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Abstract

Local energy markets are a promising approach for automatic and efficient
matching of renewable energy with household demand in smart grids. There-
fore, such markets can help to improve power system reliability and at the same
reduce emissions. However, to participate in such markets, customers need to
disclose private consumption data. A number of studies show that such data
records may reveal a broad range of personal, sensitive information on the inhab-
itants. Privacy-enhancement mechanisms can be applied to preserve the privacy
of individuals modify the data reported to the market. Yet, these mechanisms
can lower allocative efficiency and alter theoretical properties of the market
mechanism.

In this paper, we characterize both theoretically and numerically the effect
of privacy mechanisms applied in a local energy market scenario. Our model
considers demand side flexibility as well as energy storage systems. Further-
more, we allow for a free specification of the desired privacy enhancement level.
We show that under certain natural assumptions market mechanisms retains
in-expectation incentive compatibility despite the presence of privacy enhance-
ment. Our numerical analysis based on real-world data shows that the welfare
impact of privacy enhancement mechanisms is limited. Furthermore, energy
storage can mitigate this efficiency loss to a large extent.

Keywords: privacy enhancement, local energy markets, market engineering,
allocative effects, strategic effects

1. Introduction

Historically, the electricity grid is tailored to a centralized generation struc-
ture. At its core, there are few large power plants generating electricity for a
large number of consumers [1]. However, reducing the CO2 emissions of the
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energy production requires the integration of renewable sources, such as pho-
tovoltaic sites and micro combined heat and power plants. These sources are
volatile and distributed. Compared to a large power plant, each of them pro-
duces only a small amount of power and cannot be controlled centrally. Due
to their variability, integration of renewables remains a big challenge on today’s
power system.

Smart grids [2], the ICT-enabled electricity networks of the future, facilitate
new operational paradigms [3, 4]. A case in point is the establishment of local
energy markets. These are a means fpr matching regional energy demand and
renewable supply [5, 6]. More ‘local’ (i.e. in spatial proximity of generation)
energy consumption can help to improve integration of renewables and mini-
mize transmission losses [7]. In order to work efficiently, local energy markets
rely on truthful power-consumption information revealed by the participants,
e.g., private households. In such markets, customers cover their energy needs
by bidding for the required energy amounts over short time intervals. Conse-
quently, a customer’s consumption behavior is encapsulated in these bids. Yet
a number of studies show that such fine-grained power consumption data can
reveal significant amounts of private information [8, 9], including wealth, daily
routines and household size. Consequently, electronic market systems in smart
grids should strive to preserve privacy properties [10]. Privacy enhancement
methods distort sensitive values, e.g., energy consumption levels. By doing so,
they are able to retain a certain level of privacy despite personal data being
revealed to the market.

However, distorted bids are likely to induce less efficient allocations. Depend-
ing on the nature of the distortion, more or less energy than actually needed
may be allocated. Hence, privacy enhancement may lead to additional costs
for consumers. In this paper, we quantify these privacy costs in a local energy
market with demand side flexibility and storage. Due to the large number of
possible influence factors (e.g., customer privacy preferences, demand side flexi-
bility as well as supply and demand patterns), it is difficult to fully characterize
this welfare loss in a general fashion. For instance, realistic supply and demand
patterns are complex random processes, and the privacy enhancement methods
applied add complexity as well. A general model covering all these details will
lack expressiveness.

To understand the relationship of privacy enhancement and local energy
markets, we model a smart grid marketplace with privacy enhancement meth-
ods together with a customer demand model. We characterize customer-bidding
behavior and determine formal characteristics of the interplay between compo-
nents of our model. This includes the definition of general properties of privacy
enhancement methods. Furthermore, we show that a privacy-aware auction re-
tains incentive compatibility with respect to valuations if the privacy enhance-
ment method is monotonic and marginal utility is independent of the demand
level.

Subsequently, we instantiate a numerical evaluation using empirical load
and generation data. By means of simulations we quantify the costs of privacy
enhancement. Specifically, we assess the economic effect of varying numbers

2



and types of generators, demand properties and storage endowments. The ex-
periments illustrate the relationship between distortion level and welfare loss
incurred. Further, we can quantify the positive effect of storage in the pres-
ence of privacy enhancement methods. Small scale electricity storage can re-
duce privacy-induced welfare loss by almost two-thirds. In summary, this paper
explores the economic effects of different privacy levels. As such, it offers a
concrete application scenario to evaluate the actual impact of recent privacy
enhancement methods.

The remainder of this paper is structured as follows. In Section 2 we pro-
vide an overview of related research on smart grids and privacy enhancement
techniques. The market model is described in Section 3. Subsequently, we
present theoretical results derived from the model in Section 4. The follow-
ing Sections 5 and Section 6 introduce the parametrization and evaluation of a
simulation-based instantiation of the model. Section 7 concludes.

2. Related Work

2.1. Privacy in Smart Grids

Renewable sources for electricity generation are distributed and volatile by
nature. The efficient utilization of such sources is an important part of the
smart grid vision. Local energy markets efficiently coordinate decentralized
generation of electricity [5]. Generators of renewable energy as well as consumers
participate in such local markets and trade energy over short time intervals, e.g.,
30 minutes or less. Transparency obligations like the EUC 543/2013 mandate
the publication of comprehensive market data. Market transparency is key to
ensure market liquidity and hence market efficiency [11, 12].

