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Abstract

Today, time series of numerical data are ubiquitous, for instance in the Internet of Things. In such scenarios, it is often necessary to
compress the data to, say, reduce data-transmission costs, and to detect changes on it. More specifically, both methods are used in
combination, i.e., data is lossily compressed and later decompressed, and then change detection takes place. There exists a broad
variety of compression as well as of change-detection techniques. This calls for a systematic comparison of different combinations
of compression and change-detection techniques, for different data sets, together with recommendations on how the values of the
various (typically non-linear) parameters should be chosen. This article is such an evaluation. Its design is not trivial, necessitating
a number of decisions. We work out the details and the rationale behind our design choices. Next to other results, our study shows
that the choice of combinations of change detection and compression algorithm and their parameterization does affect result quality
significantly. Our evaluation also indicates that results are highly contingent on the nature of the data.
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1. Introduction

Nowadays, time-series data is ubiquitous. More and more
applications like the Smart Grid or the Internet of Things that
produce and/or process time-series data are proliferating. Such
data is often used to detect certain events and to react to them
as soon as possible. In other words, change-detection meth-
ods are indispensable. On the other hand, because of the many
devices generating data, the huge amount of data and the high
data-transfer rates, an efficient compression is essential. Loss-
less compression reduces the statistical redundancy of the data.
However, compression rates are relatively low; as an example,
rates of 4 have been reported for smart-meter readings from
individual buildings using the bzip2 algorithm [1]. Lossy com-
pression in turn yields significantly higher compression ratios
than the lossless one. At the same time, data compressed in this
manner is still useful for many applications. In this study, we
focus on lossy compression. Putting things together, it often is
necessary to combine lossy compression1 and change-detection
techniques.

Example 1. Smart meters may deliver data to a central anal-
ysis system via a wireless network. To save bandwidth and to
reduce costs, the data is compressed directly on the device. The
central data-analysis system can then do change detection to
react to events such as a sudden increase in overall power con-
sumption.

1For improved readability we usually refer to compression and later decom-
pression simply as compression.

When combining lossy compression and change detection,
several issues arise. First, lossy compression introduces er-
rors. In particular, changes can be lost, or new false changes
can occur. Therefore a lossy compression method must be cho-
sen which preserves the change information as much as possi-
ble. Furthermore, different use cases generate different kinds
of time-series data, as we will explain. Thus, it is necessary
to choose a good combination of compression and change-
detection technique per use case. This is difficult due to the
large number of possible combinations. Next, compression as
well as change-detection algorithms usually have several pa-
rameters, which often have non-obvious effects on the outcome.
The expectation typically is that domain experts select the pa-
rameter values. This means that these experts must have a deep
insight into the algorithms used. But even if they have selected
the values, it is hard to determine whether their selection is a
good one. To investigate how combinations of compression
and change-detection algorithms perform on different datasets,
a systematic comparison is necessary. This article is such a
study.

Designing our study has been challenging, partly due to the
issues just mentioned. To illustrate, one of the various design
decisions is as follows: It is difficult to choose the parameteri-
zation of the compression and the change-detection algorithms
such that the comparison is fair. Reusing the parameter values
suggested in the original publications may not be the best op-
tion. This is because proper choices of parameter values depend
on the data the algorithms are applied to. Thus, we have decided
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to perform an optimization on each dataset that yields the pa-
rameter values that give way to change-detection results after
compression that are closest to some carefully chosen reference
point. This article lists the design questions encountered in the
context of our comparison, together with explanations behind
our choices.

In line with these design decisions, we have implemented a
framework that can be used for the evaluation of virtually any
combination of compression and change-detection methods. In
our specific study, we examine five compression algorithms like
APCA [2] and five change-detection algorithms like Online-
Kernel Change Detection [3] on five datasets, resulting in 125
possible combinations. We focus on result quality and leave
aside criteria such as runtime performance or total cost of own-
ership, which highly depend on specifics of the implementa-
tions and the runtime environment as well as on characteristics
of the underlying optimization framework.

The study shows that, while the choice of the dataset does
have a huge impact on which combination of compression
and change-detection technique performs best, some algorithms
like Chebyshev Approximation [4, 5, 6] and Bayesian Online
Change Detection [7] yield good results in many settings. We
also observe that a good change detection is possible even on
strongly compressed data. Next, our results are particularly
interesting because studying the algorithms in isolation (e.g.,
compression without subsequent change detection) may yield
a different picture. In [8] for instance, competing algorithms
have outperformed Chebyshev Approximation with regard to
the compression ratio. In our context in turn, this algorithm
has proven to be suitable in combination with many change-
detection algorithms.

Paper outline: Section 2 describes some application scenar-
ios. Section 3 explains our design decisions. Section 4 sum-
marizes the algorithms evaluated. Section 5 describes the ex-
perimental setup and Section 6 presents the results. Section 7
concludes.

2. Application Scenarios

In this section we describe two scenarios, with slightly differ-
ent perspectives on the importance of compression and change
detection. In the first scenario, compression and change-
detection quality are roughly equally important. In the second
one, the benefits of a high compression ratio tend to exceed
those of the change detection.

2.1. Smart Grid
The Smart Grid is an intelligent communication network

which monitors and controls a power network. The integra-
tion into such networks of renewable energy producers alters
the conventional power flow [9]. These producers are inconsis-
tent and have performance peaks, which in turn demand intelli-
gent power distribution systems.

Consider a company which has to manage a power-
distribution network. The company collects, stores and ana-
lyzes the data delivered by the many devices (e.g., smart me-
ters, power plants) in its network. The data needs to be analyzed

in real-time, thus online change detection is indispensable. To
significantly reduce communication and storage costs, the data
must be lossily compressed. Now think of a sudden increase in
power consumption. The company must react as soon as pos-
sible for example by powering up additional power plants. To
this end, it must detect the change in the first place, which is
not only the consumption measured by one single device, but
an aggregate of the entire grid. As a takeaway, we observe that
good compression and high-quality change detection are both
very important in this scenario.

