
Property Specification, Process Verification, and
Reporting – a Case Study with Vehicle-Commissioning

Processes

Richard Mraseka, Jutta Müllea, Klemens Böhma, Michael Beckerb, Christian
Allmannb

aKarlsruhe Institute of Technology (KIT)
Institute for Program Structures and Data Organization

76131 Karlsruhe, Germany
bAUDI AG

85045 Ingolstadt, Germany

Abstract

Testing in the automotive industry is supposed to guarantee that vehicles are
shipped without any flaw. Respective processes are complex, due to the variety
of components and electronic devices in modern vehicles. To achieve error-free
processes, their formal analysis is required. Specifying and maintaining properties
the processes must satisfy in a user-friendly way is a core requirement on any
verification system. We have observed that there are few property templates
that testing processes must adhere to, and we describe these templates. They
depend on the context of the processes, e. g., the components of the vehicle or
testing stations. We have developed a framework that instantiates the templates
of properties at verification time and then verifies the process against these
instances. To allow an automatic verification we develop a transformation of the
commissioning process to a Petri net. Using a novel approach, we are able to
report the found violations to the user in a user-friendly way. Our empirical
evaluation with the industrial partner has shown that our framework does detect
property violations in processes. From expert interviews we conclude that
our framework is user-friendly and well suited to operate in a real production
environment.

Keywords: Property Specification, Business Process Management, Workflow
Management, Verification, Model Checking, Petri Net, Industrial Processes,
Vehicle Commissioning Processes

Email addresses: richard.mrasek@kit.edu (Richard Mrasek), jutta.muelle@kit.edu
(Jutta Mülle), klemens.boehm@kit.edu (Klemens Böhm), michael1.becker@audi.de (Michael
Becker), christian.allmann@audi.de (Christian Allmann)

Preprint submitted to Information Systems September 18, 2015

1. Introduction

The systematic testing and configuration of complex products, e. g., vehicles,
is an important part of a production process. For testing and configuring,
certain tasks need to be executed, automatically or with the help of a human.
So-called commissioning tasks test a component or put it into service, e. g.,
configure the software [1]. Workflows called commissioning processes describe
the arrangement of these tasks. The scenario dealt with in this article is one where
domain experts from industry develop the commissioning processes. Workflow
management systems (WfMS) in the production domain that coordinate the
testing and end-of-line manufacturing of the items produced are referred to as
diagnostic frameworks.

Our overall goal is to verify if a given commissioning process is correct.
This means checking that it fulfills certain properties that are given. This
is in contrast to validation, which is not at a formal level, but relies on the
intuition of the users to ensure that a process meets their needs and is useful.
As just mentioned, for verification it is necessary to specify properties. We
have collected such properties in cooperation with domain experts from industry
by analyzing existing processes, and by closely observing these experts when
designing processes.

Example 1. Some tasks use a specific resource with a limited capacity. A
property is that a resource must not be accessed more often than the maximum
capacity. The consequence of the violation would be that the process must halt.
In this case process execution time is unnecessarily long.

A common definition of correctness of a process is that it fulfills all properties
required. Recent research [2, 3] has shown, and we have observed this as well,
that process models do not always comply with all properties required. Properties
typically are formulated as property rules, which are similar to compliance rules
[4, 5]. For example, a property rule states that before executing Task X another
Task Y has to be executed.

Verification is itself a process that consists of several phases, namely specifying
the properties of the commissioning process, verifying them, and presenting the
results to the users. Our concern is the design and realization of a framework
supporting users throughout this entire process. This gives way to the following
questions. First, how must processes as well as the properties be specified
to facilitate the deployment of verification techniques? Second, how to utilize
domain information to support the users specifying the formal properties? Finally,
how user-friendly are respective solutions? To verify process models given in
a formal representation like Petri nets against properties, there already exist
efficient model checking approaches [6, 7]. However, deriving and specifying the
properties the model must satisfy is another issue. A core question is how a
user-friendly framework for process verification should look like.

Designing such a framework gives way to several challenges: First, the knowl-
edge on which characteristics an industrial process should fulfill is typically

2

distributed among several employees in different departments. Often a documen-
tation is missing, and properties merely exist in the minds of the process modelers.
Second, the properties frequently are context-sensitive, i. e., only hold in specific
contexts of a commissioning process. For example, some tasks need different
protocols to communicate with control units for testing at different factories.
Due to this context-sensitiveness, the number of properties is very large, but with
many variants with only small differences. This causes maintenance problems [8].
For instance, an average process model from our use case has to comply with 39
properties. The properties and process model are constantly being revised. This
leads to serious maintenance problems. Third, to apply an automatic verification
technique like model checking, it is necessary to specify the properties in a formal
language such as a temporal logic [9]. With vehicle-commissioning processes as
well as in other domains, see, for instance [10], [11], specifying the properties in
this way is error-prone and generally infeasible for domain experts who are not
used to formal specification. To facilitate an automatic verification, the process
must be formalized in a notation that allows to directly construct its state space.
To this end, it must be easy to let the properties refer to the processes modeled.
Fourth, it is challenging to present the violations found to the user in a way
that is both succinct and understandable. Fifth, evaluating an approach such as
the one envisioned is difficult. One issue is that the evaluation criteria must be
specified.

We have addressed these challenges based on the real-world use case of vehicle-
commissioning processes. More specifically, we make the following contributions:
We have analyzed which properties occur for vehicle-commissioning processes
and the respective context information. We have observed that there are few
templates these properties adhere to. We propose to explicitly represent these
templates, rather than each individual property. Next, we develop a model of
the context knowledge regarding vehicle-commissioning processes. Here context,
is the components of a vehicle, their relationships and the constraints which the
vehicle currently tested and configured must fulfill. We let a relational database
manage the context information. To populate it, we use several sources, e. g.,
information on the vehicle components from production planning, constraints
from existing commissioning processes, and information provided by the process
designers themselves.

Our framework uses this information to generate process-specific instances
of the property templates, transforms the process models to a Petri net, and
verifies the models against these properties, see Figure 1. For the verification
we rely on a transformation of the notation otx for commissioning processes to
Petri nets which we have developed ourselves. Our framework is able to interpret
the verification results and the characteristics of the process that most likely
are responsible for a property violation. The tool uses the verification result
to highlight the important elements in a visualization of the process. We use
a template-specific approach whose output is more concise than the one of a
generic solution. Our evaluation has shown that the framework as a whole does
detect rule violations in actual real-world commissioning processes. Further,
we have evaluated whether our model of the context together with the rules is

3

Model

checker

Configure Property

Template

Database of

Context

Knowledge
Property

Template
Template

Instances

Transform

OTX2PetriNet

Commissioning

Process Petri net

Verification
Visualize

Result

Commissioning

Process

Annotated

Process

(1) (2) (3) (4)

Figure 1: Steps of the Verification Framework

expressive enough for our domain, in two steps. First, we have evaluated whether
our framework can indeed find property violations in real-world commissioning
processes (with a median of 125 tasks per process model). Second, we have
evaluated the non-functional requirements on our framework by means of expert
interviews, as part of an established test. We observe that our framework is
operational, sufficiently general and usable in a production environment.

This current article is a study that addresses the installment and usage
of advanced process-verification techniques in a real use case. It covers the
complete verification procedure for general properties, including their specifica-
tion, verification and visualization. Despite the fact that this article is titled
’case study’, we go beyond just describing one specific use case, in two respects:
First, the paper describes certain innovations that we have not encountered
anywhere in the scientific literature, including the usage of property templates
and their instantiation with a carefully designed database for context, as well as
the template-specific visualization of constraint violations. Second, the paper
features a thorough evaluation which also takes feedback from domain experts
into account.

Section 2 describes our scenario commissioning processes. Section 3 introduces
our notation. Section 4 explains how to specify the properties required, Section 5
features a transformation of the commissioning notation otx to Petri nets,
and Section 6 describes one way how the verification can be done. Section 7
says how we present the verification result to the user. Section 8 describes the
implementation of our framework. Section 9 features our evaluation. Section 10
reviews related work, Section 11 concludes.

This article is an extended version of [12]. The new contributions are the
transformation of otx to Petri nets (Section 5), the reporting of property
violations to the user (Section 7), a significantly extended description of the
implementation (Section 8), and more details in the remaining sections.

2. Scenario and Requirements

Commissioning processes describe the end-of-line manufacturing and testing
of vehicles. Process developers define these processes with development tools, in

4

Figure 2: The Architecture of a Diagnostic System

several notations (otx, SidisPro, Prodis.Automation). Workflow Management
Systems (WfMS), here referred to as Diagnostic Frameworks, execute these
processes, see Interface 1 in Figure 2. Vehicle commissioning includes, say, to
check for each vehicle produced if all its Electronic Control Units (ecu) are
integrated correctly and to put the ecus into service. ecus are components
built into the vehicle which control specific functionality of the car, e. g., the
ecu mot controls the engine electronics. Each ecu needs to be tested and put
into action, e. g., by installing certain software. To this end, the WfMS executes
several tasks for each ecu. The tasks can be automatic like the configuration,
or they may require a factory worker equipped with a handheld terminal. There
typically are hundreds of tasks for each vehicle.

For example, for an executive-car series there are more than 1650 tasks in
13 processes altogether, and for some vehicle variation it is necessary to check
each of the tasks. Most, but not all tasks communicate with at least one ecu.
For instance, a human task tests if the light in the glove compartment functions
correctly. This task does not need to communicate with an ecu. To communicate
with an ecu in the vehicle, the Diagnostic Framework uses one of two different
communication protocols, the Keyword 2000 protocol (KWP2000) or the Unified
Diagnostic Services (UDS) [1], see Interface 3 in Figure 2. The protocol of an
ecu depends on the vehicle series and its generation. For manual commissioning
tasks, the WfMS presents the task to a factory worker on a handheld device.
For instance, the worker has to check the light bulbs and to either confirm that
they function properly or mark them for post processing, see Interface 2 in
Figure 2. Diagnostic Frameworks execute the commissioning processes at several
specific physical stations in the factory called process places. For each vehicle
project and each process place, at least one process has been designed by process
developers. The processes execute in a pipelined fashion. For instance, the first
testing station tests a vehicle A. After a production cycle, a worker drives A to
the second station, and another vehicle B moves to the first station. If a process
execution takes longer than expected, e. g., because of a deadlock, the entire
commissioning must stop, and this can result in high costs.