Yet, fine-grained power consumption records contain sensitive personal in-
formation [9]. For example, appliances have a characteristic power consumption
pattern over time called load signature [8]. This facilitates the detection of ap-
pliances [13] or even the currently selected TV channel [14]. Removing personal
identifiers like name or address is not sufficient, since the data itself is identify-
ing [15]. Consequently, power consumption data is subject to privacy legislation,
e.g., European Directive 95/46/EC.

To mediate between the diametric goals of market transparency and cus-
tomer privacy-protection, local energy markets need to incorporate appropriate
privacy-enhancement techniques. To this end, Buchmann et al. [16] investigate
the impact of privacy enhancing methods on the expenses of individuals and
as a measure for the impact on data utility. While their work is related to our
research, their approach is limited to simple strategies, bidding exactly one limit
price which does not take different valuations of energy into account. In addi-
tion, they do not account for demand-side energy storage and do not provide
any formal characterization of the relationship between privacy enhancement
and incentive compatibility.

In contrast, Kalogridis et al. [17] as well as Varodayan and Khist [18] both
rely on the use of energy storage for privacy protection. In both cases a sta-
tionary storage is used to completely mask the load signatures of the underlying
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household appliances. However, these results are mainly anecdotal and rely on
an arbitrarily large storage system. We follow the general idea by investigating
the economic interplay between privacy enhancement and a fixed storage sys-
tem with limited capacity. This allows us to compare the previously orthogonal
dimensions of storage costs and privacy.

2.2. Privacy Enhancement Techniques

There is a broad variety of approaches to protect the privacy of individuals
in a data set, see [19] for a survey. In general, one can distinguish between
approaches facilitating individual privacy preferences and approaches with a
common privacy parameter for the entire data set. In the local energy market
scenario, individual preferences let each household decide the degree of distor-
tion and privacy independently of others.

The well-known k-Anonymity principle [20] is an instance of the latter case,
jointly modifying the data of groups of individuals as a whole. An application
to load data requires adaption of the principle to handle time series [21, 22]. As
an example for distortion, this means that the anonymization algorithm takes
k time series and replaces the values by averages over all k values at each point
of time. Since a central instance governs the group size for the entire data set,
individuals cannot specify their individual privacy preferences. Yet, in a smart
grid scenario we need to acknowledge decentrality as well as heterogeneous pri-
vacy requirements. These are ultimately governed by customer context [23].
Differential Privacy [24] provides provable privacy guarantees in the presence of
unlimited background knowledge. However, instantiations of Differential Pri-
vacy on time series [25] provide these guarantees only on aggregates for sets of
such series. A local marketplace cannot operate with such aggregated values as
it requires each participant to place individual bids.

Cryptographic auctions encrypt the bids and provide verifiability of the cor-
rectness. However, they do not allow ex-post access of the information, which
limits market transparency. Furthermore, they do not facilitate repeated and
parallel market interactions as they are designed for a single seller [26] or pre-
serve secrets only until the end of an auction [27].

Perturbation approaches add random noise to each time series in isolation.
Thus, the algorithms handle each time series separately and are able to take in-
dividual preferences into account. While not offering formal privacy guarantees,
evaluations [28, 29] show that privacy is preserved reasonably in many situa-
tions. In this paper, we apply the privacy enhancement method introduced by
Papadimitriou et al. [28]. Furthermore, we present a modification that retains
incentive compatibility on the market. Both methods allow individually defined
privacy preferences. However, the ideas presented are not limited to a certain
approach as long as they fulfill certain requirements as discussed in Section 3.3.

Allocation efficiency on a local energy market offers an application-specific
measure for comparing different privacy enhancement methods. This is in con-
trast to general abstract measures that do not consider an actual real-world
scenario [30].
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3. Model

In this section, we specify our theoretical local energy market model as well
as corresponding privacy enhancement methods.

3.1. Market Structure

A local energy market allocates electricity generated locally (distributed gen-
eration, imports) to local consumers. We want to study the effects of applying
privacy enhancement techniques on such a local energy market with the help
of a model. Following the market engineering paradigm [31, 6], an appropriate
model of a marketplace requires specifying the participants and their behav-
ior (agent behavior, Section 3.1.1), the transaction object (Section 3.1.2), the
market mechanism (market microstructure, Section 3.1.4) as well as market
performance measures (market outcome, Section 3.1.5). Given our focus on the
cost of privacy, we also describe the privacy enhancement methods that are part
of the bidding process. (Section 3.1.3).

3.1.1. Market Participants

A is the set of participants in our local energy market. Each participant (ac-
tor) a ∈ A is either a consumer c ∈ C or a producer (generator) g ∈ G, i.e.,
we assume C ∩ G = ∅.2 Consumer energy demand is varying over time. We
model the time domain as a sequence of time intervals T . For each t ∈ T , a
consumer’s maximum consumption level, referred to as the saturation level, is
given by xc(t). The trajectories of saturation levels form a set of time series:
S = {xc(t)|t ∈ T , c ∈ C}. The purchasing behavior of a consumer is governed by
individual utility as specified in Section 3.2. Given temporally varying electric-
ity needs xc(t), optimal bidding requires customers to dynamically determine
quantity-utility mappings.

The set of producers consists of local generation units (PV, CHP) and a
balancing party. This party reflects energy imports from the superordinate grid.
Producers participate in the market by selling electricity. Individual rationality
requires them to at least cover their marginal generation costs. Their capacity
limits their bid quantities.