2.2. Internet of Things

Internet of Things (IoT) refers to large networks of small or
embedded devices, which communicate wirelessly. For many
IoT entities, energy optimization is a primary constraint, as they
are powered by batteries or use energy harvesting methods like
micro solar panels. Thus, wireless data transmission often is
the biggest factor regarding energy consumption, as the power
required to transmit data increases quadratically or even with
the power of 4 with the distance between sender and receiver
[10]. The power consumption of data compression in turn in-
creases only linearly with the size of the data. Thus, it is rea-
sonable to send data that is lossily compressed over a distance.
Detecting changes is often computationally heavy (e.g., overall
computational complexity Bayesian Online Change Point De-
tection is O(n5), where n is the length of the sequence under
consideration [7]) and should be performed on the central unit;
it therefore has to take place on compressed and later decom-
pressed data [11]. Now consider a home automation system,
where a central control unit can adapt the heating when several
temperature or humidity sensors detect a change in the weather.
Online change detection is needed to react in short time. This
specific scenario benefits more from a high compression ratio
than from better change detection, in contrast to the previous
scenario.

3. Design Decisions

Designing the comparison study envisioned is challenging;
in particular, there are various design decisions that one must
address. Figure 1 is an overview of our study framework. The
framework takes as input a dataset and ground-truth change
points. It then uses these change points to derive optimal
parameters for the change-detection methods used. It subse-
quently uses an adequate error measure to evaluate the impact
of compression on the changes in the dataset. This is in or-
der to obtain an optimal combination of compression ratio and
change-detection quality. In the following, we describe the im-
portant design alternatives and the rationale behind our choices.
Even though the subsequent subsections will introduce them
explicitly, Table 1 lists the basic notions we use and their defi-
nitions.

3.1. Training Data

The evaluation envisioned can take place on the complete
dataset or on a subsequence. We see two advantages in using
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Figure 1: Overview of evaluation framework

Table 1: Basic notions
Notion Definition

change point
point in time when a change
occurs

ground-truth change
point

real change point present in the
data

benchmark change
point

point in time determined as change
by change-detection algorithm

compression ratio
ratio between the size of the
compressed data and the size
of the original data

change-detection
quality

measure of the effectiveness of
a change-detection algorithm

a subsequence. The first one is that the parameter optimization
is quicker. Second, we can do so to validate the hypothesis that
it is sufficient to run this optimization on a data subsequence,
and the result also performs well on the complete dataset or on
any other data of the same kind. This is important, because
we focus on online algorithms that do not operate on complete
datasets, but on streams of data.

3.2. Benchmark Change Points

To assess the quality of change-detection methods, it is very
common to compare the detected change points with a ground
truth. This however raises at least two issues. First, ground-
truth metadata can diverge from the detectable changes. To il-
lustrate, the heart-rate dataset PAMAP2 comes together with the
information when exactly a test person has changed his activity.

2http://www.pamap.org/demo.html, May 18, 2015

The heart naturally takes some time to adapt to new activities.
Second, most change-detection algorithms can only detect spe-
cific kinds of changes. ADWIN for instance is specialized on
changes of mean values. In other words, comparing to a ground
truth evaluates the suitability of the change-detection algorithm
for the dataset. Thus, rather than comparing to a ground truth,
we let the change-detection method identify change points on
the specific dataset without any compression, and we use these
change points as our benchmark, dubbed benchmark change
points. Compression is only used in the actual comparison
study, i.e., when looking for change points on the compressed
data. We call the change points identified on the compressed
data comparison change points.

3.3. Parametrization

The result quality and performance of change-
detection and compression algorithms depend on
their input parameters. In particular, setting the param-
eters of the change-detection algorithm when comparing
alternatives is intricate. One option is to use the parameters
recommended in the underlying publications. But this ignores
characteristics of the data the algorithms run on. An alternative
is to use the parameter values that give way to good results
on the data currently examined. If so, these values obviously
need to be found, and this is not trivial. We for our part pursue
this option nevertheless, as follows. We use an optimization
technique to find those parameter values. This requires a
reference point. Despite the limits mentioned in the previous
paragraph this reference point is the ground truth. I.e., that
optimization minimizes the distance between it and the result
of the change-detection algorithm without compression.

3.4. Multi-objective Optimization

With a focus on result quality, optimizing change-detection
and compression algorithms in combination has two objectives:
low error rate of change detection and good compression ratio.
In general, there are several kinds of methods to perform opti-
mization with multiple objectives. One approach is to derive a
single value, using for example a weighted sum. This is easy
to implement, but finding appropriate weights highly depends
on the specific use case (see Section 2) and is notoriously dif-
ficult. A more sophisticated, but at the same time more costly
approach is multi-objective optimization, resulting in a Pareto
frontier. We have chosen this second option because it is more
informative.

3.5. Error Measure

Finding good parameter values requires a measure for the
change-detection error. One can use a relatively simple mea-
sure, such as the number of correctly detected change points.
An alternative is to calculate individual errors for paired
changes, misses and false positives, and one can further refine
this using application-specific weights. While this is markedly
more complex, it also provides more insight. Because we aim
to compare change points in detail, we choose the latter option.
We use a framework providing that functionality, the MILTON
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distance measure [12]. We note that [12] does not feature a sys-
tematic comparison of combinations of change detection and
lossy compression techniques nor a discussion of respective se-
tups.

4. Fundamentals

In this section we review the compression and change-
detection algorithms covered in our study (Table 2). We also
review two evolutionary algorithms. We then say how we quan-
tify the deviation of change points. To make the distinction be-
tween the different categories of algorithms more obvious, we
prefix the original acronyms accordingly: C for compression, D
for change detection and O for optimization. Here we can only
provide informal summary descriptions of those algorithms, but
the publications describing them contain detailed explanations.
They also specify the respective parameters. Further informa-
tion as well as code is available on the project website3.

Table 2: Overview of algorithms and their abbreviations
Compression Algorithms

C APCA Adaptive Piecewise Constant Approx. [2]
C SF Slide Filter [13]
C CHEB Chebyshev Approximation [4, 5, 6]
C WAVE Wavelet Approximation [14]
C PPA Piecewise Compression Algorithm [15]

Change Detection Algorithms
D ADWIN Adaptive Windowing [16]
D ED Event Detection from time series data [17]
D CF ChangeFinder [18]
D OKCD Online Kernel Change Detection [3]
D BOCD Bayesian Online Changepoint Detection [7]

Optimization Algorithms
O SOEA Single Objective Evolutionary
O NSGA-II Non-Dominated Sorting Genetic [19]

4.1. Compression Methods
A broad review of the literature has resulted in the following

categories of model-based compression algorithms: constant,
straight-line or polynomial model compression. For each cate-
gory we have chosen at least one representative, typically one
which has received a lot of coverage in the scientific literature.
Other points behind our choices of compression methods are as
follows: First, we concentrate on methods that use the uniform
norm (L∞-norm), which, in contrast to, say, L2, enables an error
guarantee on each value compressed. Second, we are interested
in the best compression (not segmentation) of the time series.
We thus leave aside several well-known data-segmentation al-
gorithms.