Example 2. A vehicle of the executive-car series (M3) is tested at the process
place VP2, next to other places. To this end, the Diagnostic Framework executes

5

the process (M3 VP2). The Diagnostic Framework activates tasks that an ecu
executes automatically, other tasks are allocated to workers. One task checks if
the injection system works properly. For this purpose, the task communicates
with the ecu of the engine of the automobile.

Our framework should be able to detect property violations in commissioning
processes. Additionally to this functional criterion, the framework must meet
further real needs of the process developers: The number of false positives, i. e.,
the number of reported violations that are not problematic, and the number of
false negatives, i. e., the number of undetected rule violations in the processes,
should be small. The framework should be general enough to be used in another
factory. The handling of the framework should be intuitive and not require the
help of a technical person.

3. Notation

In this section we introduce the notation used in this paper, i. e., Petri nets
as formal representation of a process to be verified, and ctl (Computation
Tree Logic) as the language to specify properties. Our framework aims to
verify whether commissioning process given fulfill certain rules regarding the
commissioning of vehicles, i. e., properties. We transform our processes to Petri
nets because their execution semantics is unambiguously defined, and established
verification techniques for Petri nets exist. We use ctl because it can express
general properties, and efficient model checking algorithms for ctl exist. For a
more detailed introduction, see the standard literature, e. g., [13] and [14].

A Petri net is a directed bipartite graph with two types of nodes called places
and transitions. It is not allowed to connect two nodes of the same type.

Definition 1 (Petri net). A Petri net is a triple (P, T, F)

• P is a set of places

• T is a set of transitions (P ∩ T = ∅)

• F ⊆ (P × T) ∪ (T × P) is a set of arcs

p ∈ P is an input place of t ∈ T if (p, t) ∈ F and an output place if (t, p) ∈ F .
•t denotes the set of input places of t and t• the set of output places. A mapping
M : P → N0 maps each p ∈ P to a positive number of tokens. The distribution
of tokens over places (M) represents a state of the Petri net. A transition t ∈ T
is activated in a state M if ∀p ∈ •t : M(p) ≥ 1. A transition t ∈ T in M can fire,
leading to a new state M ′ with:

M ′(p) =

M(p)− 1 if p ∈ •t
M(p) + 1 if p ∈ t•
M(p) else

The set of states reachable from a start state M0 of a Petri net is its state space.

6

X

Y

X

Y

a) b)

Figure 3: Two Computation Trees, (a) fulfills the ctl Formula AG(X → EF(Y)), (b) does not

ctl is a temporal logic to specify properties. Model checking algorithms
exist to efficiently verify ctl properties [15]. The ctl syntax is as follows:

Definition 2 (Computation Tree Logic:). Every atomic proposition p ∈ AP is
a ctl formula. If φ1 and φ2 are ctl formulas then ¬φ1, φ1∨φ2, φ1∧φ2, AXφ1,
EXφ1, AGφ1, EGφ1, AFφ1, EFφ1, A[φ1 U φ2], E[φ1 U φ2] are ctl formulas.

In our domain, AP is a state M of a Petri net. In contrast to ltl (Linear
Temporal Logic) where the formula describes the property of an individual
execution, a ctl formula describes the property of a computation tree, i. e., a
set of executions. This allows to express properties that cannot be expressed in
ltl. An example is that after an event X there always exists a path executing Y
(AG(X → EF(Y))). The operators always occur in pairs: a path operator (A or
E) and a temporal operator (X,G,F or U). The path operators allow to identify
specific executions, i. e., the computation tree. A means that the formula holds
in all succeeding execution paths, i. e., for all child nodes in the computation
tree, E means that at least one execution path exists, i. e., for at least one child
node. The temporal operators argue about states. X means that the formula
holds in the next state, G means that it holds in all succeeding states, F means
that it holds in at least one succeeding state, and [φ1 U φ2] means that φ1 holds
until φ2 is reached.

Example 3. The computation tree in Figure 3(a) fulfills the ctl formula
AG(X → EF(Y)). For the whole tree at any point of time (AG), after the event
X, a path exists (E) where the event Y occurs at least once (F). The tree in
Figure 3(b) does not fulfill the formula. This is because after the event X there
is not any path that leads to the event Y .

4. Property Specification

Our overall goal is to develop a verification framework for vehicle commis-
sioning processes which is easy to use, easily adaptable to new vehicle variants,
and adequate for flexible commissioning process execution. Before verification
takes place, it is necessary to specify the properties for a process. To sup-
port this step, we have collected so-called property templates, together with
engineers who develop diagnostic programs, see Section 4.1. As part of the
verification, our framework determines the context of the process first. For

7

instance, the context consists of the process place, the vehicle project and the
list of tasks and ecus used. This process context is used to query a database
for the information required to dynamically generate instances of the property
templates. Section 4.3 identifies recurring characteristics of such templates and
proposes a respective database representation. Section 4.4 says how to generate
process-specific instances of the templates.

4.1. Properties and Property Templates for Commissioning Processes

We have identified typical properties as follows.

P1 Syntactical Correctness
The commissioning process must be syntactically correct and comply with
the naming conventions of the company for tasks.

P2 Resources of the ecus
Some ecus require specific resources at the process place for their testing.
When a task requires a resource not available at the current process place
the process is blocked.

P3 Connections of the ecus
Each ecu opens a connection to one of two transport protocols supported
(UDS or KWP2000). Each transport protocol can handle a certain number
of open connections, in our environment 10 at the same time. In total, 14
connections altogether can be open at the same time. To avoid blocking of
a process, the process must not open more connections. Table 1 shows the
respective property templates.

P4 Task Conditions
Some tasks depend on the occurrence of other tasks in the process, e.g., they
cannot run in parallel or need to occur in a certain sequential order. Table 1
contains the different property templates for commissioning processes. They
are the result of a comprehensive survey of ours to detect all dependencies
that are conceivable in the commissioning context.

P5 ecu Conditions
Additionally to the conditions on tasks, conditions specific to certain ecus
exist, see Table 1. These conditions hold for any task that communicates
with the respective ecu.

Given this list, we conclude that for some properties a model-checking approach
is feasible, while for others an algorithmic approach is more efficient. In general,
model checking allows the efficient verification of properties that specify the
temporal interaction of events in a process, e.g., properties regarding the control
or data flow. However, properties that are static and refer to the process model
at a whole, e. g., whether a certain resource is available for execution, can hardly
be expressed in a temporal logic and be verified by model checking.

Violations of the control flow can result in undesirable characteristics of the
process execution, referred to as major disturbances. An example is that it may

8

Table 1: Property Templates for Task and ecu Conditions

Prop. Name Description

P3.1 Maximal UDS
Connections

The number of connections to UDS should not
exceed 10.

P3.2 Maximal KWP-
2000 Connections

The number of connections to KWP2000
should not exceed 10.

P3.3 Maximal
Connections

The number of connections UDS and KWP2000
should not exceed 14.

P4.1 Sequential before
(Precedence)

If a task A is in the process, a task B has to
occur before A.

P4.2 Optional Sequen-
tial before

If both A and B occur in the commissioning pro-
cess, B has to occur before A. B can completely
be missing.

P4.3 Sequential after
(Response)

The occurrence of task A leads to the occurrence
of task B.

P4.4 Non-Parallel Tasks A and B are not allowed to occur in par-
allel.

P5.1 Restricted access Only one task at the same time can access/test
each ecu C.

P5.2 Non-Parallel Some ecu C must never be tested in parallel
with an ecu C2.

P5.3 Close Connection Task close-C must close the connection to an
ecu C.

block the execution of the process. This holds for properties P3, P4 and P5. As
mentioned, our approach is to define templates for these properties, see Table 1.

To ensure syntactical correctness (P1) we have implemented several checks,
which take place before the model-checking verification. First, our framework
does an xml validation, in order to check if the otx document is valid against
the xml schema. Additionally, we check whether the task labels comply with the
company regulations. To check Property P2, our framework queries the database
of context knowledge, see Subsection 4.3. It does so to check whether the process
model given can use the respective resources. This resource check is static and is
independent of the data flow. However, we do not exclude properties that specify
the resource perspective in future iterations, cf. the data flow anti-patterns of
[16, 17]. Such properties would require including the handling of resources at
the Petri net level.

4.2. Choice of Temporal Logic

The properties in Table 1 reason about events and their temporal relationships,
e. g., that after an event a an event b occurs sometimes in the future. To this
end, there is the need to specify the properties in a logic that allows for this
temporal behavior, i. e., a temporal logic. The most common temporal logics

9

are ltl (Linear Temporal Logic), ctl (Computational Tree Logic), ctl*, and
µ-calculus [18]. ctl* is an extension of ctl without the limitation that the
path operators and temporal operators always occur in pairs. For instance, it is
possible to formulate EFG(φ). ltl is another subset of ctl* where each formula
always starts with the path operator A followed only by temporal operators.
Often ltl formulas are written without the initial A, and the temporal operators
(X, G, F, U) are replaced by (©,�,♦,U). Due to the absence of path operators
(besides the initial A) ltl can only argue about linear sequences of events, i. e.,
there is only one possible future to be specified.

Formulas φ exist which can be expressed in ctl but not in ltl, while other
formulas µ can be expressed in ltl but not in ctl. The expressiveness of ctl*
is a real superset of both ctl and ltl. The µ-calculus allows for an even larger
expressive power. Figure 4 shows the expressiveness of the four temporal logics.
The property templates of Table 1 lie in ltl ∩ ctl, i. e., can be expressed in all
temporal logics. Related research has described templates expressible in ctl but
not in ltl, e. g., the weak data flow patterns of [16]. To allow future templates
to be expressed, at least the expressive power of ctl is necessary.

Another, but related issue is that we are dealing with large process models in
real world settings, thus we need to consider the complexity of the verification.
Model checking of a ctl formula is in complexity class P, model checking of
ltl is in complexity class pspace. The same holds for ctl* and the µ-calculus.