3.1.2. Transaction Object

Our market instantiation follows traditional wholesale electricity markets
in that electrical energy supply and demand commitments are traded. A bid
contains the issuing market participant and its type (buy or sell order), the
amount of energy procured (in kWh) as well as the reservation price p. In the
case of a sell order the latter specifies the minimum price, in case of buy order
it is the maximum price. Individual actors can submit several bids to reflect
non-linear customer utility and generator cost functions.

2We do not consider prosumers (producer and consumer) as they give rise to new strategic
considerations by acting on both sides of the market.
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3.1.3. Privacy-enhanced Bidding

As noted above, a customer c will formulate her bid at time t to reflect her
current energy demand saturation level xc(t). Consumers will place a collection
of bids reflecting their utility function under xc(t). In the presence of privacy
enhancement, the bidding process slightly changes: Consumers report xc(t) to
the privacy protection system which in turn determines a modified demand
report x̃c(t) which is communicated to the market.

Note that there are two distinct elements in the report that a consumer could
strategize about, quantity and price. As private information is embedded only in
the quantity component, we rule out that consumers will modify their demand
report as this could open a side channel undermining the privacy enhancement
technique. Consequently, we assume that the privacy protection system receives
the true initial demand reports of the consumers. For the valuation, we do not
make this assumption but show that in specific cases privacy-aware auctions are
incentive compatible with respect to prices and consumers thus will optimally
report their true valuation to the system. See Lemma 5 for further discus-
sion. Bidding with and without a privacy enhancement method is illustrated in
Figure 1.

Step 1
determine satura-
tion levels xc(t)

Step 2
strategic price determination,
total amount bid on: xc(t)

Step 3
allocation: xc(t) ∈ [0, xc(t)]

Step 1
determine satura-
tion levels xc(t)

Step 1a
privacy enhancement
of saturation levels

x̃c(t)

Step 2
strategic price determination,
total amount bid on: x̃c(t)

Step 3
allocation: xc(t) ∈ [0, x̃c(t)]

Figure 1: Auctions without (left) and with (right) privacy enhancement

3.1.4. Market Mechanism

Since electricity is a homogeneous good, double-sided auction formats can
achieve a high level of market liquidity and efficiency [32, 33]. Following pre-
vious research on local energy markets, e.g., [6, 16], we select the discrete time
double auction (also referred to as periodic call auction or call market) as the

6



market mechanism. Here, market clearing is not continuous but occurs in re-
peated time slots t ∈ T . For each time slot, the market mechanism determines
the allocation and clearing price for the submitted bids and asks. It does so by
first constructing demand and supply curves and subsequently determining the
intersection of the two. For a more detailed treatise of the call market we refer
to Parsons et al. [34].

3.1.5. Market Quality Measure

In order to assess the economic outcome of our local marketplace, we analyze
the market’s allocative efficiency. Consequently, we use social welfare as an
application-specific measure for the effect of privacy-enhancement mechanisms.

Definition 1 (Social Welfare): Social welfare is the sum of consumer surplus
(difference between willingness-to-pay and clearing price) and producer surplus
(difference between clearing price and costs):

W =
∑
∀c∈C

CSc +
∑
∀g∈G

PSg

To ease comparing different simulation runs we rely on the relative Welfare.

Definition 2 (Relative Welfare): Let W be the welfare achieved in a

local energy market without privacy enhancement. Further let W̃ be the wel-
fare achieved in the same market (concerning supply and demand), but in the
presence of a privacy enhancement method modifying the bids of consumers.
Relative welfare W ′ is then given by

W ′ =
W
W̃

We posit that higher relative welfare is an indication that a privacy-
enhancement method retains a higher data quality in the application scenario
under consideration.

3.2. Customer Model

The key element to model customer interactions (i.e., bidding behavior)
with the market is the underlying utility model. While electricity traditionally
is subject to billing and is considered a homogeneous good, the Smart Grid
includes differentiated energy services [35], and we follow this notion. To this
end, we propose an analytical customer model similar to the one presented by
Bitar and Low [36].

3.2.1. Customer Utility

Denoting customer c’s electricity allocation for time slot t as xc(t), utility
Uc,t(.): R+ �→ R+ is assumed to be a non-decreasing, concave function. Fur-
thermore, we assume an demand saturation level xc(t) beyond which customers
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no longer obtain any utility from additional electricity consumption. In other
words

Uc,t(xc(t)) = Uc,t(xc(t)) = U c,t∀xc(t) ≥ xc(t). (1)

If the saturation level does (not) affect marginal utility, we refer to the utility
function as saturation-level-dependent (independent).

This customer model reflects the smart grid rationale of customers adapting
consumption to current system conditions. Following standard economic the-
ory, marginal utility of additional consumption is assumed to decrease – most
valuable usage forms are activated first. At some point the customer will not
be able to put additional energy allocations to any meaningful use. In our anal-
ysis, we make the following non-restrictive assumptions: Market quantities are
discretized with granularity D. The admissible xc(t)-values are discretized as
well: xc(t) ∈ {n ·D|n ∈ N}. Similarly, we discretize the xc(t) values. To model
the temporal pattern of the energy-usage behavior of customers, the saturation
levels xc(t) fluctuate over time in tune with a representative energy-demand
profile. When considering families of utility functions, we interpret the con-
cavity of each function as differing levels of load flexibility: In case of a linear
utility function, marginal utility from consumption is constant and hence load
shedding has constant cost. Conversely, for a very concave function shedding
utility losses at high load levels are limited. In the following, f denotes the
demand flexibility. Higher f values indicate more flexible demand.