Adaptive Piecewise Constant Approximation (C APCA)
[2] adds data points to an adaptive window until the difference
between the maximal and minimal value within this window

3https://dbis.ipd.kit.edu/2434.php

exceeds a given threshold. Each window then is compressed
by summarizing the data points as the arithmetic mean of its
maximal and minimal value. Although C APCA is a data rep-
resentation, the underlying algorithm can be regarded as a com-
pression method [8].

Slide Filter (C SF) [13] makes use of several straight-line
functions which approximate a set of data points. It starts by
computing the values of these functions for a window consist-
ing of two data points. Then more points are added to the win-
dow, while the functions which do not fulfill the error threshold
anymore are left aside. This is continued until only one function
remains. This remaining function then is the approximation of
the window.

Chebyshev Approximation (C CHEB) [4, 5, 6] tries to repre-
sent fixed size windows by a linear combination of Chebyshev
polynomials up to a given dimension. If the approximation de-
viates more than the given error threshold, it stores the original
data instead.

Wavelet (C WAVE) [14] uses a discrete wavelet transform
(DWT) to compress time series. The data goes through a low-
pass filter and a bandpass filter to construct the corresponding
continuous wavelet function. We deploy the existing MATLAB
implementation that handles all lengths of time series, includ-
ing those that are not powers of two.

Piecewise Polynomial Algorithm (C PPA) [15] proposes a
method which combines several compression methods. The
goal of the algorithm is to approximate the data in a piecewise
manner so that the compression ratio is maximized. It keeps
adding data points to the current window until the error thresh-
old is not met anymore. It then compresses this window using
the best compression algorithm out of several ones.

4.2. Change Detection Techniques

Our study covers change-detection techniques of the fol-
lowing important categories: sequential analysis, maximum-
likelihood estimation, kernel based techniques and Bayesian
analysis techniques. Again, we have chosen one representative
for each category.

Adaptive Windowing (D ADWIN)4 [16] uses a sliding win-
dow which is partitioned into buckets. Each bucket can contain
several data points; it does so by storing their number and an
aggregate of their values. Each time a data point is added to
the window, it is put into a new bucket. When a certain num-
ber of buckets is reached, the two oldest buckets are merged. If
the difference of the average values of two neighboring buck-
ets exceeds a dynamic threshold, a change is reported and the
last bucket is dropped. This dynamic threshold is computed for
each comparison of two buckets. It depends on the difference
of the numbers of data points of the two buckets.

Event Detection (D ED) [17] is based on maximum likeli-
hood estimation. It examines a data window to which data
points are added step by step. In each step, it determines if the
window can be split into two significantly different segments.
Each segment then is approximated by fitting a model to it, and

4More specifically, we use ADWIN2, which is often referred to as ADWIN.
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the error between the model and the data is determined. The
point which minimizes this error for both segments is reported
as change point. The models used are derived from base classes
such as algebraic polynomials, radial, wavelet or Fourier. We
for our part have chosen algebraic polynomials, just as in [17].

ChangeFinder (D CF) [18] describes a two-stage algorithm
which combines outlier detection and change detection. In a
first stage, the algorithm learns an auto regressive (AR) model
from a given time series. For each data point of the time se-
ries, a score is obtained by calculating the loss, be it the loga-
rithmic one or the quadratic one. An outlier results in an iso-
lated high score, while changes manifest themselves as series
of high scores. Smoothing the scores removes the outliers. The
smoothed values from the first AR model are then used to learn
another AR model in the second stage of the algorithm. The
scores of the second model describe the probability for data
points being change points.

Online Kernel Change Detection (D OKCD) [3] uses one-
class support vector machines for change detection. For each
data point of the time series, the immediate past subset xt,1
and the immediate future subset xt,2 are mapped into a feature
space. A kernel method is used; it ensures that the mapped in-
put space is a subset of a hypersphere with radius one, centered
at the origin of the feature space. Support vector classification
then finds hyperplanes in the feature space which separate the
training vectors Φ(xt,1) and Φ(xt,2) from the center of the hyper-
sphere. To decide whether a change point is present, the authors
introduce a dissimilarity measure in feature space:

DH =

_
ct,1ct,2

_
ct,1 pt,1 +

_
ct,2 pt,2

, (1)

where ct,1 and ct,2 are the centers of the hypersphere sections
intersected by the hyperplanes, and pt,1 and pt,2 are two points
where the hyperplanes intersect the hypersphere. The arc rep-
resents the arc distance between the two points. If the dissimi-
larity measure exceeds a given threshold, a change point is re-
ported.

Bayesian Online Changepoint Detection (D BOCD) [7] uses
a Bayesian approach. It divides a time series into partitions
and assumes that for each partition there is an i.i.d. probability
distribution of the data values. Thus, the change points are the
boundaries between the partitions. For each new data point, the
algorithm estimates the probability distribution since the last
change point and then computes the probability that the new
point belongs to this distribution. When this probability drops
suddenly, a change is reported.

To summarize our selection of change-detection algorithms,
we first repeat that they are based on different models. See
Table 3 for key characteristics. Second, the algorithms have
different runtimes and memory requirements. For instance,
with W being the length of the current window, D ADWIN has
O(log(W)) runtime and memory requirements, while D ED has
O(W2) runtime and O(W) memory requirements.

At first sight, it might be interesting to study the influence of
the parameter values of the change-detection methods as well.

Table 3: Key characteristics of change-detection algorithms
Algorithms Key characteristics

D ADWIN
• uses adaptive windowing
• fast and memory efficient

D ED
• uses maximum likelihood estimation
• fits models (polynomials) to data

D CF

• works in two stages using autoregressive
models
• combines outlier detection and change
detection

D OKCD
• partitions and maps data in feature space
• uses support vector machines clasification

D BOCD
• online algorithm
• estimates probability distributions

However, with five change-detection methods, five compres-
sion schemes and (as we will explain later) five different data
sets, the space of configurations to examine has 125 elements
already. Adding several other dimensions to it would exceed the
scope of this study. Finding meaningful ways to narrow down
this extended space is future work.

4.3. Optimization Techniques
On the technical level, some decisions like choosing an op-

timization algorithm have been necessary as well. We for
our part use evolutionary algorithms. NSGA-II [19] is our
choice for multi-objective optimization. Calculating bench-
mark change points needs only single-objective optimization
(see Change Point Baseline in Section 3), which leads us to
the faster O SOEA algorithm.

