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Abstract—When mining data, organizations rely on service
providers to carry out the analyses. However, data owners often
are only willing to transfer their data when it is encrypted.
So encryption must preserve the mining results. Since many
mining algorithms are distance-based, we propose the notion of
distance-preserving encryption (DPE). Designing a DPE-scheme
is challenging, as it depends both on the data and the distance
measure in use. We propose a procedure to engineer DPE-
schemes, dubbed KIT-DPE. In a case study, we instantiate
KIT-DPE for SQL query logs. We design DPE-schemes for all
SQL query-distance measures from the literature. For all these
measures, we prove that one can use a combination of existing
property-preserving encryption schemes with known security
characteristics to guarantee the same mining result.

I. INTRODUCTION

Virtually any organization is reluctant to pass on its data to
other parties. For instance, think of data analysis as a service,
possibly in the cloud. An organization would be much more
relaxed if, instead of uploading the original confidential data,
it could pass on the encrypted counterpart. Depending on
the application, encryption must preserve application-specific
properties of the data [1], like for instance the order [2].

An important property of a data set is the pairwise distances
between data items, since many data-analysis algorithms only
rely on these distances. Examples are distance-based cluster-
ing [3], [4], [5] or outlier detection [6]. If encryption preserves
these pairwise distances, mining results on the encrypted and
on the plain-text data are the same. But distance-preserving
encryption has not been investigated systematically before.

This paper examines how to design distance-preserving
encryption (DPE) schemes for data of arbitrary type. For data
consisting of items with a complex inner structure, such as
graphs or query logs, this is challenging, for two reasons: (1)
unclear subject of encryption and (2) distance-measure variety.
We demonstrate this using SQL query logs. Such logs contain
valuable information on user interests and are a useful resource
for data mining. The mining of SQL query logs is involved [7],
and it is reasonable to outsource it to a service provider.

Challenges: When designing DPE-schemes, one faces
two challenges. First, for data with a complex structure like
SQL queries, it may be unclear what “encryption of data
items” actually means (cf. Example 1). Once this is solved,
one must specify a security model tailored to the type of data
considered and an encryption scheme in line with this model.

Example 1 (Unclear Subject of Encryption). Think of an SQL
query log. Which parts of the query should be encrypted?

Viable options are that one encrypts the query string as a
whole – or only specific tokens such as values.

Second, for any type of data, there exist different distance
measures (“distance-measure variety”). Example 2 illustrates
that distance-preserving encryption depends on the measure
in use. While the second measure in the example requires an
executable query, the first one does not. Thus, when designing
a DPE-scheme, one must differentiate between the measures.

Example 2 (Distance-Measure Variety). For distance-based
data mining over an SQL query log, different distance mea-
sures exist, with different intuitions of distance. For instance,
one can use a string-distance measure like the Levenshtein
distance or a measure that quantifies the overlap of tuples in
the query results.

Contributions: In this paper, we examine how to de-
sign distance-preserving encryption schemes for data with a
complex structure. Our paper consists of two parts: (1) We
introduce the general concepts, and (2) we study how to
instantiate the concepts using the example of SQL query logs.
First, in Part (1), we define distance-preserving encryption for
arbitrary data and distance measures. Next, we propose a gen-
eral procedure for designing distance-preserving encryption,
named KIT-DPE. In Part (2), we study how to encrypt SQL
queries preserving distances using our KIT-DPE procedure.
As a result, we find DPE-schemes for four well-known SQL
query-distance measures. They have a higher security level
than schemes that the related approach CryptDB [8] would
generate, i.e., shield against more attacks.

II. BACKGROUND AND RELATED WORK

In this section, we explain how security of encryption
schemes is defined, and which classes of property-preserving
encryption schemes exist. We apply combinations of these
schemes to realize distance-preserving encryption.

1) Security of Encryption Schemes: The security of an
encryption scheme is measured by the success of an attacker
with a specific attack. One differentiates between active and
passive attacks. In our scenario, only passive attacks, e.g.,
eavesdropping, are relevant. Passive attacks are divided in
cipher-text only, known-plain-text, and chosen-plain-text at-
tacks [9]. For instance, in a cipher-text only attack, the attacker
has access to several cipher-texts someone else has selected
and tries to decrypt (any) new randomly selected cipher-text.
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Fig. 1. Taxonomy of Property-Preserving Encryption Classes.