3.2.2. Bidding Behavior

Since Uc,t provides a mapping from allocation to utility space, we can express
a customer’s optimal bidding behavior under this utility function using the
marginal utility U ′

c,t: Instead of placing a single price-quantity bid, a rational
customer will rather place a continuum of bids with infinitesimal quantity and
decreasing bid price to match her marginal utility function. Under our market

discretization scheme, customers will place n = xc(t)
D bids with quantity D each.

The corresponding optimal bid prices then are U
′
c,t(i ·D) with i = 1...n.

We distinguish between utility functions that are dependent or independent
of the saturation level xc(t). In the first case, the saturation level affects a cus-
tomer’s (marginal) utility value over the complete range of allocation quantities.
In contrast, for saturation-level independency the (marginal) utility is indepen-
dent of the saturation level over the interval [0, xc(t)]. Figure 2 illustrates the
utility and marginal utility function for both cases In practice, the utility of a
household is a combination of both. The analysis of the polar cases allows us
to better structure our results.

3.3. Privacy Enhancement Methods

A privacy enhancement method M takes a set of time series S and param-
eters p and returns a privacy enhanced representation, i.e., S̃ = Mp(S). In our
smart grid scenario, the time series are given by consumers’ saturation levels:
S = {xc(t)|t ∈ T , c ∈ C}. The parameter p is a method specific parameter that
determines the level of privacy achieved. The privacy enhancement method
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Figure 2: Illustration of saturation level dependency

modifies the values of the time series, in our case the saturation level values:
S̃ = M(S) = {x̃c(t)|t ∈ T , c ∈ C}. There are various methods with different
approaches for preserving privacy in a set of time series. To derive theoreti-
cal results independent of an actual method, we need to come up with general
properties of privacy enhancing methods.

A central distinction is the one between deterministic and randomized pri-
vacy enhancement methods.

Definition 3 (Deterministic): A privacy enhancement method is de-
terministic if the results of several runs are the same with the same input:
S̃1 = Mp(S) ∧ S̃2 = Mp(S) ⇒ S̃1 = S̃2.

Definition 4 (Randomized): The privacy enhancement method depends
on random calculations, and this may lead to different results if the method is
run several times. The probability that the method returns a certain privacy-
enhanced set S̃, P (Mp(S) = S̃), is the same for each run.

The rationale behind the following notions is to further characterize the
effect of different privacy enhancement methods.

Definition 5 (Balanced Modifier): Let S̃ = M(S), if M is a balanced
modifier the following holds for all consumers c ∈ C:
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∑
∀t∈T

x̃c(t)− xc(t) = 0

A randomized privacy enhancement method is a balanced modifier if the
expected value of the sum of these differences equals zero.

Definition 6 (∪-homomorphism): Assume that S1 and S2 is an arbitrary
partitioning of the time series in S:

S = S1 ∪ S2 ∧ S1 ∩ S2 = ∅

A deterministic privacy enhancement method is a homomorphism of ∪ if the
following holds:

M(S1) ∪M(S2) = M(S)
A randomized privacy enhancement method is a homomorphism of ∪ if the
following holds:

P (M(S1) ∪M(S2) = S̃) = P (M(S) = S̃)

In the following, we show that a privacy enhancement method, which is a
homomorphism of ∪, will modify the time series independently of each other.

Lemma 1: Let S̃ = M(S). If M is a ∪-homomorphism, the modifications of

time series x̃c(t) ∈ S̃ are independent of the time series of any other consumer
c′ �= c : xc′(t)
Proof: Let S1 = {xc(t)} and S2 = S\S1. By definition S1 and S2 are
partitions of S. Since M is a ∪-homomorphism M(S1) ∪M(S2) equals M(S).
In particular, the resulting x̃c(t) is independent of possible other time series in
S. �

For instance, k-anonymity [37] usually does not have this property: The
output of most implementations depends on the groups created. In turn, adding
symmetric random noise is a ∪-homomorphism.

The privacy parameters p influence the privacy enhancement. In the follow-
ing we define an order.

Definition 7 (Order of privacy parameters (p1 > p2): Let p1 and p2 be
different parameters for privacy method Mp. p1 is greater than p2 if Mp1(S)
provides a better privacy protection than Mp2

(S) in terms of the definition of
Mp.

Commonly known distance metrics, e.g., the L1-Norm, quantify the distance
between two time series. Choosing a greater privacy parameter may lead to a
larger distance if the privacy method is monotonically increasing, as defined in
the following. Let dist(xc(t), x̃c(t)) be such a distance metric.

Definition 8 (Monotonically increasing): Let p1, p2 be two privacy pa-
rameter choices for Mp with p1 having greater order than p2, that is p1 > p2.
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Furthermore, x̃1
c(t) ∈ Mp1(S) and x̃2

c(t) ∈ Mp2(S) are time series obtained by
applying Mp on the same time series xc(t) ∈ S.

A deterministic privacy enhancement method is monotonically increasing
with respect to a metric dist(·), if the following holds for:

dist(xc(t), x̃
1
c(t)) ≥ dist(xc(t), x̃

2
c(t)).