Single Objective Evolutionary Algorithms (O SOEA) start
with a random set of problem solutions, referred to as initial
population. The objective is to identify individuals, i.e., solu-
tions, with low fitness. In each generation step, the individuals
are sorted by their fitness, and two parents are randomly se-
lected from among the top τ percent. They create two children
by crossing over, and these children are mutated with a cer-
tain probability. Additionally a new random individual is intro-
duced in each generation. The three newly created individuals
replace the three individuals with the worst fitness. The algo-
rithm terminates after a certain number of generations, or when
the fitness falls below a certain threshold.

Non-dominated Sorting Genetic Algorithm [19] is an evo-
lutionary optimization algorithm with multi-objective support
(O NSGA-II). It approximates a Pareto-optimal frontier over
several generations. It starts with an initial, random population,
and each generation categorizes the individuals into fronts, sorts
the individuals within these fronts and uses the best individuals
to create a new population, which then are added to the popula-
tion of the next generation. More specifically:

1. An individual belongs to a front if there does not exist
another individual in this current or in any previous front
dominating it. An individual x dominates another individ-
ual y if and only if x is never inferior to y in any objective
and x is superior to y in at least one objective.
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2. For the sorting within the fronts, a so-called density value
is assigned to each individual. It quantifies the density of
solutions surrounding this individual.

3. The best individuals are chosen based on front and den-
sity. They are used to create a new population by means of
recombination and mutation.

After several generations, the first front typically is a nearly
Pareto-optimal frontier.

4.4. Measure for Quantifying the Impact of Lossy Transforma-
tions on Subsequent Change Detection (MILTON)

An important constituent needed for a study such as ours is
a measure quantifying the difference of two time series con-
taining change points cp and ĉp. dMILTON is such a measure
[12]. It categorizes the changes as paired changes (PC ), false
positives (FP ) and misses (MISS). Paired changes are changes
which occur in both time series and are mapped to each other.
False Positives are change points which occur in ĉp but not in
cp, while misses are change points occurring in cp but not in
ĉp. For each of these categories an error is calculated (errPC,
errFP, errMISS ). These errors then are combined into a total
one:

dMILTON (cp , ˆcp ) =
errPC + errMISS + errFP
|PC | + |MISS | + 1

(2)

We explain our parametrization of MILTON in Section 5.

5. Experiment Setup and Initialization

In the following, we first present our framework (Sec-
tion 5.1), followed by a summary of our notation (Section 5.2).
We then describe the datasets used (Section 5.3). Our eval-
uation consists of three phases which build on each other, as
shown in Figure 2. Phase 0 finds optimal parameters for a
change-detection algorithm on a subsequence of an uncom-
pressed dataset, to provide benchmark-change points (Sec-
tion 5.4). Phase 1 (Section 5.5) uses the benchmark-change
points to find good parameters of the compression and change-
detection algorithms for any combination of dataset, compres-
sion algorithm and change-detection algorithm. This brings up
the question under which circumstances the parameters found
on a subsequence are also well suited for the complete dataset.
We study this question, i.e., the validity and applicability of
good parameters on complete datasets, in Phase 2 (Section 5.6).

We have additionally performed an experiment with a time
series orders of magnitude larger than those we used in the
phases described above. The goal of this experiment has been
to show that our framework can handle long time series as well.

5.1. Framework

For the experimental evaluation we have designed and imple-
mented a flexible generic framework which supports the differ-
ent algorithms and is extensible to test further algorithms. We
have integrated existing implementations whenever available.

Dataset and cpground

Phase 0
Benchmark Change
Point Computation

Optimal param-
eters for change
detection θcd and
MILTON distance

Benchmark
Change Points cp

Phase 1
Evaluation of

Compression Impact

Pareto frontier in
∆cr×MILTON space

Optimal Parameter
Set (θcomp, θ̂cd)

Phase 2
Complete Data

∆cr and MILTON
for complete data

results

results

results

Figure 2: Overview of the experiments

For C APCA, C SF and C CHEB we have used the implemen-
tations of [8]5. The source code for D ADWIN6 and D BOCD7

is publicly available as well. For the wavelet compression we
use a method from [14], which is part of the MATLAB libraries.
We also reuse existing implementations of C PPA and MIL-
TON. We have implemented the remaining algorithms (D ED,
D CF and D OKCD) in MATLAB following the original pub-
lications, and they can be downloaded from our web page. Our
framework handles algorithm implementations in C, C++, C#,
R, MATLAB or Java.

The framework allows to define jobs for each experiment. A
job consists of the algorithms chosen for compression, change
detection and optimization, together with their parameters. It
also includes the dataset and reference change points. Jobs
cover the workflow of the experiments depicted in Figure 2. To
distribute the work among several machines, the jobs are stored
in a database where any free node can poll an open job. The
results are then stored in the database as well.

5.2. Notation
In this paper x(t) ∈ R, t = 1, 2, . . . , n is a real-valued one-

dimensional time series. cd (·|θcd) stands for a change-detection
algorithm with parameters θcd. By applying it to a time series
x, we get cp (t) ∈ {0, 1}, t = 1, 2, . . . , n where

cp (t) =

1 if t is a change point
0 otherwise.

(3)

We further define a transformation trans (·|θtrans) with param-
eters θtrans. This method takes the input time series x and creates

5lsirwww.epfl.ch/benchmark/, May 18, 2015
6https://github.com/abifet/adwin, May 18, 2015
7hips.seas.harvard.edu/content/bayesian-online-changepoint-detection,

May 18, 2015
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the time series x̂(t) ∈ R, t = 1, 2, . . . , n, where each value x̂(t) is
the result of a compression and subsequent decompression step:

x̂ = trans (x|θtrans) (4)

∆cr is the compression ratio:

∆cr =
size of compressed data

size of original data
(5)

Note that size of compressed data cannot be derived from x̂.
This is because it does not represent the compressed data. We
summarize our notation in Table 4.

Table 4: Symbols used and their meaning
Symbol Meaning
x Original time series
x̂ Compressed time series
cpground Gound truth change points
cp Benchmark change points on x
ĉp Comparison change points on x̂
∆cr Compression ratio
PC Number of paired changes
FP Number of false positives
MISS Number of missed changes
errPC total error of paired changes
errFP total error of false positives
errMISS total error of missed changes

5.3. Datasets

For the experiments we use artificial datasets as well as real
world datasets, see Figures 3 and 4.