2) Property-Preserving Encryption: Property-preserving
encryption schemes are classified by the plain-text properties
they preserve. Fig. 1 depicts a taxonomy showing the relation-
ships and the security levels of various classes of property-
preserving encryption classes, inspired by [8], [10]. The rows
stand for the security levels, where higher is better. For classes
in the same row, a security ranking is not possible. We now
explain the definitions of the classes.
Probabilistic Encryption (PROB). Encryption schemes are

probabilistic if, in general, two equal values are mapped
to different cipher-texts.

Homomorphic Encryption (HOM) [11]. Homomorphic en-
cryption is a subclass of probabilistic encryption and
allows computations of arithmetic aggregate functions
such as the sum over encrypted data.

Deterministic Encryption (DET). Encryption schemes are
deterministic if two equal values are mapped to the same
cipher-text.

Order-Preserving Encryption (OPE) [2]. Order-preserving
encryption schemes are deterministic and preserve the
order of the data items.

Join-Preserving Encryption (JOIN/JOIN-OPE) [8]. JOIN is
a special usage mode of a DET or OPE scheme, allowing
to compute joins over encrypted data.

For every class, different instances (i.e., encryption
schemes) exist. For instance, the randomized AES encryption
scheme [12] is an instance of PROB. However, so far it is not
known how one can ensure distance-preserving encryption for
complex data using these classes. First, this is challenging
as one usually has to consider different distance measures.
Second, using known classes and schemes has the advantage
that their security is well-studied, and thus, no further security
analysis is necessary. Thus, we focus on how to realize
distance-preserving encryption using these classes.

III. DISTANCE-PRESERVING ENCRYPTION

Now we define distance-preserving encryption and KIT-
DPE, our procedure for designing such encryption schemes.

A. Definition of Distance-Preserving Encryption
With distance-preserving encryption (DPE), the pairwise

distances for the plain-text and the cipher-text data items must
be the same, see Definition 1.

Definition 1 (Distance-Preserving Encryption (DPE)). Let D
be a data set and Enc an encryption algorithm for data items
in D. Then, Enc is d-distance preserving if

∀x, y : d(Enc(x),Enc(y)) = d(x, y).

Distance-preserving encryption enables distance-based data
mining on encrypted data. This means that the mining results
on cipher-text and on plain-text data are the same. For instance,
data items are assigned to the same clusters.

B. KIT-DPE-Procedure for Designing DPE-Schemes

Now we introduce the general procedure for designing
distance-preserving encryption (KIT-DPE) for complex data.
Its four steps are as follows:
1) Definition of the Security Model: First, one has to specify

the security goals, like “the SQL log should not reveal any
information on the content of the database”. To this end,
one has (1) to specify the threat model, i.e., the attacks
to shield against, and (2) to define a high-level encryption
scheme for the type of data considered, e.g., “encrypt all
constants in the query”.

2) Finding a Suitable Equivalence Notion: Our aim is to
implement the high-level encryption scheme defined in
Step 1 so that it is distance-preserving. The distance is
defined for pairs of data items, but encryption is done item-
wise. So we introduce an intermediate notion defined for
individual date items: For a given distance measure, an
equivalence notion captures the characteristics of a single
data item that must be preserved upon encryption, cf.
Definition 2. For instance, when encrypting graphs (i.e.,
S is the set of all valid graphs), a characteristic to be
preserved could be the number of vertices.
Definition 2 (c-Equivalence). Let D ⊆ S be a data set
and c : S → S a function (characteristic). In addition, let
Enc be an encryption algorithm for data items in S. Then
Enc ensures c-equivalence if

∀x ∈ D : Enc(c(x)) = c(Enc(x)).
3) Ensuring the Equivalence Notions: In this step, one has

to implement the high-level encryption scheme defined in
Step 1 so that it ensures the equivalence notion from Step 2.
To this end, we deploy property-preserving encryption
classes introduced in Section II.

4) Security Assessment: If one uses only schemes whose se-
curity is known from the literature, the security assessment
is given; this is the desired case. Otherwise, a security
analysis as, e.g., in [13] is needed.

