

where OPT is either AND or OR, and qi is a query of the interme-
diate format. Further, each qi refers to one single relation, and this
relation does not appear in the FROM clause of the parent query.
This also avoids any implicit self-join.

Given a nested query q of the above format, we transform it into
the intermediate format as follows:

• Group m subqueries in the EXISTS clauses based on the
relations they refer to. W.l.o.g., let the groups be G1 =
{q1

1, . . . , q
1
m1
}, . . . , Gl = {ql1, . . . , q

l
ml
}, where l ≤ m,

quv ∈ {q1, . . . , qm}, and
l∑

u=1

mu = m.

• Let qi.FROM be the relation in the FROM clause of qi.
Further, we write qi.WHERE for all predicates together
with their connections in the WHERE clause of qi. We
transform q to the following query:

SELECT ∗
FROM [. . .] , q1.FROM, . . . , qm.FROM
WHERE [. . .]
OPT (q1

1.WHERE OR . . . OR q1
m1
.WHERE)

. . .
OPT (ql1.WHERE OR . . . OR q1

ml
.WHERE)

• Subsequent simple transformations may be required to con-
vert the constraint in the WHERE clause of the above query
to a conjunctive normal form.

We present three categories of nested queries having the above
format to show why our transformation preserves the access area
of q exactly. In fact, all nested queries with the EXISTS operator
occurring in the SkyServer query log fall into these three categories.

LEMMA 4. Consider the following query:

SELECT ∗
FROM T
WHERE T . u > α
AND EXISTS
(SELECT ∗ FROM S
WHERE S . u = T . u AND S . v < β)

where α and β are constants. The access area of this query is:
σT.u>α∧S.u=T.u∧S.v<β(T × S).

PROOF. The access area of this query is a subset of T × S. We
prove that an arbitrary element (t, s) ∈ T ×S influences the result
of the query if and only if t.u > α, s.u = t.u, and s.v < β.
(⇒): Consider (t, s) ∈ T × S that influences the result. Then

we have that t.u > α. Next, if s.v ≥ β, we can always remove
(t, s) without influencing the result. So it must hold that s.v < β.
Further, if there does not exist any t′ ∈ T such that t′.u > α and
s.u = t′.u, then again we can safely remove (t, s). Thus, such a t′

must exist. If s.u 6= t.u, as long as we keep (t′, s), we can safely
remove (t, s) while the result is not impacted. Hence, it holds that
s.u = t.u. Thus, we have t.u > α, s.u = t.u, and s.v < β.

(⇐): Let (t, s) be such that t.u > α, s.u = t.u, and s.v <
β. We construct a database state where T contains only t, and S

contains only s. Clearly, if we remove (t, s), the result of the query
in this database state is changed.

Combining (⇒) and (⇐), we conclude our proof. Using our
procedure, we have m = 1, q1.FROM is S, and q1.WHERE is
S.u = T.u AND S.v < β. Thus, the transformed query is:

SELECT ∗
FROM T , S
WHERE T . u > α AND S . u = T . u AND S . v < β

which is as expected.

LEMMA 5. Consider the following query:

SELECT ∗
FROM T
WHERE T . u > α
AND EXISTS
(SELECT ∗ FROM S
WHERE S . v < β AND S . u = T . u)
AND EXISTS
(SELECT ∗ FROM S
WHERE S . v >= γ AND S . u = T . u)

where α, β, and γ are constants, and γ ≥ β. The access area of
this query is: σT.u>α∧S.u=T.u∧(S.v<β∨S.v≥γ)(T × S).

PROOF. We prove that (t, s) ∈ T×S influences the result of the
query if and only if: t.u > α ∧ s.u = t.u ∧ (s.v < β ∨ s.v ≥ γ).

(⇒): If (t, s) influences the result, we have t.u > α. If β ≤
s.v < γ, we can safely discard (t, s) without influencing the result.
Hence, it must hold that s.v < β∨s.v ≥ γ. By reasoning similarly
to the proof of Lemma 4, we have s.u = t.u. Thus, if (t, s) influ-
ences the result, then: t.u > α∧s.u = t.u∧ (s.v < β∨s.v ≥ γ).