5.3.1. Synthetic datasets
We have generated the artificial datasets in line with earlier

work [18, 20]. Our rationale here is to have well-defined change
points of the types that are most frequent in reality, namely
changes in mean or variance. We use an autoregressive func-
tion similar to the one in [20] which generates change points at
every 200th point of time. This is in contrast to the real-world
datasets below where changes occur irregularly. In the Ris-
ing Mean dataset we increase the mean of normally distributed
noise by 1 at every change point. The Variance Change dataset
alters the variance of the noise between 1 and 3 at a change
point. The rationale is to study the behavior of the algorithms
under another kind of change. For the additional experiment
regarding long time series (Section 6.4), we used a time-series
(Long) of one million points, which is much longer than the
other time-series we used (e.g., 100 times larger than REDD).
The time series we generated contains changes of random size
at random points in time. Algorithms 1, 2, 3 contain the pseudo
code generating this data, the companion web page contains it
as MATLAB code.

µ← 0, σ← 1
x(0)← 0, x(1)← 0
for t ← 2 to t = length o f dataset do

x(t)← 0.6 · x(t − 1) − 0.5 · x(t − 2) + N(µ, σ2)
if t mod 200 = 0 then

µ← µ + 1
end

end
Algorithm 1: Rising Mean

µ← 0, σ← 1
x(0)← 0, x(1)← 0
for t ← 2 to t = length o f dataset do

x(t)← 0.6 · x(t − 1) − 0.5 · x(t − 2) + N(µ, σ2)
if t mod 200 = 0 then

σ← 4 − σ
end

end
Algorithm 2: Variance Change

5.3.2. Real-world datasets

Unfortunately, we are not aware of any large real-world
dataset that is labeled so that it can be used in quality exper-
iments on change detection. One reason is that, in real-world
datasets, defining change points unambiguously is not possible
in general. Data containing change-point annotations by hand
as metadata exists nevertheless, and we use such data from dif-
ferent fields: EEG data, heart rate monitoring and electricity
data. To account for real-world datasets with complex change
points, we have included two additional datasets from the elec-
tricity domain. Here, instead of metadata annotated by hand,
we have used an established change point detection method to
obtain ground-truth change points. This is because changes are
more diverse and irregular than with the simpler real-world data
sets, so we deem intellectural annotations less reliable. Next,
for the same reason, we expect subsequences of the complex
data sets to differ from one another by much. Hence, we only
use the complete complex datasets in our evaluation. We thus
differentiate between simple real-world datasets and complex
ones, as follows.

nb changes← 100
σ = 1
change times← generate random values(nb changes)
change sizes← generate random means(nb changes)
for t ← 1 to t = nb changes do

for k ← t to k = change times(t + 1) do
x(k)← N(µ = change sizes(t), σ2)

end
end

Algorithm 3: Long

7
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Figure 3: Plots of excerpts of all datasets including ground truth. Top row shows real world datasets: EEG, PAMAP and REDD (from left to right); bottom row
shows the artificial datasets: Rising Mean, Variance Change and Long.

Table 5: Overview of datasets with their corresponding MILTON distance of initial parameter calculation, where |CP| is the number of change points in the whole
dataset and |CPSeg | in the segment

dMILTON

Name Length |CP| Segment |CPSeg| D ADWIN D ED D CF OKCD D BOCD
Rising Mean 10000 49 1000 4 2.006 1.049 1.009 0.202 0.003
Variance Change 10000 49 1000 4 - 2.822 0.833 0.422 0.217
REDD 10000 144 1000 10 2.365 - 0.104 - 0.464
PAMAP 2280 13 1000 6 1.018 - - 1.041 0.791
EEG 14979 23 1500 3 0.27 0.272 - 1.287 0.017

Simple real-world datasets. The EEG dataset8 has been cap-
tured while the subject was opening and closing his eyes; this
leads to a noticeable peak. We have removed a one-value out-
lier at 898 by interpolating the neighboring values to get more
stable change-detection results.

The heart-rate dataset comes from the (PAMAP) project.
More specifically, we use the outdoor dataset of Subject 2. It
contains activities like sitting, walking, running or playing soc-
cer. Since the data has been captured with 100 Hz, which is
way above the resolution of the heart-rate monitor, we have re-
duced the dataset by using every hundredth data point, in order
to reduce the data volume and the huge runtime of some of the
change-detection algorithms.

We also use the REDD energy-consumption data9. It records
the power consumption of a house broken down into differ-
ent electrical consumers. For our evaluation we have selected
Channel 17 of House 1, which is the lighting in one of the

8https://archive.ics.uci.edu/ml/datasets/EEG+Eye+State, May 18, 2015
9http://redd.csail.mit.edu/, May 18, 2015

rooms. This is because the lighting is relatively independent
of other household appliances.

Table 5 shows the lengths of the subsequences we have se-
lected according to the Training Data design decision. For the
EEG dataset the segment is slightly larger than for the other
data. This is because the ground-truth change points are farther
apart.

Complex real-world datasets. The REDD ALL dataset is a
complex version of the REDD dataset (Figure 4). Here, we have
selected the per-minute aggregated power consumption of one
of the households of the REDD dataset. As motivated earlier,
we have annotated this data using the Student change-detection
algorithm from the cpm R-package [21].

We have obtained the CREST dataset by using the high-
resolution energy demand model from [22] (Figure 4). The
model simulates appliance use and home occupancy in order to
obtain data with characteristics similar to real-world household
power consumption. As in the case of the REDD ALL dataset,
we have used the Student change-detection algorithm from the
cpm R-package to annotate ground-truth change points.

8
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Figure 4: Plots of excerpts of real-world complex datasets including ground truths: above REDD ALL, below CREST.

5.4. Phase 0:
Benchmark Change Point Computation

Recall that Phase 0 is not an experiment in its own right,
but an initialization step. It is described next. As stated under
Benchmark Change Points in Section 3 on Design Decisions,
we do not use the ground-truth change points as reference for
our evaluation. Instead we use benchmark change points by
minimizing the MILTON distance to the ground truth:

arg min
θcd

dMILTON (cd (x|θcd), cpground ) (6)

To this end, we use an O SOEA. Table 6 shows its parameteri-
zation.

We have executed the further phases only for combinations
of change-detection techniques and datasets which lead to ac-
ceptable results. We deem a result acceptable if the number of
paired changes exceeds the one of false positives and the one
of misses, so that most of the original change points are found.
To facilitate a comparison, Table 5 lists the MILTON distance
against the ground-truth change points. ’-’ stands for results
that have not been accepted. Most algorithms have found a
parametrization on Rising Mean and Variance Change. The
D ADWIN and Variance Change combination does not have
a result, because D ADWIN only finds changes of mean val-
ues [16]. As expected, some change-detection algorithms do
not perform well on some real-world datasets. This is because
their ground truth is based on secondary observations that do

Table 6: List of parameters for the optimization algorithms, fitness function and
MILTON distance with their corresponding values used for our experiments.