In conclusion, ctl is most appropriate in our framework. It allows to express
our commissioning properties, model checking is efficient, and mature tools exist.
However, observe that our approach is not limited to ctl. Other temporal logics
are possible if a respective model checker is integrated.

4.3. Database of Context Knowledge

Our goal is to generate properties for checking commissioning processes
automatically, based on the information collected a priori. To this end, we have
developed a model of the context knowledge on commissioning processes in the
automotive industry which supports generating the properties. By definition,
process context is any information that influences the process flow, and that is
not defined by the process model. [19] classifies context into immediate context
(information that is related to the control flow), internal context (internal
information of a company), external context, and environmental context. Our
context information is mainly part of the first two categories (immediate context

CTL
Property
Templates LTL CTL* µ-calculus

Figure 4: The Expressiveness of the four Temporal Logics.

10

Figure 5: Excerpt of the Database Schema for Context Knowledge

or internal context). As argued in [19], the external context, e. g., industry
standards, influences the internal context. For instance, an industry standard
can specify the use of a new communication protocol. The new protocol may have
a different capacity and thus changes how often certain tasks can be in parallel
– We have designed a relational database to manage this context information.
The rationale is that the context information is represented in a user-friendly
manner. The database needs to fulfill the following requirements:

DB-R1 Representing Contextual Information:
The database should contain the contextual information of the commission-
ing processes. First, the properties of the processes depend on the vehicle,
i. e., on the components built into it which have to be tested, mostly ecus.
The type of the vehicle and its concrete configuration determine the ecus
required. Second, the properties of the processes depend on the process
places the component is tested at. The assembly lines for testing and config-
uring consist of these places. They vary in different factories. Third, there
exist dependencies between the commissioning tasks, see Subsection 4.1.

DB-R2 User-Friendly Specification of the Properties:
Engineers should be able to specify the properties in a comfortable way. To
this end, the structure of the database should support the perspective of
these experts and not require extensive experience with formal modeling.

DB-R3 Use of Existing Documents and Information:
Defining the properties should use as much information from previous steps
of the production life cycle as is available. Information on the vehicle and
its components which have to be tested arises during the production design
and production planning. The database should contain this information.

11

Figure 5 shows an excerpt of our database model illustrating the overall structure,
see [20] for more details. Our model consists of three parts, in line with DB-R2.
One part comprises the vehicle components (e. g., the ecus), including variants
of the component configurations, so-called options of the vehicle. The product
planning step delivers such information. We use it to populate the respective
part of the database, cf. DB-R3. Another part contains the commissioning task
objects, dependencies between tasks, and constraints on the tasks, specified as
ctl formulas. A third part describes the assembly lines with process places
and resources available there. Dependencies between the parts complete the
model, e. g., the resources required to perform a testing task. The structure of
the context knowledge given as database model allows to define and maintain
the context in a form expert users are familiar with, cf. DB-R1, DB-R2.

4.4. Template Instances

As part of the verification, our framework determines the context of the
process in a first step. It is used to query the database for the information
required to dynamically generate instances of the property templates of Table 1.
To this end, we specify for each template a ctl-formula in the database. These
ctl-formulas are under-specified, i. e., they contain placeholders filled with the
respective places of the context information. See Subsection 5.5 for details.

Our approach for the property specification is as follows. We start by
extracting the immediate context of the process model to verify, e. g., the process
place, the ecus used, and the vehicle project. Our framework uses the context to
automatically specify the relevant properties for the process model. For instance,
two tasks should not be in parallel if the process model is for a vehicle project X.
For the vehicle project Y the property does not need to hold, due to differently
used communication protocols.

The dynamic generation of properties from the database has several benefits
compared to their direct specification in, say, ctl. First, for a process given
we only consider the properties relevant for it. Second, the maintenance of the
properties is simplified. For example, if a new ecu is available for a process place,
one only needs to add the information into the database, i. e., to Relation ecu.
With a direct specification in turn, one might have to revise the specification of
several hundred properties. The database stores the contextual knowledge in a
centralized and non-redundant form, instead of managing all properties specified
in ctl.

For example, the template “A leads to B” has a few hundred instances – A
and B are variables/placeholders which an instantiation replaces with concrete
tasks. If, say, the need to change the template to “The first occurrence of A leads
to B” arose, updating all property instances would be avoided. Third, domain
experts only need to specify properties in ctl when there is a new property
type, so the number of these error-prone and complicated tasks is reduced.

12

5. Transformation

To allow an automatic verification, e. g., model checking, the process rep-
resentation has to allow search in its state space. Unfortunately, there is no
implementation that analyzes the state space for the proprietary notation for
commissioning processes that we want to verify. At the moment, audi ag has two
concurrent proprietary systems in use for the commissioning of a vehicle series:
Sidis Pro by siemens ag and Prodis.Automation by dsa. Each of these systems
has its own WfMS, its own process notation, and terminals to communicate with
the workers. To simplify the maintenance of the process model repositories, the
new iso-standard otx will replace those proprietary notations in the near future.
Therefore, we support three notations Sidis Pro, Prodis.Automation and otx at
the moment. To this end, we have specified and implemented a transformation of
Sidis Pro and Prodis.Automation to otx containing the structural properties to
verify (Step 1 in Figure 6). It is not possible to generate the state space for the
analysis efficiently in a direct way from an otx process. Thus, we transform the
otx process to a Petri net beforehand (Step 2 in Figure 6). In Subsection 5.1 we
discuss our choice of the formal language. [7][6] show efficient ways to generate
the state space of a Petri net for different applications, e. g., model checking. We
use the LoLA-Framework for this task that produces the state space in the form
of a graph (Step 3 in Figure 6).

SidisPro OTX Petri Net State Space
(1) (2) (3)

Prodis.Automation

flow

A parallel D

B C

A D

B

C

A

B C

C B

D

Figure 6: The Transformation Steps

5.1. Choice of the Formal Language

Formal verification techniques require an explicit representation of the exe-
cution semantics. Unfortunately, the ISO Standard of otx does not include a
formal description of this. Thus, we have to define an interpretation of the core
elements of the otx notation ourselves. We do so by specifying a transformation
of an otx process model to a formal language that allows to analyze the state
space directly. This formal language has to fulfill several core requirements.
First, analysis tools should be available for the verification. Second, all the core
elements of otx should have a representation in that language. Third, the formal
language should be as close as possible to the otx processes, to allow a mapping
of the violations found to otx constructs. Three classes of formal languages
seem possible, Kripke structures, π-calculus, and Petri nets.

13

A

B

BC

C

B

C

P = τA.(b〈x〉.0 | c〈x〉.0)
| b(x).τB .0
| c(x).τC .0

• A

B

C

(a) (b)

(c)

Figure 7: A Process as a Kripke-Structure, in the π-Calculus, and as a Petri Net

Kripke structures are an extension of a transition system. Kripke structures
are connected, directed graphs (S, S0, R, L). Each node s ∈ S represents a state
of the system, with S0 being the set of start states. Each edge r ∈ R represents
a transition from a state to another one. A labeling function L : S 7→ 2AP

maps each state to a set of atomic propositions that are true in the state [14].
A plethora of tools exist for model checking Kripke structures, e. g., the spin
framework [21]. However, commissioning processes contain a lot of parallel
structures. It is not possible to represent these concurrent structures directly as
a Kripke structure. It would be possible to list all combinations of executions each
as a new state. But this would lead to a Kripke structure too complex to handle,
in our case approximately 1060 states. In contrast to a Kripke structure, the
π-calculus is able to directly express concurrent executions. Model checking tools
exist for the π-calculus, e. g., the prism model checker [22]. The π-calculus is
based on a textual (i. e., rather a linear) description [23]. Most process notations
either are graph-based or block-structured. The mapping of a graph-based model
to a textual one is not trivial. There does not exist a clear mapping of the original
process to elements in the π-calculus. Thus, the reporting of violations found
will be hard to understand. Finally, Petri nets are based on bipartite graphs, see
Section 3. They allow for a direct representation of concurrent systems. Tool
support exists for model checking, e. g., the LoLA-Framework [24]. Petri nets are
structurally similar to most process notations and allow for a simple mapping of
subnets to constructs of other notations.

Example 4. Figure 7 shows a process in the three notations. The process
consists of three tasks. First, Task A is executed, followed by a parallel execution
of B and C. Figure 7(a) shows the process as a Kripke structure. The labels
in the states describe the execution of tasks. Figure 7(b) shows the process in
π-calculus. The process model consists of three sub models, to be executed in

14

Table 2: Core Requirements for the three Formal Languages

Kripke-structure π-Calculus Petri Net

Tool Support × × ×
Direct Concurrency × ×
Graph-based × ×

parallel. Only the first one can execute initially, because b(x) and c(x) require
a signal on the channel b or c respectively. The first sub model executes A by
τA and then writes a signal on the channels b and c. This allows the other sub
models to be active, either B or C. Figure 7(c) shows the process as a Petri net.

We decided to use Petri nets as our formal representation. Tool support
exists, it allows to represent concurrency directly and is graph-based. So a
direct mapping of constructs is possible. Table 2 shows a summary of the core
requirements for Kripke-structures, π-calculus, and Petri nets. We do not see
any problem when using our approach with other formal languages if a respective
transformation of otx to the formal language is given.

5.2. OTX2PetriNet

Otx (Open Test eXchange) is an xml-based process notation for commis-
sioning processes. It only allows the definition of structured process models, i. e.,
an otx process model can be represented in a notation similar to process trees
[25]. Otx defines a commissioning process as nodes arranged as a tree. In this
sense it is similar to ws-bpel [26]. The nodes fall into two categories: atomic
nodes (leaf nodes in the tree) and compound nodes (inner nodes). Compound
nodes describe the structural behavior of the process, and atomic nodes describe
the commissioning tasks. In its core, otx allows five different types of compound
nodes (flow, loop, branch, parallel, and handler). For each node type we define a
template, specifying a Petri net representation of the routing behavior of the
node, see Subsection 5.3. Additionally, we will refer to the respective ws-bpel
construct in parentheses. Observe that the flow node in otx is used for a
sequential execution. In ws-bpel in turn, flow is used for concurrent execution.
The handler node does not have a direct representation in ws-bpel.