(⇐): Let (t, s) be such that t.u > α, s.u = t.u, and s.v <
β ∨ s.v ≥ γ. W.l.o.g., we assume that s.v < β. We construct
a database state where T contains t only, and S contains s, and
another s′, where s′.u = t.u and s′.u ≥ γ. Then, if we remove
(t, s), the query result in this database state is changed.

Using our procedure, we transform the original query to:

SELECT ∗
FROM T , S
WHERE T . u > α AND S . u = T . u
AND (S . v < β OR S . v >= γ)

which preserves the access area exactly.

LEMMA 6. Consider the following query:

SELECT ∗
FROM T
WHERE T . u > α
OR EXISTS
(SELECT ∗ FROM S
WHERE S . v < β AND S . u = T . u)
OR EXISTS
(SELECT ∗ FROM S
WHERE S . v >= γ AND S . u = T . u)

where α, β, and γ are constants, and γ ≥ β. The access area of
this query is: σ(T.u>α∨S.u=T.u)∧(T.u>α∨S.v<β∨S.v≥γ)(T × S).

PROOF. Following a proof similar to the one of Lemma 6, we
derive that (t, s) ∈ T × S influences the result of the query if and
only if t.u > α, or s.u = t.u ∧ (s.v < β ∨ s.v ≥ γ). Converting
this Boolean expression to a conjunctive normal form, we arrive at
the result.

We can also use the three categories of nested queries discussed
so far to extract access areas of nested queries that have more than
one nested level, i.e., we are able to generalize beyond the query
log of SkyServer. The following example illustrates our point.

EXAMPLE 4. Consider the following query:

SELECT ∗
FROM T
WHERE T . u > α
AND EXISTS
(SELECT ∗ FROM S
WHERE S . u = T . u AND S . v < β
AND EXISTS
(SELECT ∗ FROM R
WHERE R . v = S . v AND R . x < γ))

where α, β, and γ are constants. From Lemma 4, we know that in
term of access area, the subquery of the outer EXISTS operator is
equivalent to:

SELECT ∗
FROM S , R
WHERE S . u = T . u AND S . v < β
AND R . v = S . v AND R . x < γ

Here, we temporarily consider T.u as a constant. With this trans-
formation, the original query now has only one nested level. Con-
tinuing to apply Lemma 4, we transform the original query to:

SELECT ∗
FROM T , S , R
WHERE T . u > α AND S . u = T . u AND S . v < β
AND R . v = S . v AND R . x < γ

In addition, we can also process nested queries with aggregate
subqueries by combining the theories of this section and of Sec-
tion 4.3. Furthermore, we have an approximation scheme to pro-
cess complex nested queries in general, i.e., the ones that do not
conform to any format already discussed. The details of this ap-
proximation scheme and our handling of nested queries with other
operators are in [5].

4.5 System Implementation
We now briefly describe our actual implementation. For a given

query, we first parse it to identify its single fragments. We use
JSqlParser1, as it is an open source project under the LGPL license
and has a powerful, extensible grammar that supports most of the
SQL structure occurring in the SkyServer logs. Second, we trans-
form these fragments into a form that conforms to our intermediate
format (see Section 2.4). In particular, we extract the relations the
query addresses, including any relation in any nested query, and the
constraints on these relations and related columns. Third, we con-
vert the constraints derived into conjunctive normal form. Finally,
as a cleanup step, we replace any remaining alias with the real name
of the relation and order the list of relations alphabetically. Besides
this, we perform some consolidation on the remaining predicates:
We remove redundant constraints, merge overlapping constraints,
and check the set of constraints for contradictions.

5. OUR DISTANCE FUNCTION
Our end goal is to discover interesting access areas in the data

space that may represent the user interests. To accomplish this, we
1
http://jsqlparser.sourceforge.net/home.php

need to extract a bigger picture out of the access areas of similar
queries. In other words, we need a procedure to aggregate the ac-
cess areas of a large set of queries. We aim at achieving this by
clustering queries based on overlap as our main objective of simi-
larity. The distance measure that we use for clustering simply quan-
tifies the overlap (i.e., the similarity of access areas). Please note
that other distance measures could be used for this purpose. The
distance does not even have to be a metric [16]. However, it should
have its main focus on the content of queries and not their structure
like in other cases [4]. As part of our aggregation, we define such a
distance function as follows.