Algorithm Parameter Value
O SOEA population size 100

exit fitness 0.001
max. generations 500
mutation rate 0.2
mutation change 0.4
selection pressure τ 0.4

O NSGA-II population size 500
exit fitness 0.001
max. generations 10
mutation rate 0.2
mutation change 0.4

Fitness weight α 0.5
MILTON fTIME (∆t) |∆t |

fSCORE (∆s) 0
fMISS (s) (s + 1)2

fFP (s) s

not necessarily cause a change in the data at exactly the same
time.

5.5. Initialization of Phase 1:
Evaluation of Compression Impact

An important goal of our evaluation is to determine an op-
timal set of parameters which preserves the change points

9



cp found before compression as much as possible while
maximizing the compression at the same time. This is
a multi-objective optimization problem with the objectives
dMILTON(cp, ĉp) and compression ratio ∆cr, where ĉp =

cd(x̂|θ̂cd). The parameter space consists of the parameters
for the compression and the change-detection algorithm: θ =

(θtrans, θ̂cd). To evaluate the algorithms we study all possible
combinations on each dataset.

To find optimal parameter sets we use an adaptation of
NSGA-II described in the next paragraph. See Table 6 for the
parameterization of NSGA-II. The weighting functions for the
errors in the MILTON distance are important as well. See again
Table 6, with functions similar to [12]. In a nutshell, these func-
tions ( fT IME , fS CORE , fMIS S , fFP) determine the weight given to
the different kinds of errors caused by compression. In our case,
for example, a shift in time of a change ( fT IME) is weighted pro-
portionally to its absolute value.

The parameters of the change-detection and compression al-
gorithms have a range of validity which must be kept during the
optimization. Therefore we modify NSGA-II to calculate its
random values in the range [φmin, φmax) during the initialization
of the population and for mutations. For some parameters we
have reduced this range even further to reduce the search space
and to speed up the optimization process. Tables 7 and 8 list
the parameters and the ranges we have selected. An additional
modification is the distinction between float and integer param-
eters. Random values for the float parameters are calculated as
φ′ = φmin + r · (φmax − φmin), where r is an equally distributed
random number in [0; 1). For integer parameters this value is
then rounded: φ′ = bφ′c.

Table 7: List of parameters for all compression algorithms and the ranges of the
optimization

Algorithm Parameter Min Max Type
All methods threshold ε 0 0.3 float
C CHEB segment length 4 |x| int
C WAVE max. level 1 10 int
C PPA max degree 2 5 int

The result of this phase is a Pareto frontier that represents
the best possible trade-offs between compression ratio and the
preservation of change points. Each individual consists of the
MILTON distance, the compression ratio and the root-mean-
square error (RMSE) calculated for the corresponding set of
compression and change-detection parameters. To select an in-
dividual of this frontier suitable for a specific application sce-
nario, a fitness is calculated:

fitness = α · dMILTON(cp, ĉp) + (1 − α) · ∆cr (7)

where α is a parameter to weigh the addends. Note that α is
used only to select an individual in the result set after the opti-
mization is finished. This provides a lot of freedom and flexi-
bility during the evaluation.

10In our case MSet specifies the maximum degree of the polynomials for the
approximation (cf. Subsection 4.2).

Table 8: List of parameters for all change detection algorithms and the ranges
of the optimization

Algorithm Parameter Min Max Type
D ADWIN M 2 10 int

δ 0 1 float
D ED δ 0 1 float

p 1 200 int
MSet 10 0 5 int

D CF T 3 10 int
k 2 10 int
r 0 0.4 float

D OKCD m1 2 200 int
m2 2 200 int
ν 0.2 0.8 float
η 0 1 float
σ 0 1 float

D BOCD µ0 0 2 float
κ0 0 5 float
α0 0 5 float
β0 0 5 float
λ > 0 500 float

5.6. Initialization of Phase 2: Complete Datasets

Section 3 has explained the necessity to evaluate the best per-
forming combination of compression and change detection on
a subsequence but also on the complete dataset. The details of
the experimental setup when it comes to the complete dataset
are as follows: The parameters for a specific α of the Phase 1
experiment are applied to the complete dataset. For the Rising
Mean dataset, we have divided the ε threshold by 10, because
it depends on the global maximum that is 10 times higher on
the complete Rising Mean dataset. As a reference, we use the
parameters computed in Phase 0 (Section 5.4) on the complete
dataset. Then the MILTON distance dMILTON , compression ratio
∆cr and RMSE are calculated.

6. Results

This section first describes and discusses our results of the
Phase 1 experiments and then presents the results of Phase 2
on the complete data. As an initial, exemplary illustration, Fig-
ure 5 visualizes the data transformation in the different phases
for the combination REDD, D BOCD and APCA. The top plot,
although not the focus of our study, shows the raw data with
ground-truth change points as vertical straight lines. The mid-
dle plot shows the benchmark change points calculated in Phase
0. The bottom plot shows the change points on the compressed
data with the best result parameters of Phase 1. Comparing
the top plot to the middle plot, we can see that D BOCD fails
to detect two changes and incorrectly identifies two other ones.
Taking benchmark change points as a reference when run on the
compressed data, i.e., comparing the middle plot to the bottom
plot, D BOCD fails to detect two changes. Thus, the decrease
in the performance of D BOCD on compressed data is small in
this case, compared to its performance on the original data.
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Figure 5: D BOCD and C APCA on REDD. Top down: raw data with ground-
truth change points, result of benchmark-change point computation, best result
of change detection with compression (α = 0.5).

6.1. Phase 1 – Results

The results of the Phase 1 experiments are Pareto frontiers.
To illustrate, Figure 6 shows a sample of the Pareto frontiers
on the Variance Change dataset. Each plot contains all com-
pression techniques for one change-detection algorithm, except
for D ADWIN, which is not applicable to this dataset (see Sec-
tion 5.4). There is not any frontier dominating all other fron-
tiers, therefore no single best solution exists. Dependent on
the dataset and parameter α, different combinations of change-
detection and compression algorithm yield the best result.

We observe that comparing the large number of Pareto fron-
tiers produced by our experiments is difficult. Thus, we select
the individuals with the lowest fitness (see Equation 7) of each
Pareto frontier for different values of α and compare their MIL-
TON distance and compression ratio in Figures 7 and 8.