IV. DISTANCE-PRESERVING ENCRYPTION FOR SQL LOGS

In this section, we instantiate our KIT-DPE procedure with
SQL query logs and four well-known distance measures.

A. Security Model

As first step, we have to specify the threat model, i.e., the
attacks to shield against, and a high-level encryption scheme
for SQL logs. We specify them as follows.



1) Threat Model: As stated in Section II-1, one has to
shield against passive attacks only. Hence, it is necessary to
instantiate the abstract passive attacks stated in Section II-1 for
query logs. Literature already features this [9]. See Example 3.

Example 3 (Cipher-Text Only Attack → Query-Only At-
tack [9]). In a query-only attack, the attacker only has access
to the encrypted query log and tries to infer the plain-text
values of constants, relation names as well as attribute names
of a given encrypted query.

2) High-Level Encryption Scheme: Intuitively, SQL queries
can be encrypted in various ways, for instance by encrypting
the query string as a whole. However, if we want to hide the
names of relations, attributes and values of the attributes in
the database only, it is sufficient to encrypt only these parts of
the queries with different encryption functions, cf. Example 4.
The Tuple (EncRel,EncAttr, {EncA.Const : Attribute A})
forms our high-level encryption scheme. Here, EncRel is an
encryption algorithm for relation names, EncAttr one for
attribute names and EncA.Const one for constants belonging
to an Attribute A. While the idea of encrypting SQL queries
in this way is not new [14], it has not been studied so far how
to instantiate it so that it is distance-preserving.

Example 4. For Q = ’SELECT A1 FROM R WHERE A2 > 5’
the encrypted query is

Enc(Q) =’SELECT EncAttr(A1) FROM EncRel(R)

WHERE EncAttr(A2) > EncA2.Const(5)’.

B. Equivalence Notions for SQL Query Distance Measures
The second step of KIT-DPE is defining an equivalence

notion, i.e., the Function c defining the characteristics of a
query to be preserved (cf. Definition 2), for each distance
measure considered. Table I is an overview of query-distance
measures from literature and of the results of this and the next
section. To compute two of the measures, i.e., query-result and
query-access-area distance, it is not sufficient to only share the
query log. For instance, to calculate query-result distance, the
content of the database is needed as well (cf. Table I). We now
introduce the measures and the characteristics to be preserved.

1) Token-Based Query-String Distance: For token-based
query-string distance, one interprets an SQL query as a set
of tokens and uses a set-distance measure like the Jaccard
measure to calculate the distance, cf. Definition 3.

Definition 3 (Token-Based Query-String Distance). Let Q1,
Q2 be SQL queries. Then the token-based query-string dis-
tance between Q1 and Q2 is

dToken(Q1, Q2) = 1− |tokens(Q1) ∩ tokens(Q2)|
|tokens(Q1) ∪ tokens(Q2)| .

For token-based query-string distance, the characteristic to be
preserved is the token set of the queries, i.e., c = tokens. We
dub this equivalence notion token Equivalence.

2) Query-Structure Distance: In [15], the authors extract
semantically important features from a Query Q, dubbed fea-
tures(Q). A feature of a query is a tuple representing a part
of its structure. See Example 5 for examples of features.

Example 5. Consider Q from Example 4. Its feature set is

features(Q) = {(SELECT, A1), (FROM, R), (WHERE, A2 >)}.

Query-structure distance is the distance of the feature sets of
two queries with the Jaccard measure. For this distance, the
characteristic to be preserved is the feature set of the queries.
We name this equivalence notion structural Equivalence.

3) Query-Result Distance: Query-result distance is the Jac-
card distance of the tuples in the results of the queries. Note
that the result of a query depends on the state of the database.
Thus, besides the query log itself, it is necessary to share the
content of all attributes accessed by at least one query in the
log of the encrypted database as well (DB-Content in Table I).
For query-result distance, the characteristic to be preserved is
the set of result tuples of the query, cf. Definition 4.

Definition 4 (Result Equivalence). Let Q be a query. Then
Enc ensures result equivalence for Q if

Enc(result tuples(Q)) = result tuples(Enc(Q)).