Consider two queries q1 and q2 of intermediate form (see Sec-
tion 2.4). We define their distance as follows:

d(q1, q2) = dtables(q1.FROM, q2.FROM)

+ dconj(q1.WHERE, q2.WHERE) (1)

where q.FROM denotes the tables in the access area of query q,
and q.WHERE denotes its WHERE part, which is its access
area (in a conjunctive normal form). Note that with proper instanti-
ation of dtables and dconj , one could actually compute this distance
function on the raw queries as in [4]. However, we have shown that
properly extracting access areas of queries is far from simply using
as-is all predicates appearing in the queries. Instead, one needs to
resort to our transformation of queries to intermediate format. In
the followings, we provide our instantiation of dtables and dconj .

5.1 Distance of Access Tables dtables
We use the Jaccard coefficient to measure the distance between

the two sets of table names q1.FROM and q2.FROM :

dtables(q1.FROM, q2.FROM)

= 1− |q1.FROM ∩ q2.FROM |
|q1.FROM ∪ q2.FROM |

.

The Jaccard coefficient has the disadvantage that corner cases have
to be defined if both queries do not access any table. This may
occur if a query only queries database constants. In this case, we
set dtables to 0.

5.2 Distance of Conjunctions dconj
Consider two Boolean expressions b1 and b2 which are both in

conjunctive normal form. We define their distance to be:

dconj(b1, b2)

=

∑
o1∈b1

min
o2∈b2

ddisj(o1, o2) +
∑

o2∈b2
min
o1∈b1

ddisj(o1, o2)

|b1|+ |b2|

where each o1 ∈ b1 is a disjunction of Boolean expression(s), and
|b1| is the number of disjunctions of b1. We define each o2 ∈ b2
and |b2| similarly. In addition, ddisj(o1, o2) is the distance between
o1 and o2, which is given by:

ddisj(o1, o2)

=

∑
p1∈o1

min
p2∈o2

dpred(p1, p2) +
∑

p2∈o2
min
p1∈o1

dpred(p1, p2)

|o1|+ |o2|

where p1 ∈ o1 is an atomic predicate, and |o1| is the number of
atomic predicates of o1. We define each p2 ∈ o2 and |o2| similarly.
The distance between two atomic predicates p1 and p2, given by
dpred(p1, p2), is as follows:
p1 and p2 refer to the same single column. This means that they

are column-constant atomic predicates (see Section 2.1). We refer
to the column as a.

First, we assume that a is numerical. Let MBR(a) be the
minimum bounding box of the area of dom(a) that are accessed
by all queries in the log, including those having accessed the
empty area of dom(a). Further, let access(a) = content(a) ∪
MBR(a). Since a typically has a data type, dom(a) and hence
access(a) are intervals with finite bounds. We set dpred(p1, p2) =
overlap of intervals
width of access(a) , i.e., the normalized overlap of two respective in-
tervals. For instance, assume that p1 is a < 3, p2 is a > 2, and
access(a1) = [0, 5]. We have dpred(p1, p2) = 1/5 = 0.2. Here
we use access(a) instead of content(a) for normalization to cope
with queries accessing the empty area.

On the other hand, if a is categorical, we denote access(a) as
the union between content(a) and the set of values of dom(a)
accessed by all queries in the log. Further, we replace the overlap
of intervals by the number of items p1 and p2 have in common, and
the width of access(a) by its cardinality. Note again that since a
typically has a data type, dom(a) and hence access(a) have finite
numbers of values.
p1 and p2 refer to different columns. We set dpred(p1, p2) to the

proportion of the joint space of the involved columns occupied by
p1 and p2. For instance, assume that p1 is a1 < 3, p2 is a2 > 2,
and access(a1) = access(a2) = [0, 5]. We have dpred(p1, p2) =
(3× 3)/(5× 5) = 0.36.