Earlier we have described two scenarios (SmartGrid, IoT)
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Figure 6: Pareto frontiers for D ED,D CF,D OKCD and D BOCD (from top to
bottom) on the Variance Change dataset.

11



where an approach such as ours is indispensable if one wants
to find a good combination of compression and change-
detection algorithms. These scenarios have different require-
ments. We therefore examine the Pareto frontiers for two dif-
ferent α values, α = 0.5 for the Smart Grid, and α = 0.05
for IoT. For each solution on the Pareto frontier we calculate a
fitness value using the respective α value. We have chosen the
parametrization with the lowest fitness that indicates the best re-
sult for the scenario. We get a triple (fitness, MILTON distance,
∆cr) for each experiment. See Figures 7 and 8 for the MIL-
TON distance and ∆cr values, for α = 0.5 and α = 0.05. For
several datasets, some change-detection algorithms (e.g., D ED
on REDD) did not detect any changes or have given very poor
results. We therefore did not include them in Figures 7 and
8. Figure 8 contains the results only on the Variance Change
dataset. The reason is that for two datasets (EEG and PAMAP)
the results for both values of α are identical, while for the other
two they are very similar. The MILTON distance is the value
above the horizontal axis, the compression ratio is below. (For
both dMILTON and ∆cr, lower values are better.) Using the cor-
responding value of α, the value of the fitness can be retrieved.
For instance, for Figure 7 (α = 0.5), it is the average of dMILTON

and ∆cr. For this value of α, the best combinations of com-
pression and change-detection algorithm for each dataset are as
follows.

Synthetic datasets:

• Rising Mean: D BOCD with C APCA clearly is the best
solution. This is because it achieves a MILTON distance
of almost zero and also has the best compression ratio.

• Variance Change: The best fitness is obtained with
D BOCD and C CHEB, closely followed by D BOCD
and C PPA, although the compression ratio is not optimal.

Simple real-world datasets:

• REDD: D CF with C SF is the best combination. This is
because it has a close-to-zero MILTON distance and a very
good compression ratio.

• PAMAP: The best algorithms are D BOCD and C CHEB,
mainly because of the low MILTON distance. D BOCD
with C WAVE also performs very well.

• EEG: D BOCD with C SF clearly is optimal.

Overall D BOCD performs very well on all datasets, be they
synthetic, be they real, and is only beaten once by D CF. We
have made further noteworthy observations:

• A MILTON distance larger than 3 means that no change
points have been found after compression. Thus, D CF on
Rising Mean and D ADWIN on the EEG data do not work
at all.

• The Variance Change dataset has relatively high compres-
sion ratios. This is because the changes in variance are dif-
ficult to compress, especially on combinations D OKCD
with C PPA and D ED with C CHEB.

• The REDD dataset is easy to compress while keeping the
change points, because of its very sharp edges and low
signal-to-noise ratio. It therefore has the lowest average
fitness of all datasets.

Comparing the results for α = 0.05 (Figure 8) to the ones above,
the compression ratios are smaller. However, the MILTON dis-
tances are higher. Both effects are expected. On the Variance
Change dataset, the results with the lowest MILTON distance
for α = 0.5 has a very high compression ratio. For α = 0.05,
those combinations yield a much lower compression ratio.

On PAMAP and EEG the solutions for α = 0.5 and α = 0.05
are the same. The best results for α = 0.05 from Rising Mean
and REDD Data are identical to those from α = 0.5. This is
because their low compression ratios are not reduced further.
Some of the other results have slightly lower compression ra-
tios.

Our takeaway is that our experiments do indeed help to find
solutions for specific use cases. The results of this phase also
show that the quality differs a lot between different combina-
tions in the same setting. Thus it is very important to be able to
study different combinations using a setup as elaborate as ours.

We have carried out further experiments to illustrate the in-
fluence of α on the fitness function. As a reminder, α is not
used in the optimization process. It is used to select an indi-
vidual in the result after the optimization is finished. Figure 9
shows the value of the fitness function depending on α for the
combination of D BOCD and C CHEB on the REDD dataset.
The crosses in the figure represent the cases where a different
individual is chosen, since its fitness now is the minimal one.
We see that there are three such cases and four corresponding
individuals overall. Thus, by choosing an appropriate α based
on the requirements of the application scenario, we can flexibly
adjust the choice of the individual for any values of dMILTON

and ∆cr in order to, say, eliminate the possible dominance of
one over the other.

Lessons Learned. Finally, we have found some general heuris-
tics regarding the change-detection algorithms, as follows:

• D ADWIN performs well on the Rising Mean and the
REDD datasets. These datasets contain sharp and sud-
den changes. In contrast, D ADWIN performs worst on
PAMAP and EEG, where changes are of a different nature.
Here, compressing the data makes changes practically un-
detectable for D ADWIN.

• All in all, D BOCD has a stable performance on all
datasets and most compression algorithms. In the case
where it performs worse than other algorithms, it does
so only slightly. We therefore conclude D BOCD to be
a rather robust algorithm in compression scenarios.

• The performance of D ED and D CF strictly depend on
the dataset, and it is hard to find characteristics of the
datasets for which these algorithms perform well. For in-
stance, D CF gives the best results on the REDD dataset,
while it performs the worst on the Rising Mean dataset,
although we think that these datasets are rather similar.
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Table 9: Comparison of dataset excerpts (left) and complete datasets (right) using the same parameters.
Best fitnesses

Combination dMILTON ∆cr RMSE Fitness |PC| |FP| |MISS|
Rising Mean: C APCA, D BOCD 0.000 | 0.674 0.010 | 0.011 0.827 | 0.690 0.010 | 0.342 4 | 48 0 | 3 0 | 9
Variance Change: C CHEB, D BOCD 0.181 | 1.716 0.316 | 1.031 1.559 | 0.000 0.249 | 1.374 5 | 75 1 | 39 0 | 40
REDD: C SF, D CF 0.001 | 0.957 0.041 | 0.048 4.449 | 4.479 0.021 | 0.503 11 | 126 0 | 9 0 | 37
PAMAP: C CHEB, D BOCD 0.177 | 0.476 0.039 | 0.039 4.585 | 4.873 0.108 | 0.258 6 | 13 1 | 3 0 | 1
EEG: C SF, D BOCD 0.038 | 3.104 0.030 | 0.017 14.95 | 17.305 0.034 | 1.560 3 | 9 0 | 30 0 | 1