5.3. Petri Net Templates for OTX

For each node type of otx we define at least one Petri net template (Figures 8
to 11). A Petri net template is a Petri net subnet with a certain input place In
and an Output Place Out. If a node type allows for child nodes, the template
contains specific regions for the insertion of the templates of the child nodes.
Figures 8 to 11 show the insertion regions as dotted boxes.

15

In

a)

t 2

t 1

run

ECU

ECUcon ECUcon

t 3

Out

prot

In

b)

t 2

t 1

run

ECU

ECUcon ECUcon

t 3

Out

prot

Figure 8: Template of the action node (a) and the Close Connection action node (b).

5.3.1. Action Node (Basic Activity)

Action nodes are used to represent atomic operations in the commissioning
process, i. e., the commissioning tasks. In the Petri net representation (see
figure 8) we represent the fact that a task is running as a state run. As stated
earlier, each task communicates with an electronic control unit ecu in the vehicle.
We present the ecu with three places. ECU represents the use of the control
unit. ECUcon and ECUcon represents whether the connection to a certain ecu
is open (ECUcon) or closed (ECUcon). To communicate with the ecu the WfMS
uses one of two protocols. The place prot represents the connection to a protocol
(either UDP or KWP2000). The connection to an ecu implicitly opens with
the first task that uses the ecu. Specific tasks close the connection. To this
end, we define two templates: one for the tasks that close the connection, see
Figure 8(b), and one for the tasks that can implicitly open the connection, see
Figure 8(a). At the beginning of the process execution, each place ECUcon
contains a token, meaning that all connections are closed. Figure 8(a) shows the
template for the action node that opens a connection. After the In place two
transitions are possible, t 1 and t 2. If the connection to the ecu is open , i. e., a
token is in ECUcon, the t 2 can fire and generate a token in the places run and
ecu. If the connection to the ecu is closed, i. e., a token is in ECUcon, the t 1
is active. This means that it removes the token in ECUcon and generates one in
the places ECUcon, prot, run, and ECU. The transition t 3 ends the execution of
the task, removing the token in run and ECU. The places prot, ECU, ECUcon
and ECUcon are shared between tasks. Each task has its own run, In, and Out
Place.

5.3.2. Loop Node (While)

The loop node is used for a structured repetition of a part of the process
until a condition is met. ISO defines the loop node as [27]:

For repetitive execution of flows, the Loop node shall be utilized.
[. . .] As long as the condition holds, the loop flow is repeated. In
otx loops, the condition can be checked before or after the flow.

16

In

a)

t1

t2

t3
Out In

b)

t1

t2

t3

Out

Figure 9: Template of the loop node with Checks Before the Execution (a) and After the
Execution (b).

In

a)

ts n te n

Out

ts 1 te 1

. . .

In

b)

t1 t2 Out
. . .

Figure 10: Template of the branch node (a) and the parallel node (b).

This is equivalent to the structured iteration control flow pattern of [28].
We use two templates for the loop node depending on whether the condition is
checked before or after the execution. Figure 9 shows the two templates for the
pre-test and the post-test loop node. The dotted region is the position where the
algorithm inserts the subnet for the unique child node.

5.3.3. Branch Node (Switch)

Process designers use the branch node to model alternatives in the process,
e. g., two or more cases that exclude each other. ISO defines the branch node as
[27]:

A Branch node contains one or more <case> elements. Every case
includes a boolean <condition> together with a <flow>. The first
case with a true condition is executed. If no condition is true, the
<default> flow will be executed.

The branch node is equivalent to the exclusive choice control flow pattern of
[28]. Figure 10(a) shows the template for the branch node. The dotted box is
the region for the subnets corresponding to the child nodes.

5.3.4. Parallel Node (Flow)

The parallel node is used to model flows that are executed in parallel. ISO
defines the parallel node as [27]:

A Parallel node consists of one or more flows that shall be executed
at the same time.

This is equivalent to a combination of the Parallel Split and Join control
flow patterns of [28]. Figure 10(b) shows the template for the parallel node. The
dotted region identifies where the subnets for the child nodes are inserted.

17

In
a)

. . .
Out

In
b)

try fin
cat 1

cat n

Out

Figure 11: Template of the flow node (a) and the handler node (b).

5.3.5. Flow Node (Sequence)

The flow node is used for two cases: first, to define the sequential execution
of tasks and, second, to define sub processes that can be collapsed [27]:

In general, <flow> is used for grouping a sequence of nodes together.
When a <flow> is used stand-alone (not nested in a control structure
like loop, branch, etc.), it supports authors to partition the procedure
flow into logical blocks for providing clarity through modular sequence
design.

The flow node can be used as the sequence control flow pattern of [28].
Figure 11(a) shows the templates for the flow node. The dotted region is the
place where to insert the subnets for the child nodes.

5.3.6. Handler Node

The handler node contains a try subprocess. If an error in the try subprocess
occurs, one or more catch subprocesses handle the error subsequently. An
optional final subprocess executes after the try and before the catch subprocess
[27]:

A handler node contains a so- called < try> flow followed by an
additional <finally> flow as well as <catch> flows for exception
treatment. The < handler> node monitors the < try> flow for
exceptions, [. . .]

Figure 11(b) shows the templates for the handler node. The dotted regions
specify the subnets for the try, final and the catch subprocesses.

5.4. Transformation Algorithm

To transform an otx process model into a Petri net representation, we define
a function transformNode(Node n). The function first determines the type of
the node n. The possible types are flow, branch, parallel, loop, handler, and
action. Next, the function adds the places and transitions as defined by means
of the template of the type, i. e., a Petri net subnet with a certain input place
and a certain output place. If the node is a compound node, the function calls
itself recursively for each child node. Our transformation algorithm starts by
calling transformNode() on the root node.

18

Table 3: Ctl-Formula for the Property Templates

Prop. Name ctl

P3.1 Maximal UDS
Connections

AG(UDS ≤10)

P3.2 Maximal KWP-
2000 Connections

AG(KWP2000 ≤10)

P3.3 Maximal Connections AG((UDS + KWP2000) ≤14)
P4.1 Sequential Before A [(Arun =0) W (Brun>0)]
P4.2 Optional Sequen-

tial Before
A [(Arun =0) ∨ AG(Brun =0))
W (Brun>0)]

P4.3 Sequential After AG ((Arun>0) → AF (Brun>0))
P4.4 Non-Parallel AG (¬((Arun>0) ∧ (Brun>0)))
P5.1 Restricted Access AG (Xecu≤1)
P5.2 Non-Parallel AG (¬ ((Xcon>0) ∧ (Ycon>0)))
P5.3 Close Connection AG ((end>0) → (Xcon =0))

5.5. Property Instantiation

As explained in Section 4.4, the database of context knowledge stores under-
specified ctl-formulas. Our framework uses the context information to generate
the instances for the verification. Each under-specified ctl-formula contains
place holders which our framework replaces with concrete places in the Petri net
of the commissioning process during instantiation. These placeholders are of five
types, see Figure 8:

1. Arun : replaced by the place run of an individual task.

2. Xecu : replaced by the place ecu of the ecu.

3. KWP2000 or UDS : replaced by the place prot for the communication
protocol.

4. Xcon : The connection place ECUcon for the ecu X.

5. end : The end place of the process (the place Out of the root element in
otx).

Table 3 shows the under-specified ctl-formula for each template of Table 1.

Example 5. The process to be verified contains the ecus = [gwa,kel, fbe].
For the process place VP2 and the vehicle series M3, an ecu dependency exists
that kel and fbe must not be used in parallel. For Property Template P5.3 one
of the properties our framework generates is as follows:

AG(¬ ((KELcon>0) ∧ (FBEcon>0)))

6. Verification

We now describe the architecture of our verification framework and how it
verifies whether a commissioning process fulfills a set of property instances. A

19

preprocessing step transforms a process file in another format into otx (Figure 12,
Step 1). Next, the context information regarding the process place and the
vehicle project are extracted from the commissioning process (Figure 12, Step
2). Not all properties can be verified efficiently with one paradigm, i.e., model
checking. Therefore, our verification component A3FT (Automatic Arrangement
of Working Steps in Production and Testing) consists of two modules: the Data
Reconciliation module (Figure 12, Step 3) and the Model Checker (Figure 12,
Step 4) to (Figure 12, Step 6). In the past, researchers have developed efficient
tools for model checking with Petri nets [24][29]. Hence, model checking in the
narrow sense of the word is assumed as given and is not a topic of this article.
Our framework contains an established framework for model checking, the Low
Level Petri Net Analyzer (LoLA) [24].

6.1. Data Reconciliation

First, our framework tests the syntactical correctness of the otx process.
To do so, the module validates the commissioning process against the xml
schema of otx. Additionally, we check for each task if it complies with the
naming conventions of the company. The module then checks if the resources are
available at the process place of the commissioning process (P2). To this end,
our framework queries the database to evaluate if the resources at the process
place match the resources used in the process.

6.2. Model Checking

”Model checking is a technique for verifying finite state transition systems.
[. . .] Model checking normally uses an exhausting search of the state space of
the system to determine if some specification is true or not.” [14, p. 3] The finite
state transition system (M) in our case is the state space of the commissioning
process, and the specification (φ) is the ctl formula of the property instances.
Formally, we test if M |= φ. For state space generation and the subsequent
model checking our framework includes the LoLA-Framework [24]. It takes a
Petri net pn and the property as a ctl-Formula φ as input. LoLA then generates
the state space of pn and subsequently uses the almc-Algorithm to check if a
state is found that violates property φ. Two possible outcomes of the verification
can occur. First, the verification has not detected a violating state. This means
that pn fulfills the property. The alternative is that the algorithm detects a
violating state and aborts. In the case of a property violation, LoLA reports
a sequence of transitions fired, i. e., a counter example. In general, the search
space grows exponentially with the size of the Petri net (state space explosion

Transform
to OTX

(optional)
Query the
database

Data re-
conciliation

Generate
Petri net

Generate
CTL-

formulae

Model
checking

(1) (2) (3) (4) (5) (6)

Figure 12: The Verification Steps

20

problem). [24] includes techniques like stubborn set reduction and invariants in
the LoLA-Framework, to reduce the state space. These reductions alone have not
been sufficient in all of our cases, due to the sometimes large number of parallel
sequences, which are common in commissioning processes. Thus, we have applied
our algorithm of [30] to generate a reduced Petri net for each property, tailored
to the specific tasks referred to in the property. Our framework is not specifically
tailored to that concrete model checker. We do not foresee any difficulties when
including other frameworks for state-space generation or model checking.