5.3 Implementation Issues
To use our distance function, for each column a, we need to

know access(a). Since content(a) ⊂ access(a), we need to first
identify content(a). Normally, this can be done by simply query-
ing the database. However, when doing this, we got the timeout
error for many columns, especially those belonging to large rela-
tions. The issue can be resolved in two ways: (1) interact with the
domain experts, or (2) estimate content(a) and hence access(a)
from the database content. The advantage of (2) is that the system
implementation does not need to be configured by hand/modified
when turning to another database. On the other hand, the results
with (1) might be better. However, our concern with this study is to
find out whether our approach as a whole is practical, and whether
results already are useful with relatively simple technical means.
Optimizing output quality further is future work. This is why we
have resorted to (2) in this current evaluation, as follows.

For each numerical column, we derive its statistics by querying
a sample of its data, e.g., 100 rows, from SkyServer. Assume that
[m,M] is its value range obtained from the sample. Then, we set
access(a) = content(a) =

[
m− M−m

2
,M + M−m

2

]
, i.e., we

double the size of the sampled range. When processing each query
in the log containing a column-constant predicate of the form “a
θ c”, if it accesses data not falling into access(a), we update this
range accordingly.

For each categorical column, we do similarly. However, instead
of the range, we maintain its set of values. If a query accesses a
value that does not appear in this set, we update the set accordingly.

We stress again that our access to the SkyServer database at this
point is only for this specific clustering purpose, and our extraction
of access areas is not involved in any physical database access.

6. CASE STUDY: CLUSTERING
TRANSFORMED DATA WITH DBSCAN

In this section, we present a case study where we cluster the
transformed data using our distance function. Our objective is to
find out if we can discover interesting aggregate access areas. Re-
garding clustering, there is a variety of existing algorithms in the
literature. On the other hand, we want to find out whether results

generated with relatively simple means are helpful from the per-
spective of a domain expert. Hence, we use a well-known, rela-
tively simple, noise-aware algorithm, that does not need us to spec-
ify the number of clusters, namely DBSCAN [10].

6.1 The Data
The log originally contains 12, 442, 989 queries. We were able

to extract the access area of 12, 375, 426 queries, which is more
than 99.4%, leaving 67, 563 queries without extraction. The left-
over queries are in fact not accepted by the grammar of the JSql-
Parser. This is because they (a) contain errors, (b) use user-defined
SkyServer-specific functions, or (c) are not SELECT queries but
statements with CREATE TABLE or DECLARE (issued by Sky-
Server administrators). So except for the pathological queries, our
method performs well in extracting access areas.

6.2 Access Areas
In preliminary experiments, we have observed that DBSCAN

(or, at least, its implementation used here) has severe performance
problems when applied to the entire set of transformed queries.
Thus, the following results are obtained on a (not necessarily repre-
sentative) sample consisting of 5, 611, 087 access areas of queries.
Each access area in this sample is constrained to contain only pred-
icates of the form either “a θ c” (column-constant) or “a1 θ a2”
(column-column). This is to increase interpretability of the results.
Of course, while taking all queries into account might be more in-
formative, using that subset does not contradict our objectives: We
want to find hotspots of user interest, and we want to see how much
overlap there is with the actual database content. We also want to
learn how effective standard tools (e.g., an off-the-shelf clustering
algorithm) in this context actually are.

In general, access areas of individual queries do not convey much
information to the database owner, but a summary of this data for
all queries is definitely interesting. To this end, using DBSCAN,
we cluster the access areas in the sample described above. For each
output cluster, we derive its minimum bounding hyper-rectangle,
which we interpret as the aggregated access area of the queries in-
volved. During this process, we leave out extreme range bounds
by applying the 3-standard deviation rule. This is to ensure the ro-
bustness of the results. Overall, we obtain 403 clusters. We list 24
representative clusters in Table 1. We choose these clusters since
we find them to contain few columns and hence, easy to interpret.
For each cluster, we present the following information:

• Cluster ID.

• Cardinality: The number of access areas (queries) falling into
the cluster.

• Area coverage: vaccess
vcontent

where vaccess is the volume of the
aggregated access area, and vcontent is the volume of the
database content.

• Object coverage: naccess
ncontent

where naccess is the number of ob-
jects falling into the aggregated access area, and ncontent is
the number of objects of the database content.

• Access area: A Boolean expression describing the aggre-
gated access area.