Best generalization
Combination dMILTON ∆cr RMSE Fitness |PC| |FP| |MISS|
Rising Mean: C APCA, D ED 0.021 | 0.432 0.014 | 0.018 0.698 | 0.669 0.035 | 0.225 4 | 43 0 | 1 0 | 5
Variance Change: C SF, D CF 0.681 | 0.580 0.194 | 0.182 2.153 | 2.422 0.435 | 0.762 7 | 56 2 | 5 1 | 8
REDD: C WAVE, D CF 0.083 | 0.244 0.213 | 0.207 0.921 | 1.021 0.255 | 0.225 11 | 155 1 | 8 0 | 8
EEG: C PPA, D BOCD 0.772 | 1.919 0.005 | 0.002 36.01 | 43.65 0.333 | 0.960 3 | 10 3 | 21 0 | 0

6.2. Phase 2 – Results

As explained in Section 5.6, we apply the parameters of the
results from Phase 1 to the complete data. For every set we
choose the combination with the lowest fitness. We expect that
those parameter sets will achieve the same quality of results,
mainly in terms of stable ratios between PC, FP and MISS, as
on the subsequence datasets. Since dMILTON grows quadratically
for the number of FP and linearly for the one of MISS (see Ta-
ble 6), it is hardly comparable on the complete dataset. On the
other hand, we expect that the compression ratio stays constant.

Table 9 shows our results. We do not discuss these specific
results separately for synthetic and simple real-world datasets
because results are similar regardless of the nature of the data.
This means that the characteristics of simple real-world change
points do not influence the results of Phase 2. We also do not
include results for the PAMAP dataset because none of the re-
sults corresponds to a good generalisation on this dataset. In
contrast to our expectation, there are disproportionally more
FPs and misses than on small sets. From EEG we conclude
that three change points are not sufficient to train the change
detection properly. The O NSGA-II overfits the parameters on
the training data. To avoid this, we have also tested the other
combinations which do not show the best but nevertheless good
fitness. The lower part of Table 9 shows that these parameters
yield results on the complete dataset which are as good as the
ones on the excerpts. On REDD for instance, ChangeFinder de-
tects eleven times as many change points but only eight times
as many FPs. In contrast to Section 6.1, D BOCD performs
best in only two out of five cases. In every case the compres-
sion ratio differs only slightly. To sum up, we can say that the
results from a short subsequence can be used on the complete
dataset without losing quality. However, it is necessary to rely
on several results from Phase 1 to find the ones adapting best.

6.3. Complex Real-world Datasets

Table 10 is an overview of the best solutions for α = 0.5 on
the combinations of all compression algorithms and D ADWIN
and D OBCD for the complex real-world datasets. Results are
in most cases similar for both datasets. The combinations with
the best fitness for REDD ALL and CREST are obtained with

D BOCD, and C CHEB and C WAVE, respectively. This con-
firms the result obtained with synthetic and simple real-world
datasets, where D BOCD has had a stable performance.

We also notice that, for certain combinations of compres-
sion and change-detection algorithms, results are much worse
than for the previous datasets. As an example, D ADWIN and
C APCA obtains a MILTON distance of around 58 in the best
case, which is around one order of magnitude higher than for
all other combinations. Apparently, this is because compress-
ing complex real-world changes using simple polynomials such
as constant functions does alter changes significantly.

Table 10: Overview of the best solutions for α = 0.5 on each combination
of compression algorithm, change detection algorithm and complex real-world
dataset.

Compression
algorithm

Change-detection
algorithm ∆cr dMILTON

R
E

D
D

A
L

L

D ADWIN C APCA 0.02083 58.2486
D ADWIN C CF 0.01875 6.4055
D ADWIN C CHEB 0.2861 3.8407
D ADWIN C PCA 0.1097 5.2491
D ADWIN C WAVE 0.0851 6.9779
D BOCD C APCA 0.01389 62.4420
D BOCD C CF 0.0141 16.3038
D BOCD C CHEB 0.1410 0.5881
D BOCD C PCA 0.671 1.9527
D BOCD C WAVE 0.0747 5.4674

C
R

E
ST

D ADWIN C APCA 0.0167 50.1308
D ADWIN C CF 0.0094 6.6849
D ADWIN C CHEB 0.2826 4.1020
D ADWIN C PCA 0.0051 20.3947
D ADWIN C WAVE 0.1114 5.1926
D BOCD C APCA 0.0375 52.0951
D BOCD C CF 0.0094 17.9635
D BOCD C CHEB 0.3770 2.9814
D BOCD C PCA 0.0088 39.5499
D BOCD C WAVE 0.0625 4.7573
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Figure 7: Overview of the best solutions for α = 0.5 on each combination of
compression algorithm, change detection algorithm and dataset.

6.4. Experiment with Long Time Series

The goal of this experiment is to use our framework with
a time series significantly bigger than the ones we used in
Phases 1 and 2 and show that our framework is applicable to
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Figure 8: Solutions for α = 0.05 on Variance Change.
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Figure 9: Fitness vs. α for D BOCD and C CHEB on the REDD dataset

such time series as well. We use one combination of a com-
pression and change detection algorithm on the Long time se-
ries, resulting in the Pareto front in Figure 10. As expected, we
obtain sets of trade-off solutions. These are useful to choose
adequate parameters for the compression depending on the re-
quirements of the application scenario.
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Figure 10: Pareto front for the Long time series

7. Conclusions

In many situations, compression and change-detection
methods must be used in combination. In such a setting how-
ever, a number of questions are unclear, e.g.: Which combina-
tion is best for a given scenario? How to find a good parameter-

14



ization of compression and change-detection algorithms when
these are used together? How well can we trade compression
ratio against change-detection quality? This article has featured
a comprehensive experimental evaluation that addresses these
questions.

A study such as ours requires a number of non-trivial design
decisions. This article has listed the important issues, together
with the respective options and our rationale behind the ‘win-
ner’ alternatives.

An important insight is that the overall picture is very dif-
ferentiated. Result quality highly depends on the dataset. For
instance, the change-detection method ChangeFinder is the best
performing algorithm on REDD, but the worst performing one
on the Rising Mean dataset. Our platform has turned out to be
an appropriate tool to find good parameterizations, at least if the
dataset inspected is sufficiently representative and large.

When data is compressed, the intention always is to decom-
press it later and use it in some way. Change detection is one
kind of data usage, but other kinds of usage obviously abound
and are important as well. Just think of the plethora of different
stream-mining approaches which have been proposed in the re-
cent past. Generalizing the work described here to other kinds
of usage is important and is part of our future work.
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