7. Reporting

As stated in Section 6, the LoLA-Framework returns a sequence of transitions
fired, leading to a violating state in the case of a property violation. Our goal
is to highlight the important aspects in a graphical interface, supporting the
user to understand the property violation. Reporting all firing transitions that
lead to a state violating a property is not practical. In general, only some of the
transitions are important for the property violation and should be visualized.
To detect which elements of the counter examples our framework should mark
bears two major challenges: First, the complete counter examples are not a very
efficient means to report the errors to the end user. The sequence often contains
a large number of transitions, and most of them are unimportant for the specific
property. Second, the important information depends on the property template
we are analyzing.

To address these issues, we propose a two-step approach. First, we detect
the relevant entries in the counter example, see Subsection 7.1. Second, we
collect the important information in the remaining path for each template and
report it to the user, see Subsection 7.2. Subsection 7.3 gives an example of a
commissioning process and the tasks highlighted.

7.1. Reduction of the Counter Example

[30] shows a reduction of the process tree, which is good from a performance
perspective. The approach reduces the otx process tree to the regions of
relevance for each property. This reduction not only allows us to efficiently verify
the properties, it also reduces the size of the counter example significantly.

Example 6. Consider the otx process tree in Figure 13(a) and the property ’A
precedence F ’. Under the process tree there is one counter example. The events
refer to the transitions of the branch y, the parallel node z, w, and the tasks
b–f . Observe that most of the events reported in the example are not important
for the property, e. g., the fact that the execution of C, D, E or G has started.
The cause for the property violation, the execution of the second branch of y, is
hard to perceive, due to these unimportant events listed. Figure 13(b) shows the
process tree reduced with the algorithm described in [30]. This reduction leads to
a much smaller counter example, which only contains events directly related to
the property. This example contains only three events that do show the cause of
the violation.

21

flow x

branch y

A B

C parallel z

D E

parallel w

F G

<y s2, b s, b e, y e2, c s, c e, z s,
d s, e s, e e, d e, z e, w s, g s, f s >

flow x

branch y

A λ

F

<y s2, y e2, f s >

a) b)

Figure 13: The Reduction of the Counter Example

7.2. Property Template Reports

Our goal is to report the property violations to the end user in a user-friendly
manner. We want to report by means of a visualization of the process where
the modeling error has occurred. This information depends on the property.
For the Response-template (cf. Table 1) for instance, the information of the
sequential arrangement is important, while to understand a violation of the
maximal connection template one needs the parallel arrangement. To this end,
we propose a specific reporting for each template. We will describe how we
extract the information from the counter example, and which elements our
visualization should highlight. Elements are nodes in the graph, i. e., control
nodes or tasks. We will propose reporting schemes for each template. Their
input is the counter example, i. e., a sequence of transitions fired that leads to a
violating state. We refer to this sequence as L. The reporting schemes return
a set of elements to be highlighted in the visualization. The transitions in the
counter example can belong to tasks or to control structures, see the templates
in Subsection 5.3.

P3.1-P3.3 For the template Maximal Connection we are only interested in
elements that open or close a connection, i. e., the transitions belonging to
tasks. Our reporting scheme further reduces the event log L to the tasks
which open or close a connection to the respective protocol (UDS for P3.1,
KWP2000 for P3.2, both for P3.3). Figure 8 shows that, for each task, only
transition t 1 opens or closes a connection. Therefore, the result consists
of tasks that execute transition t 1. Next, we check which connections are
open for the respective counter state. In other words, which transition
”Open a Connection to the ecu X” is not followed by a transition ”Close
a Connection to the ecu X”. Last, the reporting scheme highlights the
remaining tasks in the visualization.

P4.1 The Sequential Before (or precedence template) refers to a Task A that
requires the previous execution of another Task B. If this property is
violated, A is executed without the execution of B. So we have to report
something that does not happen. For this template we highlight A and a
non-existing instance of B.

22

P4.2/P4.4 The Optional Sequential Before and Not-Parallel Tasks templates
are relatively easy to handle. If they are violated, then both A and B have
to exist in the log. We can simply highlight the two tasks.

P4.3 The Sequential After template (also known as response-to or leads-to)
describes a Task A that requires the subsequent execution of another
Task B. The template is symmetric to the Sequential-Before Template,
and its reporting is analogous.

P5.1 The template for the tasks has a place for the ecu used, see Subsection 5.3.1.
This place represents the access to the ecu. The Restricted Access template
restricts the access to one task at a time. In other words, the place ecu
is restricted to 1. For the template, we identify two tasks that access the
ecu at the same time. First, we reduce the event log to tasks for the ecu
we are looking for. Next, we are only interested in tasks that are active,
i. e., the start event is in L but not the end event. Exactly two tasks A
and B are active for a counter example for P5.1. We highlight these tasks
A and B.

P5.2 We handle the Non-Parallel template in a way similar to P5.1., except
that we are not only looking for the tasks for one Control Unit X but for
two, X and Y . Out of the active tasks in the log (thus t 3 has not fired),
only two tasks exist, one Task A with access to Control Unit X and one
Task B with access to Y . We highlight the two Tasks A and B.

P5.3 For the Close Connection Template, the model checking aborts at the first
task X that does not get its connection closed on at least one subsequent
execution path. We highlight this task X. Additionally, we look for all
tasks in the process that could close the connection for the tasks and
highlight them as well. Remember that the situation is not ’symmetric’,
i. e., while a connection may be opened implicitly within a task, there
always must exist a designated activity whose only responsibility is to close
the connection.

7.3. Example for a Commissioning Process with Highlighted Violations

Consider the commissioning process in Figure 14. The notation is similar
to the one of a uml-Activity diagram. The process contains three property
violations. First, for every control unit the task ’Verbaupruefung ’ precedes task
’WFS-Anfrage’ (P4.1). Second, the control units fbe and kel must not be used
in parallel (P5.2). Third, the connection to the control unit is not closed in all
cases (P5.3). The only task that can close the connection is ’Verbindungsabbau’.
Our framework has verified the commissioning process and has been able to
detect all three errors. Using the reporting just described, the tool finds the
tasks relevant for the errors and highlights them, see Figure 15. The large red
boxes with exclamation points contain a description of the violation as well,
visible when the mouse hovers over them.

23

Figure 14: A Commissioning Process

8. Implementation

Our framework consists of several components, see Figure 16. The main
components are the contextual knowledge base, the verification system A3FT,
the LoLA-Framework and the visualization component CoVA (Commissioning
Process Verification and Analysis).

The A3FT-component transforms, specifies and verifies a commissioning
process. It itself is a standalone command-line tool and can be used without
the visualization. The A3FT-component receives the file-system path to a com-
missioning process and detects the notation automatically (Prodis.Automation,
Sidis Pro, or otx). It transforms the process first to otx if necessary. The
component verifies the tool against the otx schema to detect syntax errors and
to check the data reconciliation, cf. Subsection 6.1. Next, the A3FT-component
generates the property instances, see Section 4. To this end, it sends queries to
the database of context knowledge. The component transforms the otx process
tree to a Petri net using the algorithm of Section 5. The A3FT-System calls the
LoLA-component for each property, with the Petri net process model and the
property as ctl formula as parameters. Using the results, the A3FT-component
presents detailed information on the property violation to the user with the
reporting tool.

The database of context knowledge is implemented as a MySQL database.
The full database contains 25 different relations with approximately 2 500 data

24

Figure 15: The Highlighted Violations in the Commissioning Process

Visualization
Reporting

CoVA

Specification
Transformation

A3FT

State Space Gen.
Model Checking

LoLA

Database
of Context
Knowledge

User

Figure 16: The Components of our Framework

sets. Using index structures, the query time for the property verification is
negligible in comparison to the verification time. The LoLA component has
been developed elsewhere [24]. We use its version 1.16, to generate the state
space and to verify the properties. We use a depth-first search and apply all the
possible reduction techniques for model checking.

The CoVA component visualizes the commissioning process and presents the
verification result to the user. The component loads the commissioning process
of the three notations mentioned and graphically presents the process to the user.
We present the process in a notation similar to uml sequence diagrams, with
bars for parallel splits/joins and diamonds for xor-splits/joins. The visualization
is able to expand and collapse regions of the process for a more focused view on
the commissioning process. A click on the verify button of the CoVA-component
leads to a call of the A3FT-component. The textual results of the verification

25

can be seen in a tab Verification. The tool uses the algorithm of Section 7 to
highlight the property violations in the process and additionally lists them on
the left-hand side.

Figure 17: Screenshots of the Verification Framework

Example 7. In the screenshot Figure 17 on the left-hand side there is a visu-
alization of a commissioning process in otx notation. The darker tasks stand
for compressed regions. A region can be easily compressed or extended with a
click. When clicking on the verify button, the CoVA component calls the A3FT
component. Within a few seconds, the tool has found several property violations
in the commissioning process. Our framework lists them on the left-hand side,
see Figure 18. When clicking on the property violation, our tool zooms into
the error, see Figure 19. The red box is a message box describing the error
when hovered over. Additionally, a second tab ”verification” presents the detailed
textual output of the A3FT-component to the user. This output contains technical
information on the configuration and the verification, see Figure 20.

9. Evaluation

When evaluating our framework for the verification of commissioning pro-
cesses, we focus on two points, namely quality of verification in our specific
application domain (Subsection 9.1) and usability of our tool (Subsections 9.2
and 9.3). According to ISO 9241-11 [31], usability has three different aspects, to
be evaluated separately:

Efficiency The amount of the resource usage to achieve the goals (Subsec-
tion 9.2).

26

Figure 18: Screenshots of the Verification Framework with Highlighted Violations

Effectiveness Whether the user can complete his tasks and achieve the goals
(Subsection 9.3).

Satisfaction The level of comfort the users experience achieving the goals
(Subsection 9.3).