Going over the result, we find that most queries in each cluster
are issued by different users, i.e., the cardinality of each cluster
is approximately equal to the number of users. For each of the
Clusters 1–17, its aggregated access area overlaps with a relatively
small part of the database content. In particular, both of its area

coverage and object coverage are fairly small (both less than 1%
for Cluster 17). This shows that some users are interested in only a
small part of the database content when issuing a query. We also see
that while the area coverage is close to the object coverage in many
clusters, this is not the case for Clusters 7, 8, 14, and 15. This is an
indication that queries do not really follow the data distribution.

On the other hand, each of the Clusters 18–24 has its aggregated
access area occupy empty area of the data space. Each such cluster
contains from 17% (Cluster 20) up to 50% (Cluster 22) of the total
number of queries accessing the same data space. This means that
a significant number of queries refer to empty areas where no data
objects are present.

6.3 Feedback from Domain Experts
This subsection describes qualitatitve feedback from our domain

experts. This feedback is confined to the 24 representative clusters
just described. Some important points are as follows:

The approach is promising. Both the SkyServer person and the
independent astronomer have confirmed this. The results might not
only be useful for the data owner, but for users as well: They help
to explore the database, i.e., which combinations of attributes/at-
tribute ranges obviously are important (e.g., Cluster 5). They also
offer orientation in the sense ‘Which parts of the data do others
deem important?’.

Most results are plausible. Cluster boundaries tend to map to
meaningful concepts of astronomy. For instance, the closer a dec-
value is to the equator (dec-value 0), the more interesting the object
is for an astronomer. The cluster in Figure 1(b) reflects this. How-
ever, not all cluster-boundary values are fully clear. Again in Fig-
ure 1(b), we do not know yet why the cluster boundary is dec = 10
(and not, say, 8 or 15, which would be just as conceivable). Simi-
larly, we do not have an explanation for the specific boundary val-
ues along id-type attributes (Clusters 1–4 for instance). These clus-
ters are numerous and require further investigation. On the other
hand, our table does not contain clusters on attributes that the as-
tronomer expects to be queried frequently, such as magnitude.

Result presentation should be improved/refined. Both our experts
have interpreted the top row as the ‘most frequent access area’ (and
were puzzled that most queries explicitly refer to Photoz.objid), but
this is not correct in general. Other attributes may be queried more
frequently, but the values in queries are spread more evenly over the
range, i.e., there is no cluster. This is even likely, since the number
of queries per cluster is relatively small (179, 072 at best, compared
to several million queries). What one can infer from the first row
is that the values in that range are more likely to be referred to in
queries than just outside of the range. A follow-up is that it would
be interesting to know how much denser each cluster is, in contrast
to its immediate surroundings. We conclude that we should have
explained our results more extensively right away, and that there is
further information of interest, such as that density drop.

Our results contain useful hints on how the database could be im-
proved. To illustrate, zooSpec.dec is queried rather frequently with
value −100, even though it is an angle and can only have −90 as
its minimal value. Different steps are conceivable, e.g., a tighter
definition of value ranges, or a better documentation.

There still are open questions which might be relevant for fu-
ture research. For example, the astronomer has pointed out that
there might be ‘test queries’ (i.e., queries that are exploratory in
nature) which are numerous and influence the clustering result by
much and ‘final queries’, as he calls it. While there might be only
relatively few of them, they are important. Finding ways to differ-
entiate between these categories, possibly based on the metadata
available, is future work. There also are points that are minor in

Cluster Cardinality Area
Coverage

Object
Coverage Access area

1 179, 072 0.24 0.36 1, 237, 657, 855, 534, 432, 934 ≤ Photoz .objid ≤ 1, 237, 666, 210, 342, 830, 434
2 121, 311 0.19 0.22 1, 115, 887, 524, 498, 139, 136 ≤ SpecObjAll .specobjid ≤ 2, 183, 177, 975, 464, 224, 768
3 92, 177 0.22 0.21 1, 345, 591, 721, 622, 267, 904 ≤ galSpecLine.specobjid ≤ 2, 007, 633, 797, 213, 874, 176
4 90, 047 0.25 0.25 1, 416, 192, 325, 597, 030, 400 ≤ galSpecInfo.specobjid ≤ 2, 183, 213, 984, 470, 034, 432
5 90, 015 0.19 0.25 PhotoObjAll .ra ≤ 210 ∧ PhotoObjAll .dec ≤ 10
6 82, 196 0.23 0.24 1, 228, 357, 946, 564, 438, 016 ≤ sppLines.specobjid ≤ 2, 069, 493, 422, 263, 134, 208
7 23, 021 0.17 0.04 54 ≤ SpecObjAll .ra ≤ 115
8 23, 021 0.23 0.09 60 ≤ SpecPhotoAll .ra ≤ 124