A random privacy enhancement method is monotonically increasing with respect
to a metric dist(·) if in expectation the following holds:

E
[
dist(xc(t), x̃

1
c(t))− dist(xc(t), x̃

2
c(t)

]
> 0.

Intuitively, a privacy enhancement method is monotonically increasing if
greater privacy parameter choices give rise to greater changes to the original
time series values.

4. Theoretical Results

We now derive formal results on the impact of privacy enhancement on local
energy markets. In the following we assume that the time series are of infinite
length. We also assume non-triviality of the privacy enhancement methods, i.e.,
we exclude the case that x̃c(t) = xc(t), ∀t ∈ T .

Lemma 2: The welfare loss is monotonically increasing for greater privacy
parameters if the privacy enhancement method is monotonically increasing and
a balanced modifier.
Proof: Assume S̃ = Mp(S). Further, let d be the difference between the
saturation level and the privacy enhanced saturation level of consumer c on time
slot t: d = xc(t)− x̃c(t). If d > 0 the higher d the lower the x̃c(t) and potentially
the higher the welfare loss. c may not get electricity allocated even if the
marginal utility is greater than zero because there are no bids exceeding x̃c(t).
Similar result holds for d < 0: the smaller d the higher the potential welfare loss,
because c may allocate energy at a price greater than zero, even if the marginal
utility is zero. Depending on the actual utility functions, the welfare loss is
higher for d > 0 or d < 0. However, if the privacy enhancement method is a
balanced modifier, the sum of the welfare loss of all time slots remains the same.
Let the privacy enhancement method M1(p) be monotonically increasing, then
the welfare loss for more restrictive privacy requirements is higher, since the
distance between xc(t) and x̃c(t) also increases for p1 > p. �
Lemma 3: In the presence of storage the welfare loss is equal or smaller than
without storage if the privacy enhancement method is a balanced modifier.
Proof: Let Mp be a balanced modifier and S̃ = Mp(S). Assume that there
exists a t1 ∈ T where x̃c(t1) > xc(t1). Since Mp is a balanced modifier, we
assume that there exists a t2 where x̃c(t2) < xc(t2). If the allocation at t1
is also greater than xc(t1) the additional electricity bought is stored and used
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in times of undersupply, or at t2. If the storage did not exist, the additional
electricity bought at t1 would not return in utility. Only in the case that after t1
there is no time-slot with undersupply, storage cannot reduce the welfare loss.
�
Lemma 4: Privacy induced welfare loss is weakly decreasing in demand flexi-
bility if the utility function is saturation level dependent.
Proof: Assume a privacy enhanced market allocation for a given flexibility
level f . If the demand flexibility is raised to f ′ > f , the assumed concavity of
the utility functions leads to the following effect: The marginal utility U

′
c,t(i ·D)

with i = 1...n for small i’s is higher for f ′ than for f and drops faster for greater

i’s. Formally, let
[
U

′
c,t(i ·D)

]
f
be the marginal utility for flexibility level f ,

then there exists a threshold î where[
U

′
c,t(̂i ·D)

]
f
≤

[
U

′
c,t(̂i ·D)

]
f ′

and [
U

′
c,t((̂i+ 1) ·D)

]
f
>

[
U

′
c,t((̂i+ 1) ·D)

]
f ′

holds. Since the higher valued units have a higher probability of being allocated,
and a lower probability of being omitted if the privacy enhancement method
changes the saturation level, the welfare loss is weakly lower for f ′. �

Note that if the utility is independent of the saturation level, the actual
saturation xc(t) respectively x̃c(t) does not necessarily reach the threshold î.
Thus, Lemma 4 does not hold for saturation level independent utility.

A privacy enhancement method leads to a distortion of saturation levels, this
has the following effect: Replacing the saturation level xc(t) with a distorted
value x̃c(t) could naturally have a quantity effect on the resulting bidding behav-
ior. This becomes evident from Equation (1): Inflated values, i.e., x̃c(t) > xc(t),
lead to positive marginal utility assessments when the marginal utility was zero
in the non-distorted case. Discounted values in turn, i.e., x̃c(t) < xc(t), yield
premature zero-marginal-utility assessments. However, remember that we ruled
out untrue saturation level reports to the privacy enhancement method M, as
this potentially leads to a privacy breach.3

While we rule out quantity misreports, we are interested in characterizing
privacy-aware markets that induce consumers to reveal their true valuation.

Definition 9 (Incentive Compatibility): A privacy-aware market mecha-
nism is (in expectation) incentive compatible with respect to valuation if con-
sumers cannot (in expectation) profitably deviate from placing bids that reflect
their true valuation.

3The semantic of M is defined on sensitive and true personal data, the effects if applied
to untrue data are unknown. Furthermore, a deviation from the true saturation level will not
have influence on the bidding quantities of others if the privacy enhancement method is a
∪-homomorphism.
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Thus, consumers will bid according to their true valuation in the presence
of an incentive compatible privacy enhancement method.