9.1. Quality of Verification in the Commissioning Context

Regarding the quality of verification, we confine ourselves to the specifics of
the commissioning scenario in this subsection; we have examined more generic
aspects of verification quality elsewhere already [30]. We have used our prototype
to verify 60 commissioning processes, newly generated or modified ones, before
their execution. These processes refer to four vehicle series: the middle class
car M1, the upper-middle class car M2, the executive car M3, and the sports
car M4. They are executed at 34 stations. We have inspected the verification
results and have categorized the processes into three categories: correct, with
minor process disturbance and with major process disturbance. Figure 21 shows
the number of processes in the three categories for each vehicle series. Most of
the minor disturbances result from incorrect labels of tasks and missing values
in the database. For few processes, the verification framework has reported
false positives, due to the fact that we do not consider guard conditions. These
false positives have also been categorized as minor. In a significant share of
the processes (≈ 23%), we could detect a major disturbance. All this shows
that our framework can detect control flow disturbances in real commissioning
processes. Major disturbances are property violations that hinder the execution
of the process particularly, e. g., cause a deadlock.

27

Figure 19: The Graphical Reporting

9.2. Efficiency

We now study characteristics of the verification process and of the visual-
ization. In particular, depending on the size of the commissioning process, i. e.,
how many commissioning tasks #Task and electronic control units #ECU such
processes contain, we are interested in the number of property instances our tool
generates for each process #PropIns. We also are interested in the runtime of
the specification and verification, i. e., the combined time our framework needs
to specify the properties, run the verification and report the violations. The
framework runs on a working notebook with 2.6 GHz (dual core) and GB
main memory. We use a local MySQL database running on the same machine.

Table 4: The Five-Number Summary for #Task, #ECU, #PropIns, and the runtime

Characteristic #Task #ECU #PropIns runtime

Q0 Minimum 5 2 2 108 ms
Q1 39 10 15 567 ms
Q2 Median 125 29 39 1 458 ms
Q3 211 54 95 2 973 ms
Q4 Maximum 870 103 280 10 544 ms

Table 4 shows the five-number summary of these characteristics and the
respective boxplots. The five-number summary consists of the five most important
percentile: the minimum value found (Minimum), the first Quartile Q1, the
median (or second Quartile) Median, the third Quartile Q3 and the maximum
value found (Maximum). Even for the most complex commissioning process with

28

Figure 20: The Textual Description of the Reporting

870 tasks, 103 ECU, and 280 different property instances our framework is able
to do the verification in 10.5s. In 75% of the cases the verification needs under
3s in total. The runtime is strongly correlated with the size of the process (.926
for #tasks and .904 for #ECU) and even stronger with the number of property
instances (.973 for #PropIns). We have generated and verified 2801 property
instance and verified them in 104.1s, i. e., an individual property instance takes
only 37.2ms to be verified on average. The boxplots in Figure 21 show that
most of the commissioning processes contain between 50 and 200 tasks and have
between 15 and 100 properties and take between 0.5s and 3s to verify.

To evaluate our reporting scheme we compare it to two baselines. First,
given the counter example L, we highlight each element in L corresponding
to a transition (Baseline 1). Second, we use the counter example reduction
of Subsection 7.1, without the reporting from Subsection 7.2, and highlight
every element surviving the counter example reduction and corresponding to L
(Baseline 2). The third line (Reporting) shows our template-specific reporting,
see Subsection 7.2. Our evaluation criterion is the size of the event log of the
counter example. We have evaluated nine property violations in commissioning
processes (A – I). The properties belong to 6 different templates: Precedence
(P4.1), Response (P4.3), Not-Parallel ecu (P5.2), Closed Connection (P5.3), and
Restricted Access (P5.1). We have selected these property violations because

29

M1 M2 M3 M4

No. of Processes 13 17 25 5

Correct 3 3 0 0
Minor Disturbance 9 8 18 5
Major Disturbance 1 6 7 0

M1 M2 M3 M4
0

10

20

30

Vehicle Series

N
o.

of
Pr

oc
es

se
s

Correct
Minor
Major

Legend:

Figure 21: Process Disturbances Found in the Evaluated Processes

0
200
400
600
800

#Task
0

20
40
60
80

100

#ECU
0

100

200

300

#PropIns
0

5

10

runtime

Figure 22: The Boxplots for the #Task, #ECU, #PropIns, and runtime

their complexity is representative of the violations found.
Table 5 lists the number of elements of our reporting scheme and of the two

baselines. The Baseline 1 counter examples often contain dozens of elements.
The Baseline 2 counter examples perform well for the majority of the properties.
For some violations however, the number of elements still is rather large. The ecu
conditions in particular lead to many elements with the Baseline 2 approach.
This is because many tasks with the respective ecus often are executed before the
violation occurs. Reporting finally performs much better than the alternatives
for all properties and yields concise output.

9.3. Effectiveness and Satisfaction

Effectiveness: Regarding effectiveness, we ask two important questions, as
follows:

Has the framework increased the quality of the commissioning processes?
This criterion includes the change in the development time of processes,
the number of false positives and the number of false negatives.

30

Table 5: The Number of Highlighted Elements for our Approach and the two Baselines

Violation A B C D E F G H I
Template 4.1 4.1 4.3 4.3 4.1 4.1 5.2 5.3 5.1

Baseline 1 5 29 11 70 27 31 35 98 19
Baseline 2 2 3 2 4 4 4 15 10 6

Reporting 1 1 1 1 2 2 2 1 2

Can the framework be used in a different context within the company? For
instance, is the framework general enough to be used in another factory?
We have also asked how well the framework can be integrated into the tool
chain.

Satisfaction: Can the framework be used in an intuitive way? Is the help of a
technical person needed to use the framework?

To evaluate effectiveness and satisfaction, we have held semi-structured
interviews with domain experts. The interview guide is available on our website:
http://dbis.ipd.kit.edu/2027.php. Regarding satisfaction, we have used
the Standard System Usability Test (SUS) [32]. SUS is a 10 item test that is
scored on a 5-point scale of strength of agreement or disagreement. The SUS
has the advantage that it is technology-agnostic, i. e., it can be used in different
application domains. Due to its wide usage, a meta-test and guidelines exist to
interpret the results [32].

9.3.1. Participants

Participants in our study are domain experts, i. e., employees who have
developed commissioning processes. We have limited our interviews to experts
who had used our framework intensively and had enough expertise to give
feedback. We have been able to gain four experts who met these requirements for
a qualitative interview. Their experience in developing commissioning processes
ranges between 1 and 14 years, with an average of 7 years. The experts were
from different factories and departments at the audi ag.

9.3.2. Results

Figure 23 shows the results of our qualified interviews. The experts do not
think that our framework will influence the development time negatively. The
number of false positives and of false negatives are acceptable but should be
improved. Our framework has detected slightly more false positives than false
negatives. The experts see a great potential of our framework to be used in
other testing environments as well. The rating of how well the framework can
be integrated into the tool chains varies between the experts. From all this,
we conclude that effectiveness is achieved. The SUS score (a measure for the
usability) ranges between 65 and 85 with an average of 71.67. This is slightly
above the average (69.69) and median (70.91) of reported studies using the SUS

31

Effectivness Satisfaction

Proces
s Quality

Tim
e Red.

Differe
nt Contex

t

Integ
ratio

n

str. disagree

disagree

neutral

agree

strong agree

False
Posit

ive

False
Negativ

e

very few

few

neutral

often

very often

SUS Score
0

50

100

Figure 23: Results of the Empirical Evaluation

score [32]. The fact that this value is above average is a positive result, given
the complex nature of a formal specification and verification tool. All experts
see great potential in improving the quality of the commissioning processes by
means of our framework. So we arrive at the conclusion that the satisfaction of
users with our verification tool in the context of commissioning is high.

9.3.3. Discussion

The evaluation has shown that the experts deem our framework very useful
to enhance process quality. One issue has been the number of false positives
that our tool generates. We have found out later that outdated specification
documents have been the reason for these false positives. We have now updated
the database and have added additional checks before adding information to the
database. False negatives result from properties that are unknown at verification
time and are not yet specified. The costs of a false positive are rather small.
This is because it is only a small manual effort of an engineer to check the error
and mark it as a false positive. The costs of a false negative are much higher
in general. They are however difficult to impossible to quantify in a general
fashion. For instance, one error might only lead to a slightly larger processing
time, while another error could cause a stop of the production line. A minor
issue is that the experts have criticized the amount of information presented by
our framework. To address this point, we plan to have two modes. A debug
mode that presents detailed information on the model checking process, and a
normal mode that only shows the information required by the domain experts.
To improve usability further, the experts had suggested presenting the results
in more than one language. Some experts doubt that our framework can be
easily integrated into the tool chain. After having received this suggestion, we
have re-implemented our tool in C#, which is used to implement the rest of the
tool chain. At the time of this study, our tool was implemented in Java. The
implementation in C# allows to easily use data objects from other departments,
e. g., the one constructing vehicles. We use these data objects to instantiate the
property templates.

32

10. Related Work

Related work includes the user-friendly specification of properties, their man-
agement, the property-specific verification of processes, constraint programming,
and declarative process models.

10.1. Specification

The direct specification of properties in formalisms like ctl is error-prone and
not feasible for a user without experience in formal specification. To deal with
this issue, different approaches have been developed. Most business processes
are modeled in a graph-based modeling language like bpmn [33], yawl [34] or
Petri nets [35]. [36] extends the bpmn notation with new elements that directly
represent ltl operators. bpmn-q [37] extends bpmn with new edge types that
represent sequential ordering between tasks. Compliance Rule Graphs [11] allow
a specification of requirements in a graph-based formal language. Another
approach is specification templates. [10] introduces the property patterns to
specify concurrent systems. [38] extends the pattern system to cover variations
(propel, PROPerty ELucidation). [39] uses a question tree to allow specifying
propel patterns. In our domain, only a few different property templates exist.
Dependent on the context, many instances are generated. Because of the small
number of templates but many similar instances, we have not found any of the
approaches to be helpful in our specific case.

10.2. Management of Properties

[40] builds an ontology for the domain of compliance management. However,
it is not sufficient to capture the domain-specific information needed for the in-
stantiation of our templates. Managing compliance properties includes allocating
the properties to the business processes. [8] allocates the compliance properties
to the processes using potentially relevant activities. We in turn dynamically
generate only the properties relevant for the commissioning process using the
context knowledge directly before verification.