4) Query-Access-Area Distance: Query-access-area distan-
ce is based on the overlap of access areas. The access area of
a Query Q regarding an Attribute A, acccessA(Q), is the part
of the domain of A accessed by Q [16]. Using this notion, we
define access-area distance in Definition 5.

Definition 5 (Query-Access-Area Distance). Let Q1, Q2 be
SQL queries and AttrQ1,Q2 the set of attributes accessed by
Q1 or Q2. Then the access-area distance of Q1 and Q2 is

dAE(Q1, Q2) = 1
|AttrQ1,Q2| ·

∑
A∈AttrQ1,Q2

δA(Q1, Q2)

where

δA(Q1, Q2) =


0 if acccessA(Q1) = acccessA(Q2)

x if acccessA(Q1) ∩ acccessA(Q2) 6= ∅
1 otherwise

for x ∈ (0, 1) with a default value of 0.5.

The corresponding equivalence notion is access-area equiva-
lence, where c = accessA for all Attributes A is preserved.

C. Ensuring Equivalence Notions

The third step of the KIT-DPE procedure is selecting a
combination of property-preserving encryption schemes en-
suring the equivalence notions just defined. Generally, several
encryption classes ensure an equivalence notion. For instance,
for token equivalence, we can choose the identity function
as “encryption algorithm” providing no security, or some
deterministic scheme with higher security level. So we always
select the schemes from an encryption class according to Def-
inition 6 using the encryption-class taxonomy from Figure 1.

Definition 6 (Appropriate Encryption Class). For a given
equivalence notion and encryption algorithm in (EncAttr,
EncRel, {EncA.Const : Attribute A}), an encryption class is
appropriate according to an encryption-class taxonomy if (1)
it ensures the equivalence notion and (2) provides the highest
possible security.



TABLE I
OVERVIEW OF QUERY-DISTANCE MEASURES.

Distance Measure Shared Information Equivalence Notion c EncRel EncAttr EncA.Const

Log DB-Content Domains
Token-Based Query-String Distance 3 7 7 Token Equivalence tokens DET DET DET
Query-Structure Distance 3 7 7 Structural Equivalence features DET DET PROB
Query-Result Distance 3 3 7 Result Equivalence result tuples DET DET via CryptDB [8]
Query-Access-Area Distance 3 7 3 Access-Area Equivalence accessA DET DET via CryptDB,

except HOM

Table I lists the appropriate schemes and classes for all SQL
query distance measures, indicating that one can find appro-
priate classes for all distance measures. For two measures, we
can rely on CryptDB, an approach for executing SQL queries
over encrypted databases reducing implementation overhead.

Observe a specificity of access-area equivalence: As the
SELECT-clause does not have any influence on the access area
of a query, for access-area distance, we can encrypt the values
of attributes contained in an arithmetic aggregate function in
the SELECT clause just with a PROB scheme. This yields
a higher security level than one for result distance that uses
CryptDB as it is.

D. Security Assessment

The last step of KIT-DPE is the security assessment of the
appropriate encryption schemes. As we have used property-
preserving encryption schemes known from literature, their
level of security is known. Thus, we can reduce the security
of the schemes to the security of the encryption schemes for
SQL queries we have just specified [9]. This is intended –
executing a full security analysis for organizations which want
to outsource data analysis is practically impossible.

V. CONCLUSIONS

Many organizations have data that contains valuable in-
formation, but cannot analyze it themselves. Therefore, they
want to outsource the analysis to a service provider. To
ensure confidentiality, they are willing to transfer their data
only if it is encrypted. To this end, it is important that the
encryption preserves the mining results. Thereby, we introduce
distance-preserving encryption (DPE) and propose the KIT-
DPE procedure. It establishes how to design a DPE-scheme for
arbitrary data and distance measures. We exemplary instantiate
this procedure for SQL query logs. In the respective study,
we find appropriate DPE-schemes for all distance measures
for SQL queries from literature. We use well-known property-
preserving encryption classes to implement the DPE-schemes
and assess their security. This is different from approaches
supporting ad-hoc queries like CryptDB [8] and gives way to
higher security. Furthermore, for instance, result equivalence
for SQL queries, is also useful for association-rule mining
over encrypted SQL logs [17]. Studying the applicability of
equivalence notions in different contexts also offers interesting
opportunities for future work.
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