Lemma 5: An incentive compatible market mechanism retains this property in
the presence of privacy enhancement, if the following holds: The privacy en-
hancement method is an ∪-homomorphism and the utility function is saturation
level independent.
Proof: While the distortion of the saturation level always affects the opti-
mal quantity, it does not necessarily have an effect on the optimal bid price.
The occurrence of a price effect hinges on the structure of the customer-utility
function: If U ′

c,t is independent of xc(t), the bid price will always reflect the cus-
tomer’s true valuation for all demand increments x ∈ [0,min{xc(t), x̃c(t)}]. On
the other hand, if the utility function is saturation level dependent, this leads to
a price effect, and the consumers may strategize and report prices differing from
their true valuation. The ∪-homomorphism property excludes incentives from
true reports, since other consumers are not influenced. Consequently, incentive
compatibility is preserved if the utility is independent from the saturation level,
and the privacy enhancement method is a ∪-homomorphism. �

5. Model Implementation

The actual privacy costs depend on a large number of possible influence
factors. This includes different privacy preferences as well as fluctuating supply
and demand patterns. To derive meaningful results we conduct simulations
based on real-world data. Additionally simulations require an instantiations of
all model components theoretically described in Section 3. In this section, we
describe all the details for conducting simulations.

5.1. Demand Model

To perform a numerical evaluation of our scenario, we need a concrete in-
stantiation of the utility model. We study two alternatives — one featuring
dependency of marginal utility on the saturation level and one with indepen-
dence. In both cases we have a parameter f that represents load flexibility (i.e.,
concavity). To improve comparability, we normalize the utility functions with
a scalar representing a maximum saturation level A.

Denoting the allocation by xc(t), the saturation level by xc(t) and the flex-
ibility level by f , the function with saturation level dependent marginal utility
(superscript D) is given by

UD(xc(t), xc(t), f) =
xc(t)

A

f

√
min{xc(t), xc(t)}

A
.

For saturation-level-independent marginal utility (superscript I), we have

U I(xc(t), xc(t), f) =
f

√
min{xc(t), xc(t)}

A
.
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By taking the first derivative with respect to xc(t) dependence and indepen-
dence are easily verified: Leaving the minimum function aside, because it only
reflects the upper border of the utility, the derivative of UD is dependent on
xc(t), and the derivative U I is not.

Consumption in the simulation is based on the CER Smart Metering data
set [38]. This data set consists of roughly 5000 Irish homes with different num-
bers of inhabitants, measuring electricity consumption every 30 minutes over
more than one year.

5.2. Market supply

We assume that three types of generators in the local market, namely PV
sites, CHP units and conventional backup generation (balancing party). The
PV and CHP model follows the one introduced by Buchmann et al. [16]. In the
following we summarize the key points.

Photovoltaic Sites. The energy output of a PV site depends on its peak capacity,
the sun intensity and the mounting angle on the roof. The peak capacity is the
maximum power output technically possible, mainly determined by the size of
the site and the quality of the modules.4 The electricity output from PV sites
has no marginal generation costs and consequently a zero ask price is quoted.

Combined Heat and Power Units. We consider CHP units in heat-led operation
mode where power operation is governed by heating requirements. A typical
household CHP unit will generate approximately 1kW of electricity output.
Generation availability is driven by heating demand and thus depends heat
storage or insulation but not on market parameters. To reflect this ‘randomness’,
we simulate start and stop times based on empirical CHP unit data. Under heat-
led operation, all operational costs can be attributed to heating demand with
electricity output arising as a byproduct. Consequently, CHP output is also bid
into the local market at a zero limit price.

Balancing Party. A standard economic assumption for modeling conventional
backup generation is a convex cost function [39]. This reflects the technological
heterogeneity on the supply side (merit order dispatch). A quadratic cost func-
tion is a simple example of such a supply curve [40]. We follow this rationale
and assume that the balancing party quotes a bid price of p(x) = α · x2 for the
x-th unit of output.

5.3. Energy storage

Due to increased uncertainty on the supply side, energy storage is expected
to play a more important role in future smart grids. Storage operators can

4In our simulation PV panel sizes are distributed according to recent data German instal-
lation data censored at a maximum of 11kWp. Then, empirical generation data is used to
simulate output. We apply random shifts to mimic heterogeneous panel orientations.
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capitalize on the expected price fluctuations. This energy arbitrage motive has
been investigated in the recent literature [41]. Our analysis adds a new economic
perspective of active storage management. We investigate to what extent energy
storage can mitigate the welfare loss due to privacy enhancing methods in local
energy markets. For the sake of generality, we assume that each customer owns
a generic energy store with capacity Bc (in kWh), fill level Bc(t) ∈ [0, ..Bc] and
efficiency level L < 1.5

Departing from an economic storage operation paradigm, we posit a simple
strategy. Denoting the deviation from the current saturation level xc(t) by ξ,
the following cases are possible:

1. ξ > 0 — Whenever privacy enhancement results in an upward distortion,

the amount min{L · ξ, Bc−Bc(t)
L } is transferred to the storage unit.

2. ξ < 0 — In case of an allocation shortfall, due to high market prices or a
downward distortion, customers withdraw the amount min{ξ,Bc(t)} from
the energy store.

This policy could be improved, e.g., by adopting dynamic threshold levels. How-
ever, by focusing on this rather näıve policy, we can isolate interactions between
privacy enhancement and the presence of storage capacities.

5.4. Privacy Enhancement Methods

For our experiments we apply the wavelet privacy enhancement algorithm
proposed by Papadimitriou et al. [28]. Additionally, we consider a slightly modi-
fied version of this algorithm which retains incentive compatibility. The concept
of privacy in this modified version remains unchanged.