9 18, 904 0.03 0.01
(SpecObjAll .class = ’star’)
∧(51, 578 ≤ SpecObjAll.mjd ≤ 52, 178) ∧ (296 ≤ SpecObjAll.plate ≤ 3, 200)

10 10, 141 0.26 0.27 (DBObjects.access = ’U’) ∧ ((DBObjects.type = ’V’) ∨ (DBObjects.type = ’U’))
11 4, 006 0.24 0.18 55 ≤ emissionLinesPort .ra ≤ 141
12 3, 785 0.21 0.17 62 ≤ stellarMassPCAWisc.ra ≤ 138
13 1, 622 0.12 0.11 AtlasOutline.objid > 1, 237, 676, 243, 900, 255, 188
14 1, 371 0.16 0.01 (2 ≤ zooSpec.ra ≤ 120) ∧ (30 ≤ zooSpec.dec ≤ 70)
15 1, 141 0.10 0.05 0 ≤ Photoz .z ≤ 0.1

16 1, 102 0.25 0.17
(0 ≤ galSpecExtra.bptclass ≤ 3)
∧(galSpecExtra.specobjid = galSpecIndx .specObjID)

17 1, 035 < 0.001 < 0.001
(sppLines.gwholemask = 0) ∧ (0 ≤ sppLines.gwholeside ≤ 50)
∧(sppLines.specobjid = sppParams.specobjid)
∧(−0.3 ≤ sppParams.fehadop ≤ 0.5) ∧ (2 ≤ sppParams.loggadop ≤ 3)

18 48, 470 0.0 0.0 (10 ≤ PhotoObjAll .ra ≤ 120) ∧ (−90 ≤ PhotoObjAll .dec ≤ −50)
19 41, 599 0.0 0.0 3, 519, 644, 828, 126, 257, 152 ≤ galSpecLine.specobjid ≤ 5, 788, 299, 621, 113, 984, 000
20 18, 444 0.0 0.0 3, 519, 644, 828, 126, 257, 152 ≤ galSpecInfo.specobjid ≤ 5, 788, 299, 621, 113, 984, 000
21 18, 043 0.0 0.0 4, 037, 480, 726, 273, 651, 712 ≤ spplines.specobjid ≤ 5, 788, 299, 621, 113, 984, 000
22 1, 358 0.0 0.0 (6 ≤ zooSpec.ra ≤ 115) ∧ (−100 ≤ zooSpec.dec ≤ −15)
23 422 0.0 0.0 −0.98 ≤ Photoz .z ≤ −0.1
24 217 0.0 0.0 3.0 ≤ Photoz .z ≤ 6.5

Table 1: Some aggregated access areas (clusters of queries), extracted from SkyServer query log.

nature, e.g., suggestions for further figures describing the clusters.

6.4 Comparison to [4]
We want to learn whether our distance measure affects the re-

sult by much. To do so, we compare our method to OLAPClus [4],
which has a proprietary distance function (i.e., based on structure)
for measuring the (dis-)similarity of (OLAP) queries. The distance
function is also applicable to access areas. However, it requires ex-
act matching of two atomic predicates and not their overlapping in
access areas. Thus, when queries accessing the same data space
have very different predicates, e.g., accessing different sets of ob-
jects, it is expected that OLAPClus does not group them into the
same cluster, i.e., aggregated access areas are lost.

The result of OLAPClus on our data set of SkyServer access ar-
eas actually reflects this hypothesis. In particular, OLAPClus pro-
duces approximately 100, 000 clusters for Cluster 1 of our method.
This is because almost every query in Cluster 1 has its predicate in
the form Photoz .objid = c where c is a constant. Similarly, for
each of the Clusters 2–4 of our method, OLAPClus outputs about
50, 000 clusters. This does not only cause high redundancy but also
loss of knowledge on the interests of users.

The benefits of our method on the other hand are two-fold: (a)
succinct output that facilitates post-analysis, and (b) meaningful
capture of the access patterns of users.

6.5 Comparison to OLAPClus on Raw
Queries

Equation (1) suggests that one could actually obtain aggre-
gated access areas by computing our distance function on the raw

queries and clustering them accordingly, without using our extrac-
tion method. Essentially this can be done by applying OLAPClus.
However, for fair comparison, we replace the exact matching of
atomic predicates in OLAPClus by our dconj (see Section 5).

The results show that this version of OLAPClus breaks Clus-
ters 2, 5, 8, 9, 11, 12, 18, 19, 20, and 22 in Table 1. This is because
these clusters contain queries of the forms in Section 4.3 and we
have proved that directly using predicates as-is may lead to mis-
leading access areas. In addition, the modified OLAPClus yields
clusters that do not permit an easy construction of aggregated ac-
cess areas, as heterogeneous Boolean expressions, resulted from
keeping predicates as-is, are put in the same cluster.

6.6 Comparison to Re-querying
Next, we compare our method against the approach that re-issues

queries for collecting statistics. Here, we use two performance met-
rics: efficiency (runtime) and quality of access areas.

Efficiency. Our method processes 100, 000 queries in about 45
seconds on our test machine (Intel R© i5-750 CPU with 8GB RAM).
There are however queries where the extraction takes rather long
time, and in very rare cases, the extraction could not be done within
reasonable time (in the range of hours). Looking closer, we find
that query execution times of each single step (Parsing, Extraction,
CNF, Consolidation) varies between: (a) Parsing: <1 millisecond
and 94 milliseconds, (b) Extraction: <1 millisecond and 1333 mil-
liseconds, (c) CNF: <1 millisecond and undefined, and (d) Consol-
idation: <1 millisecond and 95 milliseconds.

The CNF converter, which we took from an open source project,
is definitely the weakest point with respect to efficiency. In partic-

ular, we discover that the necessary system resources (CPU time,
RAM) grow exponentially with the number of predicates the access
area currently processed includes. Fortunately, in our total of more
than 12 million queries, there are only 471 queries with more than
35 predicates. Such a query often poses a performance bottleneck.
To alleviate the issue, we provide a method within our implemen-
tation that only considers the first 35 predicates of any query. With
this workaround, CNF conversion never lasts longer than 1 hour.
More sophisticated processing is left for future work.

Re-issuing queries is far more expensive than our method. In
particular, our method is orders of magnitude faster than this naïve
approach. Since re-issuing a large number of queries against the
SkyServer database does not terminate within a reasonable amount
of time, we re-run the queries instead on a sample of the database.
The result of this variant is discussed next.

Quality. Compared to re-issuing queries, our method of extract-
ing access areas from the query log provides two advantages. First,
we discover empty spaces that are accessed by many queries. As
expected, extracting access areas from actual results of queries only
yields the areas covered by the database content, i.e., Clusters 18–
24 discovered by our method are missed by this approach. Second,
our method is able to extract access areas from 1, 220, 358 queries
that cause errors when being issued to the SkyServer database. Fur-
ther, our method even extracts access areas of queries that are not
written in correct MSSQL code (which is necessary for SkyServer).
Such queries often are written in a MySQL dialect such as SELECT
Galaxies.objid FROM Galaxies LIMIT 10.

The approach that re-issues queries in turn neither yields empty
spaces nor is able to process queries with execution errors. All in
all, our method offers a more flexible solution towards extracting
the access patterns of users from query logs.

7. CONCLUSIONS
Extracting access patterns of database users, i.e., access areas of

queries, from query logs is crucial to learn the database usage. This
has many applications; one is that it allows to make explicit the
research focus of the respective scientific community. However,
the task is challenging due to the lack of (a) a formal definition of
access area, (b) a mapping of queries to their access areas, and (c)
a procedure, including a distance function, to aggregate the access
areas of a large set of queries.