10.3. Verification

We aim to check if a business process complies with the properties given.
[41] uses an approach that checks if the event log L (a set of execution traces)
complies with properties. In our case, there exist violations of properties that
are not related to an event during process execution. For example, we do not see
how to recognize a violation of a non-parallel property from the log of a process.
Further, we use model checking to verify the processes. Most high-level process
languages lack the direct construction of the state space required for model
checking. To this end, a transformation to a formal language like Petri nets is
required. [42] gives an overview of transformations from bpmn, yawl and ws-
bpel to Petri nets. Regarding the transformation aspect, our approach is similar
to [43]. [2] empirically evaluates different approaches for soundness verification.
The criteria include error rate, process size and verification time. [3] evaluates

33

three techniques (Partial-Order-Reduction, Woflan and sese-Decomposition) to
verify the soundness of over 700 industrial processes. Our verification technique
is more general than just verifying soundness as in [2] and [3]. It is however
interesting to see that some insights at an abstract level are similar to ours. In
particular, the size of the processes correlates with the number of rule violations,
and a significant share of processes in industrial settings contains rule violations.

10.4. Reporting

[44] reduces the counter examples to give the end user a compact report of
the property violation found. To this end, [44] reduces the path using conflict
clusters, spurious conflicts, and distributed runs. The approach is able to reduce
the counter examples significantly, i. e., omit information that is unimportant
for the shareholder. For our processes, the approach of Subsection 7.1, which is
easier to compute, performs well. In consequence, we do not have to apply [44]
as a preprocessing step for the reporting templates. [44] could be used for the
reporting of general properties not covered by the templates.

10.5. Constraint Programming

Constraint programming is a programming paradigm that is an alternative to
the usual imperative one. With the imperative paradigm, programming means
writing a sequence of commands to solve a problem. In constraint programming,
one must come up with a set of constraints C over a set of variables X , to
describe the problem. A solver then finds an allocation for all x ∈ X that comply
with all c ∈ C [45]. Constraint programming therefore consists of two steps: the
programming step to write down the constraints C and the solution step, often
automatically. Model checking has two inputs, the transition system M (in our
case an imperative process model) and properties Φ. The constraints C do not
allow to directly express the temporal aspects of our properties. In principle, it
would be possible to transform the process model into a set of constraints and
to find a solution. This approach is often used for ltl model checking, called
bounded model checking [46]. In our use case however, this is not practical. This
is because the set of equations grows exponentially, and finding a solution is in
pspace, which has been proven formally [47].

10.6. Declarative Process Models

The goal of our work is to check if an imperative process model complies
with declarative properties. This is in contrast to the declarative workflow
paradigm, at which the process model solely consists of a set of declarative
properties. Declarative workflows allow for any behavior as long as it fulfills
the specification [48]. A declarative specification is similar to the properties in
our context. However, properties in general are not sufficient to describe an
executable process model. The enactment of declarative workflows is not trivial
[49], and tool support by major vendors is missing. To our knowledge, there does
not exist any tool that executes declarative process models comparable to the
commissioning of vehicles. Another aspect is that, in contrast to an imperative

34

process model, not all possible executions of a declarative process model tend to
be obvious at specification time. This may lead to an unexpected and possibly
unwanted execution of the process model. In consequence, our approach has been
to increase the quality of an imperative process model by verifying it against
relevant properties.

11. Conclusions

The concern of this article has been the detection of property violations
in processes. To this end, we have described and evaluated a respective tool
that covers the complete verification procedure. Our tool is able to detect the
property violations in a process. Detecting such violations is an important step
of quality assurance. Our approach has several important features, in particular:

• distinction between property templates and concrete properties,

• automated instantiation of property templates by means of a context
database; careful investigation of what ’context’ exactly means here and
design of a respective database,

• integration of a model checker that is suited for our purposes,

• visualization of property violations that is adequate, according to user
feedback collected objectively.

It is this bundle of measures that renders our use case manageable in the first
place. The evaluation has shown that this is indeed the case. Our conclusion
is that our approach is capable of improving processes: In particular, by being
able to cope with many more properties than a naive solution, we do arrive at
better processes.

While our study has focused on the commissioning scenario, we now conclude
with some insights which might be of interest to individuals facing similar
problems in other scenarios:

• Model checking per se only covers a relatively small part of an infrastruc-
ture needed in realistic settings to check whether processes have certain
characteristics.

• Differentiating between property templates on the one hand and actual
properties on the other hand has proved of value, in order to cope with a
large number of different constraints. In particular, this holds true when it
comes to the visualization of constraint violations. We for our part have
tailored the visualization to the different templates, which has given way
to a much more compact representation, at least in some cases.

• Property templates and the accompanying question what exactly relevant
context is, are application-specific. Not only in our specific scenario,
but foreseeably in other settings as well properties come from different

35

sources (wisdom gained from experience of individuals, concrete incidents
which have not been conceivable earlier, requirements coming from the
construction department etc.). Hence, this (fairly laborious) discovery of
the relevant kinds of properties and of the structure of the background
knowledge must take place anew every time, at least for the time being,
and respective projects should be planned accordingly.

• The answer to the question how well one can transfer our approach to
other use cases, i.e., generalize it, is rather differentiated. A study that is
confined to one specific scenario all along naturally cannot give answers that
are final. Nevertheless, we have made some important observations. Our
approach caters to certain specifics of the underlying use case that gives
way to scenarios which could also profit from our approach, in particular:

– Two commissioning processes hardly ever are identical. One reason
is that each vehicle is furnished individually, because of different
customer preferences. Next, our car manufacturer has different pro-
duction sites with different distinctive features, i. e., commissioning
processes even for vehicles that are identical would look different at
two sites.

– In the context of vehicle manufacturing, just restarting a process
already is a significant issue. This is because slight delays typically
lead to substantial costs and are not acceptable. Put differently, car
manufacturers (at least those that are aware of quality) are ready
to take significant effort (the one described in this article) to ensure
that such delays take place as rarely as possible. If starting a process
anew was not critical, the number of problems to be ruled out would
be much smaller.

As future work, we are going to extend the usage of our tools to other
production lines and factories. We also intend to include additional information
sources of the company for the property specification. Finally, we are leveraging
process properties to support the design of processes. [50] is our first advance in
this direction.

References

[1] W. Zimmermann, R. Schmidgall, Bussysteme in der Fahrzeugtechnik -
Protokolle, Standards und Softwarearchitektur, 2011.

[2] J. Mendling, Empirical Studies in Process Model Verification, in: K. Jensen,
W. M. P. v. d. Aalst (Eds.), Transactions on Petri Nets and Other Models of
Concurrency II, number 5460 in Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 2009, pp. 208–224. URL: http://link.springer.com/
chapter/10.1007/978-3-642-00899-3_12.

36

[3] D. Fahland, C. Favre, B. Jobstmann, J. Koehler, N. Lohmann, H. Völzer,
K. Wolf, Instantaneous Soundness Checking of Industrial Business Process
Models, in: U. Dayal, J. Eder, J. Koehler, H. A. Reijers (Eds.), Business
Process Management, number 5701 in Lecture Notes in Computer Science,
Springer Berlin Heidelberg, 2009, pp. 278–293.

[4] D. Knuplesch, L. T. Ly, S. Rinderle-Ma, H. Pfeifer, P. Dadam, On Enabling
Data-Aware Compliance Checking of Business Process Models, in: J. Par-
sons, M. Saeki, P. Shoval, C. Woo, Y. Wand (Eds.), Conceptual Modeling
– ER 2010, number 6412 in Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 2010, pp. 332–346.

[5] Y. Liu, S. Müller, K. Xu, A static compliance-checking framework for
business process models, IBM Systems Journal 46 (2007) 335–361. doi:10.
1147/sj.462.0335.

[6] K. Schmidt, Stubborn Sets for Model Checking the EF/AG Fragment of
CTL, Fundam. Inf. 43 (2000) 331–341.

[7] K. Schmidt, Stubborn Sets for Standard Properties, in: S. Donatelli,
J. Kleijn (Eds.), Application and Theory of Petri Nets 1999, number 1639
in Lecture Notes in Computer Science, Springer Berlin Heidelberg, 1999,
pp. 46–65.

[8] S. Kabicher, S. Rinderle-Ma, L. T. Ly, Activity-Oriented Clustering Tech-
niques in Large Process and Compliance Rule Repositories, in: Proc.
BPM’11 Workshops, Springer, Clermont-Ferrand, France, 2011, pp. 14–25.

[9] H. Schlingloff, A. Martens, K. Schmidt, Modeling and Model Checking
Web Services, Electronic Notes in Theoretical Computer Science 126 (2005)
3–26. doi:10.1016/j.entcs.2004.11.011.

[10] M. B. Dwyer, G. S. Avrunin, J. C. Corbett, Property Specification Patterns
for Finite-state Verification, in: Proceedings of the Second Workshop on
Formal Methods in Software Practice, FMSP ’98, ACM, New York, NY,
USA, 1998, pp. 7–15. doi:10.1145/298595.298598.

[11] L. T. Ly, D. Knuplesch, S. Rinderle-Ma, K. Göser, H. Pfeifer, M. Reichert,
P. Dadam, SeaFlows Toolset – Compliance Verification Made Easy for
Process-Aware Information Systems, in: P. Soffer, E. Proper (Eds.), In-
formation Systems Evolution, number 72 in Lecture Notes in Business
Information Processing, Springer Berlin Heidelberg, 2011, pp. 76–91.

[12] R. Mrasek, J. Mülle, K. Böhm, C. Allmann, M. Becker, User-Friendly
Property Specification and Process Verification - a Case Study with Vehicle-
Commissioning Processes, in: Business Process Management, Lecture Notes
in Computer Science, Springer Berlin Heidelberg, 2014, pp. 326–341.

[13] W. M. P. van der Aalst, K. M. van Hee, Workflow Management: Models,
Methods, and Systems, MIT Press, 2004.

37

[14] E. M. Clarke, O. Grumberg, D. Peled, Model Checking, MIT Press, 1999.

[15] E. M. Clarke, E. A. Emerson, A. P. Sistla, Automatic Verification of Finite-
state Concurrent Systems Using Temporal Logic Specifications, ACM Trans.
Program. Lang. Syst. 8 (1986) 244–263. URL: http://doi.acm.org/10.
1145/5397.5399. doi:10.1145/5397.5399.

[16] N. Trčka, W. M. P. van der Aalst, N. Sidorova, Data-Flow Anti-patterns:
Discovering Data-Flow Errors in Workflows, in: P. v. Eck, J. Gordijn,
R. Wieringa (Eds.), Advanced Information Systems Engineering, number
5565 in Lecture Notes in Computer Science, Springer Berlin Heidelberg,
2009, pp. 425–439.

[17] S. von Stackelberg, S. Putze, J. Mülle, K. Böhm, Detecting Data-Flow
Errors in BPMN 2.0, Open Journal of Information Systems (OJIS) 2 (2014)
1–19.

[18] E. A. Emerson, Model checking and the Mu-calculus, in: DIMACS Series in
Discrete Mathematics, American Mathematical Society, 1997, pp. 185–214.

[19] M. Rosemann, J. C. Recker, C. Flender, P. D. Ansell, Understanding
context-awareness in business process design, in: S. Spencer, A. Jenkins
(Eds.), Faculty of Science and Technology; Institute for Creative Industries
and Innovation, Australasian Association for Information Systems, Adelaide,
Australia, 2006. URL: http://eprints.qut.edu.au/6160/.

[20] T. Schneider, Specification of Testing Workflows for Vehicles and Validation
of Manually Created Testing Processes, Karlsruhe Insititute of Technology,
Master Thesis, 2012.

[21] G. J. Holzmann, The Model Checker SPIN, IEEE Transactions on Software
Engineering 23 (1997) 279–295. doi:10.1109/32.588521.

[22] M. Kwiatkowska, G. Norman, D. Parker, PRISM: Probabilistic Symbolic
Model Checker, in: T. Field, P. G. Harrison, J. Bradley, U. Harder (Eds.),
Computer Performance Evaluation: Modelling Techniques and Tools, num-
ber 2324 in Lecture Notes in Computer Science, Springer Berlin Heidelberg,
2002, pp. 200–204. URL: http://link.springer.com/chapter/10.1007/
3-540-46029-2_13.

[23] W. M. P. v. d. Aalst, Pi calculus versus Petri nets: Let us eat ”humble pie”
rather than further inflate the ”Pi hype”, 2003.

[24] K. Schmidt, LoLA A Low Level Analyser, in: M. Nielsen, D. Simpson
(Eds.), Application and Theory of Petri Nets 2000, number 1825 in Lecture
Notes in Computer Science, Springer Berlin Heidelberg, 2000, pp. 465–474.

[25] S. J. J. Leemans, D. Fahland, W. M. P. van der Aalst, Discovering Block-
Structured Process Models from Event Logs - A Constructive Approach,
in: J.-M. Colom, J. Desel (Eds.), Application and Theory of Petri Nets and

38

Concurrency, number 7927 in Lecture Notes in Computer Science, Springer,
2013, pp. 311–329.

[26] C. Ouyang, E. Verbeek, W. M. P. van der Aalst, S. Breutel, M. Du-
mas, A. H. M. ter Hofstede, Formal semantics and analysis of con-
trol flow in WS-BPEL, Science of Computer Programming 67 (2007)
162–198. URL: http://www.sciencedirect.com/science/article/pii/
S0167642307000500. doi:10.1016/j.scico.2007.03.002.

[27] ISO 13209, Road vehicles – Open Test sequence eXchange format (OTX),
ISO, Geneva, Switzerland, 2012.

[28] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, A. P.
Barros, Workflow Patterns, Distributed and Parallel Databases 14 (2003)
5–51. doi:10.1023/A:1022883727209.

[29] K. Jensen, L. M. Kristensen, L. Wells, Coloured Petri Nets and
CPN Tools for modelling and validation of concurrent systems, In-
ternational Journal on Software Tools for Technology Transfer 9
(2007) 213–254. URL: http://link.springer.com/article/10.1007/

s10009-007-0038-x. doi:10.1007/s10009-007-0038-x.

[30] R. Mrasek, J. Mülle, K. Böhm, A new verification technique for large
processes based on identification of relevant tasks, Information Systems
(2014). doi:10.1016/j.is.2014.07.001.

[31] ISO 9241-11, Ergonomics of Human-Computer Interaction - Part 11: Guid-
ance on Useability, ISO, Geneva, Switzerland, 1998.

[32] A. Bangor, P. T. Kortum, J. T. Miller, An Empirical Evaluation of the Sys-
tem Usability Scale, International Journal of Human-Computer Interaction
24 (2008) 574–594. doi:10.1080/10447310802205776.

[33] O. M. Group, Business Process Model and Notation (BPMN), 2011.

[34] W. M. P. van der Aalst, A. H. M. ter Hofstede, YAWL: yet another workflow
language, Information Systems 30 (2005) 245–275. doi:10.1016/j.is.2004.
02.002.

[35] W. M. P. van der Aalst, The Application of Petri Nets to Workflow
Management, Journal of Circuits, Systems and Computers 08 (1998) 21–66.
doi:10.1142/S0218126698000043.

[36] M. Brambilla, A. Deutsch, L. Sui, V. Vianu, The Role of Visual Tools in a
Web Application Design and Verification Framework: A Visual Notation for
LTL Formulae, in: D. Lowe, M. Gaedke (Eds.), Web Engineering, number
3579 in Lecture Notes in Computer Science, Springer Berlin Heidelberg,
2005, pp. 557–568. URL: http://link.springer.com/chapter/10.1007/
11531371_70.

39

[37] A. Awad, G. Decker, M. Weske, Efficient Compliance Checking Using
BPMN-Q and Temporal Logic, in: M. Dumas, M. Reichert, M.-C. Shan
(Eds.), Business Process Management, number 5240 in Lecture Notes in
Computer Science, Springer Berlin Heidelberg, 2008, pp. 326–341.

[38] R. L. Smith, G. S. Avrunin, L. A. Clarke, L. J. Osterweil, PROPEL: An
Approach Supporting Property Elucidation, in: Proceedings of the 24th
International Conference on Software Engineering, ICSE ’02, ACM, New
York, NY, USA, 2002, pp. 11–21. URL: http://doi.acm.org/10.1145/
581339.581345. doi:10.1145/581339.581345.

[39] R. L. Cobleigh, G. S. Avrunin, L. A. Clarke, User Guidance for Creating
Precise and Accessible Property Specifications, in: Proceedings of the
14th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, SIGSOFT ’06/FSE-14, ACM, New York, NY, USA, 2006, pp.
208–218. URL: http://doi.acm.org/10.1145/1181775.1181801. doi:10.
1145/1181775.1181801.

[40] N. S. Abdullah, S. Sadiq, M. Indulska, A Compliance Management On-
tology: Developing Shared Understanding through Models, in: J. Ra-
lyté, X. Franch, S. Brinkkemper, S. Wrycza (Eds.), Advanced Infor-
mation Systems Engineering, number 7328 in Lecture Notes in Com-
puter Science, Springer Berlin Heidelberg, 2012, pp. 429–444. URL: http:
//link.springer.com/chapter/10.1007/978-3-642-31095-9_28.

[41] E. R. Taghiabadi, D. Fahland, B. F. v. Dongen, W. M. P. van der Aalst,
Diagnostic Information for Compliance Checking of Temporal Compliance
Requirements, in: C. Salinesi, M. C. Norrie, s. Pastor (Eds.), Advanced
Information Systems Engineering, number 7908 in Lecture Notes in Com-
puter Science, Springer Berlin Heidelberg, 2013, pp. 304–320. URL: http:
//link.springer.com/chapter/10.1007/978-3-642-38709-8_20.

[42] N. Lohmann, E. Verbeek, R. Dijkman, Petri Net Transformations for
Business Processes – A Survey, in: K. Jensen, W. M. P. van der Aalst (Eds.),
Transactions on Petri Nets and Other Models of Concurrency II, number
5460 in Lecture Notes in Computer Science, Springer Berlin Heidelberg,
2009, pp. 46–63.

[43] S. Hinz, K. Schmidt, C. Stahl, Transforming BPEL to Petri Nets, in: W. M.
P. v. d. Aalst, B. Benatallah, F. Casati, F. Curbera (Eds.), Business Process
Management, number 3649 in Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 2005, pp. 220–235. URL: http://link.springer.com/
chapter/10.1007/11538394_15.

[44] N. Lohmann, D. Fahland, Where Did I Go Wrong?, in: S. Sadiq, P. Sof-
fer, H. Völzer (Eds.), Business Process Management, number 8659 in
Lecture Notes in Computer Science, Springer International Publishing,
2014, pp. 283–300. URL: http://link.springer.com/chapter/10.1007/
978-3-319-10172-9_18.

40

[45] K. Apt, Principles of Constraint Programming, Cambridge University Press,
2003.

[46] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, Y. Zhu, Bounded
Model Checking, volume 58, Elsevier, 2003, pp. 117–148. URL: http:

//www.sciencedirect.com/science/article/pii/S0065245803580032.

[47] O. Lichtenstein, A. Pnueli, Checking That Finite State Concurrent Programs
Satisfy Their Linear Specification, in: Proceedings of the 12th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
POPL ’85, ACM, New York, NY, USA, 1985, pp. 97–107. URL: http:
//doi.acm.org/10.1145/318593.318622. doi:10.1145/318593.318622.

[48] M. Montali, M. Pešić, W. M. P. van der Aalst, F. Chesani, P. Mello,
S. Storari, Declarative Specification and Verification of Service Choreogra-
phies, ACM Trans. Web 4 (2010) 3:1–3:62. doi:10.1145/1658373.1658376.

[49] M. Pešić, D. Bošnački, W. M. P. van der Aalst, Enacting Declarative
Languages Using LTL: Avoiding Errors and Improving Performance, in:
J. v. d. Pol, M. Weber (Eds.), Model Checking Software, number 6349 in
Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2010, pp.
146–161.

[50] R. Mrasek, J. Mülle, K. Böhm, Automatic Generation of Optimized Process
Models from Declarative Specifications, in: Advanced Information Systems
Engineering, Springer Berlin Heidelberg, Stockholm Schweden, 2015.

41