Wavelet Privacy Enhancement Algorithm. Uncorrelated noise applied to a time
series is easily filtered out by means of wavelet based filtering [42]. To circum-
vent this, we need to apply noise dependent on the wavelet representation of the
actual time series: Let K be the number of wavelet coefficients exceeding σ and
N the total number of wavelet coefficients. Then noise with the standard devi-
ation of σ ·

√
N/K and the mean value is the current coefficient if it is greater

than or equal to σ. This method is obviously randomized. Since all time series
are treated independently it is also a ∪-homomorphism. Finally, the symmetry
of the noise distribution ensures that the method is a balanced modifier.

Yet, the method is not monotonically increasing: Applying a higher thresh-
old σ1 > σ2 most likely results in noise with a higher variance, but is only applied
to fewer coefficients. In general, we cannot assess whether or not Mσ1(s) will
distort a single data point to a larger extent than Mσ2(s).

5For sake of exposition, we only account for losses during charge.
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Algorithm 1: Privacy enhancement method
Input: Privacy Parameter σ
Input: Noise parameter φ
Input: Set of time series S
Result: Privacy enhanced time series S̃
foreach xc(t) ∈ S do

x̃c(l, t) = DWT (xc(t)) //Wavelet transform;

Il =
{
t :

∣∣∣x̃c(l, t)
∣∣∣ ≥ σ

}
;

foreach level l do
K =

∑
l Kl //coeffs exceeding l;

p = |N | /K //Noise ‘density’, N is number of coefficients;

foreach detail x̃c(l, t) do
if t ∈ Il then

x̃c(l, t)+ = GaussRnd(0, φ
√
p);

end

end

end

x̃c(t) = InvDWT (x̃c(l, t));

S̃ = S̃ ∪ {x̃c(t)};
end

return S̃;

Incentive Compatible Wavelet Privacy Enhancement Algorithm. In what fol-
lows, we propose a modification of the wavelet privacy enhancement algorithm
referred to as incentive compatible wavelet privacy enhancement algorithm (IC-
wavelet privacy). As shown in Lemma 5, a privacy enhancement algorithm
needs to be monotonously increasing to retain in-expectation incentive compat-
ibility with respect to valuation. Our modification achieves monotonicity by
decoupling the threshold for coefficients and the noise variance. To this end we
introduce a parameter φ that determines the standard deviation of the applied
noise. The detailed implementation is given in Algorithm 1. Note that by set-
ting φ = σ the modified algorithm is identical to the unmodified wavelet privacy
enhancement algorithm.

Choosing σ and φ. The same (absolute) σ may have very different effects on
two different time series xc1(t) and xc2(t). σ may lead to a lot of modified
coefficients in x̃c1(t), since they exceed σ, while x̃c2(t) remains unmodified. In
order to keep the parameters comparable we choose σ and φ relative to the
standard deviation of the time series currently modified. Let σ, φ ∈ [0, 1]. Then
the actual parameters σc and φc for time series xc(t) are the product of σ, φ and
the standard deviation of the time series xc(t). Figure 3 illustrates the effect of
the privacy enhancing techniques. The upper panel illustrates that the wavelet
privacy enhancement method is not monotonically increasing: At many points
of time, the perturbed time series with σ = 80% has a higher distance to the non-
perturbed time series than the one perturbed with σ = 100%. In contrast, the
lower panel shows the corresponding results from the monotonically increasing
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and incentive compatible algorithm. The time series perturbed with the higher
φ = 100% usually has a higher distance to the one with a lower φ = 80%.

Figure 3: Examples of privacy enhancement methods realizations

6. Evaluation

We use a custom-built event-based simulator written in Java. The simulator
architecture follows the MVC design principle with a decoupled GUI to allow
headless simulation. The implementation is available from the authors upon
request. The simulator supports the arbitrary combination of different utilities,
privacy enhancement methods and data sets for households as well as energy
suppliers.

6.1. Simulation Setup and Parameters

For the evaluation we choose 300 persons in total living in 191 randomly
chosen households of the CER data set [38]. We assume homogeneous utility
functions (f = 2, A = 11kW ) across consumers. Additionally, to quantify the
effect of demand side flexibility, we consider f = 3 and f = 1. Supply side is
modeled as combinations of 25 or 150 PV and CHP sites with the balancing
party parametrized with α = 2. In scenarios with storage systems, we consider
storage sizes of B ∈ {2.5kWh, 5kWh}, in line with currently marketed products.
We assume storage efficiency of 80%. We apply the wavelet privacy enhancement
method with σ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. The time span for each simulation run
is one day. We have tested longer simulation horizons as well, but these results
did not exhibit any substantial differences to the ones described in the following.
Each experiment is repeated ten times.

6.2. Effect of Market Structure

First, we investigate if and to what extent the number of PV and CHP sites
influences the impact of different privacy enhancement levels. This sheds light
on how privacy enhancement interacts with different market structures. The
results are shown in Figure 4.
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(a) saturation level independent utility (b) saturation level dependent utility

Figure 4: Impact of market configuration

Result 1: Market configuration has little impact on the welfare loss. While the
variance of the results (size of boxes in Figure 4) is naturally higher in smaller
markets with few generators, the median results are hardly affected.

Result 2: Saturation-level independent utility exhibits decreasing marginal wel-
fare cost of the privacy level. While the welfare loss is strictly increasing in the
privacy level for both utility specifications, saturation independent utility ex-
hibits decreasing marginal losses in our results. For saturation-level dependent
utility we observe almost linear behavior.

