
Iterative Estimation of Mutual Information with Error Bounds
Michael Vollmer

Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany

michael.vollmer@kit.edu

Klemens Böhm

Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany

klemens.boehm@kit.edu

ABSTRACT
Mutual Information (MI) is an established measure for linear and

nonlinear dependencies between two variables. Estimating MI

is nontrivial and requires notable computation power for high

estimation quality. While some estimation techniques allow trad-

ing result quality for lower runtimes, this tradeoff is fixed per

task and cannot be adjusted. If the available time is unknown

in advance or is overestimated, one may need to abort the esti-

mation without any result. Conversely, when there are several

estimation tasks, and one wants to budget computation time

between them, there currently is no efficient way to adjust it

dynamically based on certain targets, e.g., high MI values or MI

values close to a constant. In this article, we present an itera-

tive estimator of MI. Our method offers an estimate with low

quality near-instantly and improves this estimate in fine grained

steps with more computation time. The estimate also converges

towards the result of a conventional estimator. We prove that

the time complexity for this convergence is only slightly slower

than non-iterative estimation. Additionally, with each step our

estimator also tightens statistical guarantees regarding the con-

vergence result, i.e., confidence intervals, progressively. These

also serve as quality indicators for early estimates and allow to

reliably discern between attribute pairs with weak and strong

dependencies. Our experiments show that these guarantees can

also be used to execute threshold queries faster compared to

non-iterative estimation.

1 INTRODUCTION
Motivation. Detecting and quantifying dependencies between

variables is an essential task in the database community [10, 13,

20, 30]. Conventional methods such as correlation coefficients

and covariance matrices only detect linear or monotonous depen-

dencies.Mutual Information (MI) in turn is an index that captures

any linear and nonlinear dependency [1, 5]. Probability distri-

butions of the variables in question serve as input to compute

the MI. For real-world data however, these distributions are not

available. In this case, MI must be estimated based on samples.

Various estimators for MI have been proposed [15, 23, 33], and

some offer good results even for small samples [15]. However,

continuous variables with an unknown distribution continue to

be challenging, since their multivariate distribution is substituted

only by a limited sample. A prominent approach for estimation

of MI between continuous variables without assumption of the

distribution is the nearest-neighbor based method by Kraskov et

al. (KSG) [19].

While good estimators are available, they are very rigid in their

time requirements and regarding the estimation quality. Once the

computation has started, they impose a fixed time requirement

and do not yield aby preliminary result if they are terminated

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the

22nd International Conference on Extending Database Technology (EDBT), March

26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

M
u
tu

al
 I

n
fo

rm
at

io
n

Runtime

MIT

MIfin

tT t tfin

Figure 1: MI estimation with dynamic time allocation.

prematurely. They also are unable to exploit ‘easier’ queries like

whether the MI value is above a certain threshold but instead

determined the value. Such features are highly relevant for high-

dimensional data and data streams with irregular arrival rate as

we showcase with the following two scenarios.

Scenario 1. Consider a modern production plant with smart

meters installed on each machine. A first step in data exploration

is determining which attributes are strongly dependent. For in-

stance dependencies among currents or energy consumption

may offer insights into production sequences. For this first step, a

query like “Which pairs of measurements have a MI value above

the thresholdMIT ?” often suffices. With conventional MI estima-

tors, each pair either induces high computational costs, or results

are uncertain because of low estimation quality.

Scenario 2. Think of a database with financial data and its real-

time analysis. To maintain a diverse portfolio, it is important to

track the relationships between stocks. Because bids and trades

happen irregularly, new information and market prices arrive at

irregular speed. Thus, it is not known how much time is available

to monitor stock relationships in the presence of incoming data.

Current MI estimators cannot adapt during execution. They risk

not producing a result in time, or estimates are of low quality.

To improve upon these shortcomings, we study estimation of

MI with dynamic allocation of computation time. Ideally, such

an estimator should not only offer preliminary results, but also

indicate its remaining uncertainty. Figure 1 shows exemplary pro-

gression over time of such an estimator based on our experiments

with real data. The black line indicates the preliminary estimate

after a certain runtime, and the gray area shows the (expected)

maximum error of the preliminary estimate. To obtain the defin-

itive result MIfin, a user would require time tfin. However, he
could also stop the estimator as soon as the estimate is above a

threshold MIT with certainty, or he can use the preliminary result

available after time t.
In this work, we focus on iterative estimation of MI in order to

offer this functionality. Here, ‘iterative’ means quickly providing

an estimate, but with the option to improve the estimation if

there is time left. In other words, improving the estimate with

Series ISSN: 2367-2005 73 10.5441/002/edbt.2019.08

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2019.08

some time available is what we call an iteration. At the same

time, an iterative estimator can terminate the estimation, i.e.,

stop iterating, when the result is good enough. For efficiency, it

is important that computations from previous iterations remain

useful and are not repeated or discarded in a later iteration. So

far, efficient iterative estimators for MI do not exist.

Challenges. The most significant feature of an estimator is its

quality of estimation. This is even more so for iterative methods

because both “preliminary” and “final” estimation quality are

important. In other words, the estimate should already be useful

after a few iterations, and estimation quality must level up to the

one of conventional estimators after many iterations. Ideally, this

convergence should happen after a known, finite number of iter-

ations. In this article, we target at respective formal guarantees.

Next, the quality of preliminary estimates is crucial for us-

ability. Determining if a preliminary result is “good enough” or

interesting enough to merit additional computation time requires

some information on its certainty. The number of iterations alone

is insufficient, as the result quality depends on many other fac-

tors such as data characteristics, required accuracy and time con-

straints. Instead, each estimate requires an individual indicator

of the uncertainty remaining.

While the time spent to improve the estimate iteratively is

committed dynamically, it must of course be used efficiently.

Many conventional estimators use data structures that are ex-

pensive to build and cheap to use, such as space-partitioning

trees [19, 31, 32]. Such an upfront activity is undesirable for an

iterative estimator whose first estimate must arrive soon. At the

same time, runtime and scalability do remain important charac-

teristics of the estimator. In other words, an iterative estimator

must feature guaranteed efficiency for both individual iterations

and final estimates.

Contributions. In this article, we present IMIE, our Iterative

Mutual Information Estimator. To prove its practical usefulness,

we establish several features both formally and experimentally.

Quality of Estimation. In Section 4, we propose a design for

IMIE such that estimates converge to the same value as with the

KSG. To make early iterations useful, IMIE also offers statistical

error bounds for its early estimates. More precisely, an early

estimate provides a confidence interval for the final estimate. We

describe the specifics and the statistical soundness in Section 4.3.

Complexity. We study the time complexity of initialization and

of individual iterations of IMIE. In Section 5 we establish an amor-

tized time complexity for IMIE and the nearest-neighbor search

used. This complexity is competitive with existing non-iterative

estimators. To be precise, we show that iterating IMIE until con-

vergence is only slightly slower in terms of time complexity than

computing the KSG directly with optimal algorithms.

Experimental Validation. We show that IMIE complements the

formal guarantees established so far with good actual perfor-

mance. To do so, we perform extensive experiments using both

synthetic and real data sets in Section 6. On the one hand, we

show that the concrete runtime and estimation results of IMIE are

comparable to the ones of conventional estimation methods. On

the other hand, the experiments show the practical benefits of the

early results from IMIE. For instance, IMIE finds attribute pairs

above a threshold value significantly faster than non-iterative

estimators.

2 RELATEDWORK
Iterative estimation ofMI is interesting from two perspectives. On

the one hand, it is methodically interesting, as it can be considered

an anytime algorithm. On the other hand, it is interesting to

consider the benefits it provides over current methods in different

settings. Important application scenarios are dependency analysis

in high dimensional data and data streams, cf. Scenario 1 and 2.

Anytime Algorithms. Anytime algorithms [36] use available

time to increase their result quality. One can obtain a low-quality

result after a short time and a better one when waiting longer.

In data analysis, anytime algorithms exist for clustering [22],

classification [35] and outlier detection [2]. So far however, there

is no anytime algorithm to estimate MI. So while there is no direct

competitor, IMIE extends the set of tools available as anytime

algorithms. Additionally, there has been more general work on

the optimal use of available anytime algorithms [11, 18], which

may improve the performance of IMIE in larger systems.

MI on Data Streams. Estimating MI on streams has received

some attention recently. The MISE framework [14] summarizes

a bivariate stream such that the MI for arbitrary time frames can

be queried. To this end, MISE offers parameters for the balance

between accuracy of older queries and resource requirements

both in terms of memory and computation time. In contrast, the

DIMID estimator [4] processes a bivariate stream as sliding win-

dow for monitoring tasks. This approach provides fast updates

between time steps by approximation with random projection.

MI estimation in sliding windows has also been the focus of

[32]. That paper provides lower bounds for estimates using Equa-

tion 5 both in general and for updates in sliding windows. It also

features two dynamic data structures, DEMI and ADEMI, to main-

tain such estimates using either simple or complex algorithms

and data structures.

These approaches have limitations. First, they all impose the

necessary execution time, i.e., one cannot adapt this time after

the start of stream processing. If the rate of new items increases,

the estimator may be unable to keep up. If it decreases, the es-

timator cannot use this time to improve results. Second, the ap-

proaches are all focused on bivariate streams. While MI is defined

for exactly two variables, the number of attribute pairs grows

quadratically in the number of dimensions. In contrast, the only

information IMIE maintains on a stream is based on individual di-

mensions and thus scales linearly with the dimensionality. Third,

the approximate results of MISE and DIMID are difficult to use.

Their estimation quality is only known on average; this average

defines the perceived quality of individual estimates. So if one

estimate has a very small error, it is less likely to be appreciated,

while the error of a particularly bad estimate may be assumed to

be smaller.

Dependencies in High Dimensional Data. Even though MI is de-

fined for exactly two variables, it hasmany applicationswith high-

dimensional data. Prominent ones are image registration [25],

which uses MI between two high-dimensional variables, and fea-

ture selection [24], which targets at the MI between attributes

and a classification label. But estimating the MI between all pairs

of attributes has received little attention, despite being the non-

linear equivalent of correlation matrices. [26] uses a different

approach, i.e., kernel density estimation, and removes redundant

computations that arise when using this estimator for each pair.

This approach has a worse computational complexity than a pair-

wise application of the KSG estimator, without offering better

74

0 1 2 3 4 5 6 7 8 9

1

2

4

3

5
MCy

1 (p3) = 2

MCx
1 (p3) = 3

δy1 (p3)

δx1 (p3)6

7

p3

p1

p2

p4

p5

p6

X = { 1, 3, 4, 5, 8}6

Y
=

{
1,

3,
4,

5,
7}

2,

x

y

Figure 2: Illustration of terms used for the KSG.

results [15, 23]. While both scale quadratically in the number

of attributes, their approach is also quadratic in the number of

points. The complexity of the KSG in turn is Θ(n logn) [32]. Ad-
ditionally, it does not expose any parameter to modify the result

quality. Consequently, there would not be any benefit of a direct

experimental comparison with IMIE.

3 FUNDAMENTALS
We first cover the background of MI and its estimation.

Mutual Information. Shannon has introduced the notion of

entropy [28] to quantify the expected information gained from ob-

serving a value of a random variable.H (X) stands for the entropy
of a random variable X . The expected information of observing

two random variables X and Y is the joint entropy H (X ,Y). Mu-

tual Information quantifies the amount of information that is

shared or redundant between the two variables. It is defined as

I (X ;Y) = H (X) + H (Y) − H (X ;Y). (1)

With the definition of entropy for continuous variables [6], the

MI of two continuous random variables is

I (X ;Y) =

∫
X

∫
Y
pXY (x,y) log

(
pXY (x,y)

pX (x)pY (y)

)
dx dy, (2)

where pX ,pY and pXY are the marginal and joint probability

density functions of X and Y . The type of logarithm used in

Equation 2 determines the unit of measurement. In this work we

use the natural logarithm. This means that MI is measured in the

natural unit of information (nat).

Estimation. One can perceive many sources of data, e.g., smart

meters or market prices, as random variables with unknown dis-

tribution. Since Equation 2 requires probability density functions,

we cannot compute the MI of such sources exactly. Instead, we

can only estimate the MI based on available samples. The popular

estimator that will serve as foundation of our work is the one by

Kraskov, Stögbauer and Grassberger [19], which we call KSG. It is

based on the estimator for probability densities by Loftsgaarden

and Quesenberry [21], which Kozachenko and Leonenko have

studied further in the context of entropy [17]. In the following,

we briefly review the terms and computation of the KSG.

Let P = {p1 = (xp1 ,yp1), . . . ,pn = (xpn ,ypn)} ⊆ R
2
be a

sample from a random variable with two attributes. Figure 2

illustrates the notions that we define in the following using

the sample P = {(1, 5), (6, 1), (5, 4), (4, 7), (3, 3), (8, 2)}. Let X =

{xp1 , . . . , xpn } and Y = {yp1 , . . . ,ypn } be the set of values per
attribute. For each point p ∈ P , its k ∈ N+ nearest neighbors in P
using the maximum distance form the set kNN (p). More formally,

it is

kNN (p) = argmin

S ⊆(P\{p }) s .t . |S |=k
max

s ∈S
∥p, s∥∞, (3)

with ∥p, s∥∞ = max(|xp − xs |, |yp − ys |). We define the largest

distance between xp and any x-value among the k nearest neigh-

bors of p as δxk (p) = maxs ∈kNN (p) |xp −xs |. We use this distance

δxk (p) to define the x-marginal count

MCx
k (p) = |{x ∈ (X \ xp) : |x − xp | ≤ δ

x
k (p)}|, (4)

which is the number of points whose x-value is “close to p”. In
Figure 2, vertical dashed lines mark the area of points whose

x-values are at least as close as the nearest neighbor of p3. Since
this area contains three points excluding p3, it is M

x
1
(p3) = 3.

The distance δ
y
k (p) and the y-marginal count MCx

k (p) are defined

analogously. Note that δxk (p) and δ
y
k (p) may differ, which results

in differently sized areas for the marginal counts, as seen in

Figure 2. Using these counts, the KSG estimate is defined as

Î (P) = ψ (n)+ψ (k)−
1

k
−
1

n

n∑
i=1

ψ
(
MCx

k (pi)
)
+ψ

(
MC

y
k (pi)

)
, (5)

where ψ is the digamma function. This is ψ (z) = −C +
∑z−1
t=1

1

t
for z ∈ N+ and C ≈ 0.577 being the Euler-Mascheroni constant.

While k is a parameter of this estimator, it is generally rec-

ommended [15, 16, 19] to use a small k , that is k ≤ 10. Gao et

al. [9] have proven that the KSG is a consistent estimator for fixed

k , that is, it converges towards the true value with increasing

sample size.

4 ITERATIVE ESTIMATION
In this section we present IMIE, our iterative estimator for MI.

The core concept of our approach is considering the KSG estimate

itself as the mean of a random variable with a finite population.

Using subsamples of this population for early estimates offers

beneficial properties such as an expected value equal to the KSG

estimate and convergence to the KSG for large sample sizes.

We first present IMIE and its underlying data structure as

well as the algorithms for the initialization and for subsequent

iterations. Then we describe our approach for nearest neighbor

search, which is better for iterative algorithms than the standard

procedures. Finally, we describe the statistical bounds that IMIE

provides with its estimates.

4.1 IMIE
For brevity, we introduce some notation in addition to the one

from Section 3. For a pointp ∈ P , we define the pointwise estimate

Ψ(p) = ψ
(
MCx

k (p)
)
+ψ

(
MC

y
k (p)

)
. (6)

The set of all pointwise estimates is ρ = {Ψ(p1), . . . ,Ψ(pn)}.
Seeing ρ as a finite population of size n with mean µρ , Equation 5

can be rewritten as

Î (P) = ψ (n) +ψ (k) −
1

k
− µρ . (7)

Using a (random) subsample ϱ ⊆ ρ, its mean µϱ is an (unbiased)

estimation of µρ . This in turn yields an (unbiased) estimate of

Î (P),

Îϱ (P) = ψ (n) +ψ (k) −
1

k
− µϱ . (8)

75

Data Structure 1: IMIE

struct {
Point[] P
Real Mean, Var

Int k,m
Int[] OrderR , Orderx , Ordery
Real Offset

};

Algorithm 2: Init (P,k)

1 Persist k and P O(n)

2 Mean, Var,m ← 0 O(1)

3 OrderR , Orderx , Ordery ← (0, 1, . . . , |P | − 1) O(n)

4 Sort Orderx and Ordery O(n logn)

5 Offset← ψ (|P |) +ψ (k) − 1

k O(1)

The variance σ 2ϱ of our subsample serves as a quality indicator

of this approximation, which we further discuss in Section 4.3.

The idea of IMIE is to maintain a subsample ϱ and use Îϱ (P) to

estimate Î (P). Each iteration then increases the sample size of ϱ
by one, to improve the estimate. Starting with an empty set, this

means there are exactly |P | iterations before IMIE yields exactly

the same result as the KSG, i.e., Îϱ (P) = Î (P).

Data Structure. IMIE uses and stores P and k as well as some

additional information listed in Data Structure 1. In the following

we use the zero-indexed array notation P[i] = pi+1. Contrary
to the original data sample P , we do not store ϱ explicitly. In-

stead we store its mean Mean, its variance Var and size, which is

the number of performed iterationsm. To maintain the current

variance efficiently, we use the online algorithm by Welford [34].

To ensure that ϱ is a random subsample of ρ, we need to draw

without replacement. To this end, IMIE maintains an array of

indices OrderR , where index i at position j means that Ψ(pi) is
added to ϱ in the j-th iteration. The positions of this array are

randomly swapped during iterations to perform the random se-

lection. This enables a fast selection of a random element without

replacement in each iteration. In addition, we maintain two ar-

rays Orderx and Ordery containing references to all points in P
ordered by their x- and y-value, respectively. For instance, in-
dex i at Orderx [0] means that pi has the smallest x-value in P ,
i.e., pi = argminp∈P xp . These ordered arrays are used to find

nearest neighbors, as described in Section 4.2. Finally, we store

the Offset = ψ (n) + ψ (k) − 1

k . With this, the (preliminary) MI

estimate is available as Îϱ (P) = Offset −Mean.

Methods. We now present the two methods Init and Iterate.

See Algorithms 2 and 3, together with amortized time complexi-

ties, derived in Section 5. Init ensures the proper state of Data

Structure 1 before the first iteration, i.e., preparing all variables

assuming that |ϱ | = 0. Observe that Init is a straightforward

method for the simple case of static data with two attributes.

For other scenarios, such as high-dimensional or streaming data,

some adjustments to the initialization may be appropriate, as

discussed in Section 5.3.

Iterate increases the size of sample ϱ by one. This requires

computing Ψ(p) for a random p ∈ P with Ψ(p) < ϱ. Iterate
consists of three phases. In the first one (Lines 1-3), we select
a random point p of P that has not been selected earlier. After

Algorithm 3: Iterate

1 ID← Draw random integer from [m,n − 1] O(1)

2 Swap values of OrderR [m] and OrderR [ID] O(1)

3 p ← P[OrderR [m]] O(1)

4 kNN (p) ← NNSearch(p) (see Algorithm 4) O(
√
n)

5 Compute δxk (p), δ
y
k (p) O(1)

6 ComputeMCx
k (p),MC

y
k (p) O(logn)

7 Ψ(p) ← ψ
(
MCx

k (p)
)
+ψ

(
MC

y
k (p)

)
O(1)

8 m ←m + 1 O(1)

9 Diff
old
← Ψ(p) − Mean O(1)

10 Mean← Mean +
Diff

old

m O(1)

11 Diff new ← Ψ(p) − Mean O(1)

12 Var ←
Var·(m−1)+Diff

old
·Diff

new

m O(1)

m − 1 iterations, we swap the index at position m of OrderR
with the index at a random position behindm − 1. This ensures
that we do not use any index twice, since positions before m
are not considered, and that each unused index has the same

probability of being selected. This random swap is one step of the

Fisher-Yates Shuffle in the version of Durstenfeld [8], which fully

randomizes the order of a sequence. The second phase (Lines 4-7)
computes Ψ(p) using the ordered lists Orderx and Ordery . The

last phase (Lines 8-12) performs the online algorithm [34] to

maintain mean and variance of a sample, in our case ϱ.

Example 4.1. Disregarding the dashed lines for now, Figure 3

illustrates the state of Data Structure 1 after initialization and

before the first iteration. For the first iteration, we draw an in-

teger ID from {0, . . . ,n − 1}. Suppose that we drew 5. We swap

the content of OrderR [0] and OrderR [5]. OrderR [0] now contains

6. This means that this iteration adds Ψ(p6) to our implicit sam-

ple ϱ. We then determine its nearest neighbor 1NN (p6) = {p15},
the distances δx

1
(p6) and δ

y
1
(p6) as well as the marginal counts

MCx
1
(p6) = 1 andMC

y
1
(p6) = 3. The dashed lines in Figure 3 illus-

trate the area of counted points in x and y-direction, respectively,
identically to Figure 2. It follows that Ψ(p6) = ψ (1)+ψ (3) = 0.346.

Substituting the appropriate variables, the remaining values are

set accordingly, i.e.,m = 0+ 1 = 1,Mean = 0+ 0.346
1
= 0.346 and

Var = 0·0+0·0.346
1

= 0. The second iteration is analogous, draw-

ing ID = 6 at random from {1, . . . ,n − 1}, thus choosing p7. Its
nearest neighbor is p8, and the marginal counts areMCx

1
(p7) = 1

andMC
y
1
(p7) = 6, cf. the dashed lines in Figure 4. As a result, it is

Ψ(p7) = ψ (1)+ψ (6) = 1.129. Analogously to the first iteration, the

remaining values arem = 1+1 = 2,Mean = 0.346+ 0.783
2
= 0.738

and Var = 0·1+0.783·0.391
2

= 0.153. Figure 4 graphs the state of

Data Structure 1 after both iterations, and the new MI estimate

is 1.164 − 0.738 = 0.426.

4.2 Nearest-Neighbor Search
A computation-intensive step in Iterate is the computation of

nearest neighbors, which also is a key step for static estima-

tion with the KSG. The classic solution [19, 31] is using space-

partitioning trees, which are optimal in terms of computational

complexity [32]. This efficiency is achieved because the slow

tree construction is performed once, and each nearest-neighbor

search afterwards is fast. Contrary to the traditional KSG esti-

mation, it is not known beforehand how many nearest-neighbor

searches IMIE performs. Constructing such a tree for IMIE would

76

Mean = 0
Var = 0.153

m = 0

X

Y

p1

p7
p13p2

p9

p14

p3 9 2 5 10 4 14 3 1 121115 6 16 8 713

92 5104 14 3112 1115 6 168713

P Orderx

Ordery

OrderR

k = 1
Offset = 1.164p12p4

p10 p8

p11

p15

p5
p6

p16

92 5 104 1431 1211 156 1687 13

Figure 3: State of IMIE after initialization.

X

Y

p1

p7
p13p2

p9

p14

p3 9 2 5 10 4 14 3 1 121115 6 16 8 713

92 5104 14 3112 1115 6 168713

P Orderx

Ordery

OrderR

k = 1
Offset = 1.164p12p4

p10 p8

Mean = 0.738
Var = 0

m = 2
925 104 143 1 1211 156 1687 13

p11

p15

p5
p6

p16

Figure 4: State of IMIE after two iterations (Ψ(p6) and
Ψ(p7)).

not only delay the first estimate, but may also be an inefficient

choice overall if only few iterations take place. The opposite, i.e.,

searching nearest neighbors without any preparation, is a linear

search. Each iteration would then require time linear in the num-

ber of data points. Since IMIE should offer both fast iterations

and preliminary estimates after a short time, our approach is a

compromise between these two options. The general idea is to

use sorted arrays to perform a “guided” linear search that offers a

good amortized time complexity (cf. Section 5). In the following,

we elaborate on our NNSearch approach.

Let p be the point whose nearest neighbor we are searching for

and q the nearest neighbor we have found so far. Then any point

r with |xp −xr | > ∥p−q∥∞ cannot be a nearest neighbor with the

maximum norm. This means that we only have to consider the

interval [xp − ∥p−q∥∞, xp + ∥p−q∥∞] in the sorted array Orderx .

When we find a closer point during the search, this interval gets

smaller, and fewer points need to be considered. For the y-values,
this is analogous. To reduce the number of worst-case scenarios,

we perform this search simultaneously in both directions and

terminate when either one terminates. See Algorithm 4 for an

algorithmic description of NNSearch.

Example 4.2. Figure 5 illustrates an exemplary run of this

procedure for k = 1. The figure shows four states corresponding

to the variables of NNSearch(p) after 0, . . . , 3 loops. The query
point p is the filled square, and a projection of the points to their

x- and y-coordinates is shown at the bottom and the left side,

respectively. These projections indicate the order of points in

Orderx and Ordery , respectively. Each state after the first loop

also illustrates the variables of NNSearch. The nearest neighbor

found so far is marked with a circle and is labeled NN , and the

distance δmax = ∥p − NN ∥∞ is used for the dashed lines that

highlight the remaining area of nearest neighbor candidates.

Points accessed via Orderx in a previous iteration are marked

with a diagonal stripe from the upper left to the lower right. This

is done analogously for Ordery . Each loop considers the next

loops = 0

X

Y

p

loops = 0

X

Y

δmax
∆y−
∆y+

∆y−

∆x+

∆x−

p

loops = 1

NN

NN

loops = 0

X

Y

∆y+

∆y−

∆x+

∆x−

p

loops = 2

δmax

NN

loops = 0

X

Y

∆y+

∆y−

∆x+

∆x−

p

loops = 3

δmax

Figure 5: Illustration of Algorithm 4 for each loop.

unmarked point in both directions for both Orderx and Ordery .

Additionally, the small arrows illustrate the minimal distances

∆◦± for any further point accessed when iterating over Orderx
or Ordery in the respective direction. After the third loop, the

arrows of ∆y+ and ∆y− both exceed the area of the remaining

candidates, represented by the dashed lines. This means that all

relevant candidates have been considered via Ordery , and that

the current nearest neighbor is correct.

4.3 Statistical Quality Indicators
Finally we present statistical guarantees for early estimates by

IMIE. Since ϱ is a subsample of ρ, statistical tests with µϱ and σ 2ϱ
yield statistically significant assertions regarding µρ . Equations 7

and 8 give way to analogous assertions for Î (P).

Theorem 4.3 ([27]). Let ρ be a finite population of size n with

mean µρ and a variance σ 2ρ . When drawing an i.i.d. sample ϱ of size

m from ρ, the sample mean µϱ has an expected value of E(µϱ) = µρ

and a variance of σ 2µϱ =
σ 2

ρ
m

(n−m
n−1

)
.

Proof. See [27]. �

While the classic version of the Central Limit Theorem is not

formulated for finite populations, it has been proven that some

variations are applicable, and that µϱ is approximately normally

distributed [27]. In other words, drawing a sample of sizem with

a sample mean µ is as likely as drawing µ from N(µρ ,σµϱ) with

σµϱ =
√
σ 2µϱ . So we can estimate the probability that a sample

mean µϱ is off by more than a specified value ϵ > 0 by using

the cumulative distribution function Φ of the standard normal

distributionN(0, 1). This is illustrated in Figure 6 and is formally

described as

Pr[|µϱ − µρ | ≥ ϵ] = 2 · Φ

(
−ϵ

σµϱ

)
. (9)

77

Algorithm 4: NNSearch(p)

1 ix , iy ← index of p in Orderx , Ordery , respectively

2 ∆x+,∆x−,∆y+,∆y−, loops← 0

3 δmax ←∞

4 NN ← {}

5 while min(∆x−,∆x+) < δmax ∧min(∆y−,∆y+) < δmax

do
6 loops← loops + 1

7 if ∆x+ < δmax then
8 ∆x+ ← |xp − xData[Orderx [ix+loops]] |

9 UpdateNN(P[Orderx [ix + loops]])

10 if ∆x− < δmax then
11 ∆x− ← |xp − xData[Orderx [ix−loops]] |

12 UpdateNN(P[Orderx [ix − loops]])

13 if ∆y+ < δmax then
14 ∆y+ ← |yp − yData[Ordery [iy+loops]] |

15 UpdateNN(P[Ordery [iy + loops]])

16 if ∆y− < δmax then
17 ∆y− ← |yp − yData[Ordery [iy−loops]] |

18 UpdateNN(P[Ordery [iy − loops]])

19 return NN

function UpdateNN(q)
1 if ∥p − q∥∞ < δmax then
2 insert q into NN

3 if |NN| > k then
4 remove argmaxr ∈NN ∥r − p∥∞ from NN

5 if |NN| = k then
6 δmax ← maxr ∈NN ∥r − p∥∞

µρµρ-3σµ% µρ-2σµ% µρ-σµ% µρ+σµ% µρ+2σµ% µρ+3σµ%
0 1 2 3-1-2-3

µ%

p
(µ
%
)

µρ − ε
−ε
σµ%

µρ + ε
ε

σµ%

Figure 6: Illustration of the normal distributions
N(µρ ,σµϱ) (upper labels) and N(0, 1) (lower labels).

Alternatively, one can specify a tolerated error probability α
and obtain a confidence interval. Let Φ−1 be the inverse cumu-

lative distribution function of the standard normal distribution,

i.e., Φ(Φ−1(α)) = α . Then the mean of a sample deviates with

probability 1 − α by at most |Φ−1(α
2
)| · σµϱ from µρ . This is be-

cause both tails of the distributions have to be considered. More

formally, it is

Pr

[
µϱ −

���Φ−1 (α
2

)���σµϱ ≤ µρ ≤ µϱ + ���Φ−1 (α
2

)���σµϱ] ≈ 1 − α .

(10)

Lastly, there are two more considerations necessary to obtain

these statistical guarantees from IMIE. One is that the variance

σ 2ρ , which is used to determine σ 2µϱ in Theorem 4.3, is not known.

Using the approximation σ 2ρ ≈ σ 2ϱ
m(n−1)
(m−1)n yields the unbiased

approximation σ 2µϱ ≈
σ 2

ϱ (n−m)
(m−1)n , see [27]. The other point is the

multiple testing problem. The probabilities for errors only hold

for individual tests. But when performing multiple tests to obtain

a statistically significant result, the chance of an erroneous result

in one test is higher. For instance, this occurs when the response

to a statistically insignificant test result is to perform another test,

evaluating the result without considering the first, inconclusive

result. We illustrate this effect with an example.

Example 4.4. Consider an instance of IMIE that has performed

some iterations so far. We use the current mean and var to per-

form a statistical test whether Î (P) is above a threshold t . We

accept an error chance of 10%. Let us assume that the result of the

first test is not significant enough, i.e., the probability is less than

90% based on the current sample. We iterate our estimate a few

times and perform a second test, which achieves the desired prob-

ability of 90%. However, if Î (P) is below t , the likelihood that a

test reports false certainty based on an unlikely sample increases

with each sample. For two tests, the probability of obtaining false

certainty is then Pr [Î (P) < t] = 1 − (1 − 0.1)2 = 0.19.

To account for this problem, we use the correction due to

Šidák [29]: To obtain an overall error chance of α , the error

chance allowed for the c-th test is αtest = 1 − (1 − α)
1

c .

To summarize this section, we present the full formula for

the c-th statistical test whether Î (P) is greater than a threshold t ,
using variables from IMIE.

Pr[̂I (P) > t] ≈ 1 −
©«1 − Φ

©«
Offset −Mean − t√

Var·(|P |−m)
(m−1) |P |

ª®®¬
ª®®¬
c

(11)

Since we approximate σ 2ρ , this equation is not exact. On the

other hand, the Šidák-correction is very conservative in our case.

Namely, when iterating IMIE, the new sample is a superset of the

previous sample. This means that the tests based on these samples

are dependent, and that the effect of the multiple testing problem

is less pronounced. Ultimately, we do not have any formal result

to which degree these effects do cancel each other out. In all our

experiments in Section 6 however, the error rate never exceeds

the bounds established in this section.

5 TIME COMPLEXITY
Now we derive the time complexity of IMIE. First, we do so for

our nearest-neighbor search. We then use this result to derive the

complexity for initializing and iterating IMIE. Finally, we discuss

potential improvements for specific scenarios.

5.1 Nearest-Neighbor Search
We establish the time complexity of Algorithm 4. Each call of

UpdateNN(q) takes time inO(k) to compute the (arg)maxr ∈NN
∥r −p∥∞. Additionally, let I(p) be the number of loops performed

by NNSearch(p) before terminating. Then the time complexity

is inO(logn + I(p) · k). Namely, the only other step that is not an

elementary assignment is computing the indices of p in Orderx
andOrdery with binary search, inO(logn). However, I(p) is linear
in n for the worst case. Figure 7 shows such a degenerative case,

where all points except for p and q are equally distributed among

78

X

Y

p

q

Figure 7: A degenerative case for NNSearch.

the two grey areas. In this case, NNSearch(p) cannot discover
the nearest neighbor q via Orderx or Ordery with fewer than

n−2
2

loops. However, we prove the nontrivial bound

∑
p∈P I(p) ≤

(4 ·
√
n · k + 1) · n below.

To prove this bound, we first introduce some additional no-

tation and properties for the several executions of Algorithm 4.

For each point p ∈ P , let Vx (p) and Vy (p) be the set of positions
of Orderx and Ordery , respectively, accessed by NNSearch(p).

Additionally, let Pos
p
x be the position of Orderx containing the

reference to a point p, i.e., P[Orderx [Pos
p
x]] = p. The set of points

that access this position during NNSearch(q) is Rx (p) = {q ∈

P : Pos
p
x ∈ Vx (q)}. Pos

p
y and Ry (p) are defined analogously using

Ordery instead of Orderx . By definition, it is∑
p∈P
|Vx (p)| =

∑
p∈P
|Rx (p)|, (12)

as both count the total number of accesses of Orderx across all

searches.

Note that NNSearch(q) for points q ∈ Rx (p) often performs

several loops before accessing Pos
p
x . In particular, there are

only two points q+ and q− such that NNSearch(q+) and

NNSearch(q−) access Pos
p
x during their first loop. These two

points are the points corresponding to the neighboring positions

of Pos
p
x , i.e., q

+/q− = P[Orderx [Pos
p
x ± 1]]. More specifically, for

each c ∈ N0, there exist at most two points whose positions are

exactly c steps away. This is because Orderx is a linear order of a

finite set of elements. As a result, Rx (p) defines a lower bound
for

∑
q∈Rx (p) I(q). Formally, for each p ∈ P it is

2·

Rx (p)−1
2∑

i=1
i ≤ 0+0+1+1+· · ·+

⌊
Rx (p) − 1

2

⌋
≤

∑
q∈Rx (p)

I(q). (13)

Next, we also consider the properties ofVy (·) andRy (·). During
each loop of a search NNSearch(p), it is min(∆y−,∆y+) < δmax.

This means that NNSearch(p) accesses at least one new position

of Ordery in Line 14 or Line 17. It follows that

I(p) ≤ |Vy (p)| (14)

and with Equation 13, it is

2 ·

Rx (p)−1
2∑

i=1
i ≤

∑
q∈Rx (p)

|Vy (q)|. (15)

Now, we use the fact that NNSearch stops accessing new

positions in a certain direction when this direction cannot offer

a closer nearest neighbor. In the following lemma, we use this

pattern to limit the number of points p where NNSearch(p)
accesses certain positions of Orderx and Ordery . That is, for each

RULU

RDLD

xp X

Y

yq

(a)

xp

(a)
X

Y

yq

r0

r3

xp

(b)

r1
r2

X

Y rk

r0
yq

xp

(c)

r1
r2

Figure 8: Illustration of arrangements in Claim 5.1. (a) Par-
titioning ofR2 based on (xp ,yp). (b),(c) Two cases of layouts
of RU .

combination of a position of Orderx and Ordery , there is only a

small number of points whose nearest neighbor search accesses

both.

Lemma 5.1. For any two points p,q ∈ P , it is |Rx (p) ∩ Ry (q)| ≤
4 · k .

Proof. We consider a partitioning ofR2 into four axis-aligned
quadrants RU ,RD, LD and LU centered at (xp ,yq), as illustrated
in Figure 8a. To ensure that any point r ∈ P \ {p,q} is in exactly

one partition, equalities such as xr = xp andyr = yq are resolved

by their ordering in orderx and ordery , respectively. For the sake

of contradiction, suppose that there arek+1 points {r0, . . . , rk } =
RRU ⊆ Rx (p) ∩ Ry (q) in the area RU . We discern between two

cases regarding the arrangement of these points.

In the first case, it ismaxr ,s ∈RRU |xr −xs | ