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ABSTRACT
Efficient energy storage is crucial in future energy systems. The
management of lithium-ion based batteries is a challenging topic of
research in this area. To improve management systems, monitoring
data is indispensable, be it for single battery cells, be it for systems
of multiple cells — the topic of this article. However, regarding
such modular systems, data that is openly available is rare. This
article is a description of the FOBSS data set, which we have made
publicly available. It consists of monitoring data of a battery system
comprised of 44 battery cells. We record temperature and voltage
with a high frequency down to the cell level. This renders our data
unique and useful for future research. Additionally to descriptions
of the setup of our battery system and of the data format, we provide
an exemplary MATLAB file simplifying any further data usage.

CCS CONCEPTS
•Hardware→ Batteries; • General and reference→Measure-
ment.
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1 INTRODUCTION
To reduce mankind’s carbon footprint, energy storage must be
efficient and reliable. In particular, storage is necessary to integrate
renewable energy sources into future energy systems [8] and to
meet our energy demand [5]. Various types of storage exist [8],
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like pumped hydro or thermal energy. Other common types of
storage are electrochemical batteries based on lead-acid or lithium-
ion. They come in many ranges, from small ones for mobile phones
to bigger ones in electrical cars [7]. Lithium-ion based batteries
have a very low self-discharge rate (loss of energy in non-use time)
[8], and their costs of production are likely to drop. Berckmans et
al. [1] estimate the limit of 100 $ per kWh to be reached in 2020-
2025 for silicon based Lithium-ion batteries. They are indispensable
regarding the development of future energy systems.

Because of their high energy density, lithium-ion batteries are
sensitive to overcharging. So they must be monitored closely [10]. A
battery management system (BMS) collects and estimates indicator
values of the battery. Due to the importance of close monitoring, a
lot of research on lithium-ion batteries focuses on their BMS [10].
Temperature, current and voltage are measured directly, indicators
such as State of Charge (SoC) or State of Health (SoH) are derived
from measured values. Clearly, SoC – the fuel gauge of the battery
— is of upmost importance, be it to estimate the remaining range
of an EV or to indicate the remaining charge in a mobile device
to the user. However, estimating values such as SoC or SoH is far
from trivial. Many methods exist [11]. When it comes to improve or
compare existing methods, one must determine the accuracy of the
estimates. To this end, monitoring data is used, i. e., measurements
from batteries over time.

This article is a description of the FOBSS data set ("Frequent
Observations from a Battery System with Subunits"), which we
have made publicly available1. It comprises detailed measurements
of a battery system consisting of multiple battery packs, each moni-
tored by a subunit of the BatteryManagement System (BMS). Each
pack in turn is composed of several battery cells. Measurements are
on the cell level, with a very high temporal resolution. A unique
feature of our data set is that there are many cells connected in
series. Such data is very useful for research on BMS integrating
several batteries into one (see Section 2).

Paper outline: Section 2 describes possible applications for that
data such as ours can be very useful for. Section 3 reviews existing
battery data sets. Sections 4 and 5 describe our battery system and
the format of the data we have recorded. Section 6 gives some
details regarding the quality of our data set. Section 7 describes
an exemplary usage file in MATLAB we provide together with the
data set.
1G. Steinbuß, B. Rzepka, S. Bischof, T. Blank and K. Böhm, "Frequent Observations
from a Battery System with Subunits", KITopen, 2019, https://www.doi.org/10.5445/IR/
1000094469
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2 DATA USAGE
In this section we exemplarily describe three areas of research our
data can be useful for. Clearly, there may be other areas as well, we
do not claim completeness.

Development of battery models. Li-ion Batteries are extremely
complex, nonlinear electro-chemical systems. A BMS must provide
accurate estimations of the characteristics of each cell such as SoC
and SoH. Such properties cannot be measured, but are derived from
cell voltage, current and temperature. Respective algorithms run on
embedded systems with limited memory and computational power.
The FOBSS data can be used to develop models which yield an
optimal trade-off between accuracy and computational complexity.

Compared with data sets containing only one cell [12][3] or only
module and system level [4] measures, FOBSS facilitates testing
algorithms on a real world system on cell, module and system layer.

Reduction of measurement accuracy. Accurate measurement sys-
tems are expensive. Nevertheless, our data consists of very frequent
and accurate measures, as we will explain. Using our data set, one
could implement algorithms which still provide good estimates of
internal cell parameters, while being able to tolerate lower sample
rates, higher noise levels and less accuracy. For example, unlike
most battery systems, our system monitors the temperature of
each cell. Data-driven algorithms could be developed to provide
an accurate temperature estimation while reducing the number of
temperature sensors per module.

Predictivemaintenance. Since cells in our system are connected in
series, they should behave similarly. Parameters such as impedance,
SoH, SoC or measures like the current of each cell should not differ
much. The reliable detection of cells whose behaviour changes in an
unusual manner (e.g., inconsistent with the others) could indicate
an upcoming system failure, before it is detected by state-of-the-art
methods. Our data is particularly well suited to develop and assess
respective tools for predictive maintenance.

3 RELATEDWORK
There already exist public data sets on batteries [2–4, 6, 9, 12]. They
facilitate SoC estimation or dealing with the battery’s health. The
specific aim for which the data sets were recorded usually differs.
For example, regarding the battery’s health, a data set might have
been recorded to allow for estimations of the remaining useful life
time (RUL) [12] or of the general SoH [14] or to analyze how partial
charges and discharges affect the battery’s health [13]. Regardless of
the aim, almost all data sets providemeasures of voltage, current and
temperature. What differs is the type of battery, the environment it
is in (e.g., a temperature-controlled chamber), its usage during the
measurements and the frequency of the measurements.

The type of battery can differ by the exact battery cell used,
e.g., its chemical composition, or whether it is only a single battery
versus a composite system— like in our case.While data from single
batteries is relatively common [2, 3, 6, 9, 12], data on a system of
batteries is not. The only public data on a system of batteries we
are aware of is the HIRF Battery Data Set [4]. The system consists
of two battery packs with two batteries each, and measurements
are taken on a battery and battery pack level every 0.3 seconds.
Our system however has four battery packs with 11 battery cells

in each pack, and measurements are taken on the cell and system
level, i.e., at a significantly finer granularity.

When it comes to data sets for a single battery, the range is much
broader. A good resource is a repository hosted by the CALCE
Battery Group of the University of Maryland.2 It currently contains
six data sets with different battery types, different ambient temper-
atures and very different profiles of charges and discharges. The
measurement frequency differs as well, from measurements taken
every second to recordings only every 30 seconds. NASA also hosts
a repository to provide data for prognostics purposes.3 It does not
only hold the HIRF data set [4], but also two other data sets on
single batteries [3, 12]. These two data sets differ in the type of bat-
tery, the ambient temperature and the frequency of measurements.
One data set contains records for every second [3], the other one
has a frequency that varies and also depends on the operation [12].
For a charge operation, there is a measurement every 2-10 seconds,
for discharges about every 10-20 seconds. Three other data sets on
single batteries are available elsewhere [2, 6, 9]. While [6] does not
reveal the frequency of measurements (there is no unit), [2, 9] both
record measurements every 0.1 seconds. Our data is different from
these ones because we have several cells in series. Additionally, the
lowest frequency of measurements in our data (the temperature
of cells) is about every 1.5 seconds. Every other parameter is mea-
sured every 0.25 seconds at least, which is comparably high. Hence,
even when analyzing only a single cell, our data set can be a useful
resource already for this reason.

4 OUR BATTERY SYSTEM
Our battery system consists of three main components: lithium-ion
based batteries, an inverter and a BMS. See Figure 1. The inverter is
used to charge and discharge the battery, providing electrical energy
from the grid. The BMS monitors the voltage and current in the
system as well as voltage, current and temperature in each battery
cell. In our system, the BMS has several subunits. Each subunit as
well as the overall voltage and current sensor is connected with
a Controller Area Network (CAN) bus (CAN 1 in Figure 1). A PC
controls the inverter and collects its data (voltage and current).
The PC and inverter are connected using Transmission Control
Protocol (TCP). The PC is connected to the BMS via the two CAN
buses (CAN 1 and CAN 2 in Figure 1). The connection to the CAN 1
bus is for acquiring cell and battery data, CAN 2 is also used to send
data to the BMS. The battery cells are grouped in several battery
packs, each of which is monitored by a BMS-subunit. In Figure 1
these subunits are called slaves. The slaves gather temperature and
voltage values for each battery cell and transmit these to the BMS
master as well as to the PC. This guarantees detailed measurements
of many similar battery cells working in the same environment.

4.1 The Batteries
Our battery system has 4 battery packs, each one consisting of 11
battery cells. All cells are from the samemanufacture. Their cathode
consists of LiNiMnCoO2, while their anode is from Graphite. The
nominal voltage is 3.6 V and the rated capacity 40 Ah. The cells
within each battery pack are connected in series. Thus, the nominal

2https://web.calce.umd.edu/batteries/data.htm
3https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
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Figure 1: Schematics of our battery system (Rl = Relay stage)

voltage of a full pack is 39.6 V and the rated capacity of a whole
pack remains 40 Ah. The packs are also connected in series, so the
nominal voltage of our system amounts to 158.4 V.

4.2 The Inverter
The electricity grid is connected to the inverter by a three-phase
alternating current connection capable of 400 V and 32 A. The
inverter, a SM-500-C90 from Delta Electronika, is used to charge
and discharge the battery. Positive current values indicate a battery
charging process, negative values a discharging process. On the
battery system side, the inverter outputs direct current. The voltage
is in the range of [0 V, 500 V] and the current in [-90 A, 90 A],
though the maximal power is limited to 15 kW. The inverter has an
RJ-45 connection, which is used to connect it to a PC using TCP.
This connection is used to set voltage, current and power with
corresponding safety limits. Values currently set and measured are
also read using this connection.

4.3 Battery Management System
Precise monitoring of batteries with BMS is crucial to ensure the
correct working of the batteries. In modular systems like ours,
the BMS is modular as well. Each battery pack is monitored by a
subunit of the BMS — the BMS-Slave. Each BMS-slave transmits
temperature and voltage of each cell within a battery pack to the
BMS-Master using CAN 1. Connected to this BMS-Master are two
sensors measuring the overall voltage and current. The values out-
put by the current sensor are defined positive when the battery
is discharged and negative when the battery is charged. This is
contrary to the inverter, see Section 4.2.

Attached to the BMS-Master also is the relay stage displayed
as ’Rl’ in Figure 1. It is composed of three relays: the Precharge
(PC), Highside (HS) and Lowside relay (LS). To connect inverter and
battery, PC and LS relay are closed first. A resistor R (22 Ω) in the
precharge line prevents high current peaks that could damage the
system. Once the inverter’s output capacitor and battery voltage
are balanced, the HS relay is closed to bridge the resistance for
usual system usage. The capacity of the inverter specified by its
manufacturer is 560 µF. The BMS can open the relays when neces-
sary and prevent the battery from damage caused by voltages or
currents beyond the limits.

5 DATA RECORDS
We provide data on 19 different profiles we run on the battery
system. Each profile consists of charge, discharge and rest steps.
An example profile used in Section 6 is shown in Figure 2.

Rest for 300 s

Discharge for 300 s @ 10 A

Rest for 100 s

Charge for 300 s @ 25 A

Rest for 200 s

Figure 2: Exemplary profile

The file profiles.xlsx describes the profiles we run, how many
times we do so, on which day, for how long and where the cor-
responding files are saved. Comments indicate whether anything
about a specific run must be pointed out. Examples are when the
battery did not rest before a run, or when the logging of measures
does not stop after the described profile. The monitoring data pro-
vided is grouped by these profiles. For each profile we provide
three folders with data: battery, inverter and cells. battery as well
as inverter each contain two files giving the voltage and current
of the respective entity. For the inverter, we measure voltage and
current with its internal sensors, for the battery with the two sen-
sors displayed in Figure 1. The inverter voltage and current are
recorded every 0.1 seconds. The battery records them every 0.25
seconds. The folder cells contains 8 files. There are four files with
the temperature of each battery pack and four with the voltage of
each pack. Each such file contains the respective measurements
for every cell in that battery pack. For example, the first column of
File Slave_0_Voltage.csv contains the time in seconds, and the
following 11 columns contain the voltage of each cell. The temper-
ature of a single cell is measured every 1.5 seconds, and voltage is
measured every 0.25 seconds. — Table 1 summarises the precision
and the time resolution of the quantities mentioned.

Table 1: Precision and time resolution

Quantity Precision Time resolution
Cell voltage 1 mV 250 ms
Cell temperature 1 ◦C 1.5 s
Battery current 10 mA 250 ms
Battery voltage 100 mV 250 ms
Inverter current 8 mA 100 ms
Inverter voltage 2 mV 100 ms

6 EXAMPLE PROFILE
We describe our data sample for the profile from Figure 2. This
allows for insights regarding the structure of the data. The current
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(a) Current from inverter

(b) Voltage response of each battery cell

(c) Cell temperature of each battery cell

Figure 3: Example of monitoring data

measured by the inverter is plotted in Figure 3a. For the illustration
we decided to have a rather short profile. The data itself features
much longer periods of measurements.

Figure 3c graphs the cell temperatures during the run. For this
short profile only a slight heat up is observable. Due to the resolu-
tion of the measurement, the temperature of many cells is equal,
and the curves in Figure 3c are on top each other. This effect usually

is not there with longer profiles. Temperature differences within a
pack often are more significant in this case. Figure 3b shows the
voltage response of each cell in the battery system. The cell voltages
are spread in a range of about 100 mV.

Voltage and temperature differ from cell to cell and from pack to
pack. This highlights the uniqueness of our data. No other data set
provides insights on so many battery cells within a single system.

7 USAGE NOTES
Together with our data we provide a MATLAB script (viewData.m).
The Figures 3a to 3c were produced by this script. To plot respective
figures for other profiles in the FOBSSdata as well, the script needs
to be modified only slightly. Hence, it reduces the effort necessary to
analyse the data further. In the first half of the script the respective
data from the .csv files is loaded into the MATLAB workspace
using timeseries objects4. In the second half of the script the figures
are created. To run the script, our data needs to be available in a
folder called ’data’, placed in the same directory as viewData.m.
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