In this paper, we have a proposed a solution to each of these
challenges. First, we have introduced the novel concept of query
access area. It allows the extraction of access areas independent of
the database content. Second, we provide a mapping of our notion
to all query types occurring in the log, i.e., we enable extraction of
access areas in practice. Third, we exploit query overlap for the de-
tection of aggregated access areas that abstract from the individual
queries. Domain experts deem our approach interesting. Our case
study on the SkyServer query log further shows that our method
discovers clusters of access areas that occupy a small fraction of
the database content. Some access areas even span empty parts of
the data space. Empirical results also show that our method outper-
forms both a state of the art technique on measuring similarities of
queries and an approach that re-issues queries.

In furture work, we plan to experiment with different clustering
techniques on our data sets of extracted access areas. Further, we
intend to test our method with different distance functions to unveil
other interesting access patterns of SkyServer users.

Acknowledgment
We thank Jordan Raddick from Johns Hopkins University for help-

ful discussion and comments.

8. REFERENCES
[1] R. Agrawal et al. Context-sensitive ranking. In SIGMOD

Conference, 2006.
[2] J. Akbarnejad et al. Sql QueRIE recommendations. PVLDB,

3(2), 2010.
[3] J. Aligon et al. Mining preferences from OLAP query logs

for proactive personalization. In ADBIS, 2011.
[4] J. Aligon et al. Similarity measures for OLAP sessions.

Knowl. Inf. Syst., 37(2), 2014.
[5] F. Becker. Transforming the SDSS SkyServer SQL query

log. Master’s thesis, Karlsruhe Institute of Technology
(KIT), Karlsruhe, Germany, 2013.

[6] S. Ceri and G. Gottlob. Translating SQL into relational
algebra: Optimization, semantics, and equivalence of sql
queries. IEEE Trans. Softw. Eng., 11(4), 1985.

[7] G. Chatzopoulou et al. Query recommendations for
interactive database exploration. In SSDBM, 2009.

[8] G. Chatzopoulou et al. The QueRIE system for personalized
query recommendations. IEEE Data Eng. Bull., 34(2), 2011.

[9] A. Cleve and J.-L. Hainaut. Dynamic analysis of SQL
statements for data-intensive applications reverse
engineering. In WCRE, 2008.

[10] M. Ester et al. A density-based algorithm for discovering
clusters in large spatial databases with noise. In KDD, 1996.

[11] W. Gatterbauer. Databases will visualize queries too.
PVLDB, 4(12), 2011.

[12] A. Ghosh et al. Plan selection based on query clustering. In
VLDB, 2002.

[13] A. Giacometti et al. Recommending multidimensional
queries. In DaWaK, 2009.

[14] T. Grust et al. True language-level SQL debugging. In EDBT,
2011.

[15] Y. Ioannidis. From databases to natural language: The
unusual direction. In NLDB, 2008.

[16] A. K. Jain et al. Data clustering: A review. ACM Comput.
Surv., 31(3), 1999.

[17] K. P. Joshi et al. Warehousing and mining web logs. In
WIDM, 1999.

[18] N. Koudas et al. Relaxing join and selection queries. In
VLDB, 2006.

[19] G. Koutrika et al. Explaining structured queries in natural
language. In ICDE, 2010.

[20] S. Mittal et al. QueRIE: A query recommender system
supporting interactive database exploration. In ICDMW,
2010.

[21] H. Pirahesh et al. Extensible/rule based query rewrite
optimization in starburst. In SIGMOD Conference, 1992.

[22] F. Silvestri. Mining query logs: Turning search usage data
into knowledge. Found. Trends Inf. Retr., 4(1-2), 2010.

[23] V. Singh et al. SkyServer traffic report - the first five years.
CoRR, abs/cs/0701173:190–204, 2007.

[24] X. Yang et al. Recommending join queries via query log
analysis. In ICDE, 2009.

[25] Q. Yao et al. Finding and analyzing database user sessions.
In DASFAA, 2005.

[26] J. Zhang. Data use and access behavior in
escience—exploring data practices in the new data-intensive
science paradigm. PhD thesis, Drexel University,
Philadelphia, PA, USA, 2011.