6.3. Effect of Storage

In theory, storage can help to reduce the welfare loss of privacy enhancement
(see Lemma 3). This is because it is capable to store electricity bought that
exceeds the saturation level. Thus, it is not ‘wasted’ but can be used in times
of undersupply. The results of the simulations quantify the actual impact on
welfare in a real-world scenario. The results show that storage can reduce the
privacy-induced welfare loss by 70% (Figure 5). Next to this result that has been
expected, at least in qualitative terms, we make the following observations.

Result 3: Small storage systems are sufficient to mitigate privacy costs. Under
our näıve privacy-driven storage operation strategy, the 2.5 kWh system is al-
most as efficient as the 5 kWh system. This suggests that privacy costs may be
mitigated at comparably low costs.

Result 4: The value of storage is increasing in the privacy level. Higher privacy
level choices induce more frequent quantity mismatches which are mitigated by
the storage system.

Result 5: Privacy enhancement may increase welfare in the presence of storage.
With storage, relative welfare is not monotonically decreasing with the privacy
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Figure 5: Effect of energy storage capacities

level. This is because privacy enhancement can induce economic dispatching of
the storage system: Electricity bought above the saturation level xc(t) usually
is relatively ‘cheap’ due to the concave utility function. In times of undersupply
the stored electricity is only used if less than xc(t) is allocated on the market.
Thus, the actual resulting utility of the stored electricity is much higher than
the bid price in the former time slot.

Result 6: The value of storage is increasing in decentral generation capacity. In
case of high decentral generation capacity, surplus energy stored will more often
originate from these low cost sources. Consequently, the usage of the balancing
party will decrease. This has a positive impact on social welfare.

This simulation results show that even small energy storage systems are very
effective at mitigating the welfare loss due to privacy enhancement.

6.4. Impact of Demand Side Flexibility

We know from Lemma 4 that higher demand side flexibility curbs the influ-
ence of the privacy enhancement method on the welfare loss. However, the nu-
merical results indicate that demand side flexibility can mitigate the welfare loss
only to a very limited extent (Figure 6). For saturation-level-independent utility
functions the influence of demand side flexibility is unpredictable (Lemma 4).
Thus, we only cover the dependent utility function.

Both demand flexibility and storage can mitigate the welfare loss of privacy
enhancement. However, our results suggest that storage has a much larger po-
tential. Load flexibility only helps to reduce the welfare loss if x̃c(t) < xc(t).
Storage in turn also helps in cases of over-allocation: When the privacy en-
hancement method upward-adjusts the saturation level, the additional allocated
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Figure 6: Effect of demand side flexibility

electricity is not lost. If the saturation level is downward-adjusted, storage can
help to mitigate the welfare loss if Bc(t) > 0.

6.5. Comparison of Privacy-Enhancement Methods

As noted before, the standard wavelet approach may induce strategic bidding
on behalf of the consumers. This is because this privacy mechanism is not
monotonously increasing. Here we want to analyze the variant of this algorithm
for saturation level independent utility. The wavelet privacy parameter σ varies
between 0% and 100%. To ensure that the second privacy enhancement method
actually is monotonically increasing we choose a fixed σ = 30% and vary the
noise φ only. We find that the welfare loss is more pronounced under our
modified algorithm (Figure 7)

Result 7: The IC wavelet privacy method leads to a greater welfare loss. In the
standard wavelet privacy-enhancement method, σ influences both the choice of
coefficients perturbed and the standard deviation of the noise. For the incentive
compatible method, the perturbed coefficients are always the same. This is
because σ is fixed to 30%. For a higher privacy level the wavelet privacy method
perturbs fewer coefficients, resulting in a higher welfare.The additional welfare
loss can be interpreted as the cost of establishing incentive compatibility. While
these costs remain negligible for privacy levels of up to 60%, they become more
significant at higher privacy levels as the noise level is monotonically increasing.

7. Conclusion

Privacy-aware local energy markets are a promising approach for matching
renewable supply and demand of private households. However, the potential
effects of privacy-enhancement on the market outcome have so far remained
vague. Our analysis provides the following novel insights on this subject matter:
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Figure 7: Cost of Incentive Compatibility

We provide a characterization of relevant privacy enhancement properties
when applied in a market scenario. Under certain assumptions a market mech-
anism can retain incentive compatibility in the presence of privacy enhancement.
Furthermore, we find that demand side flexibility and storage systems will mit-
igate the welfare loss due to privacy enhancement. Our numerical study shows
that market mechanism remain a fairly efficient means for matching supply and
demand in a local energy market even in the presence of privacy enhancement:
We find that the negative impact of privacy enhancement is rather low, even for
strong privacy requirements the welfare loss remains below 15%. Energy stor-
age, even in small sizes, reduces the welfare loss. For strong privacy guarantees,
the welfare loss is only approximately 5% in the presence of storage.

Our analysis only considers direct customer utility from electricity consump-
tion. Privacy enhancement in turn is only accounted for as an exogenous param-
eter. However, it is conceivable that customers obtain a benefit from protection
of personal information. If this indirect utility could be quantified, customers
would face a trade-off between energy costs and the level of privacy protec-
tion. In such a setting, our model would allow determining an ‘optimal’ level of
privacy protection.

The overall conclusion is that privacy enhancement methods are applicable
in local energy markets including private households. From an economic per-
spective, the negative allocative effects are low and controllable while privacy
enhancement significantly increases the privacy protection of participating indi-
viduals. From a computer science perspective, these markets are a meaningful
performance indicator for the utility of privacy enhancement methods.
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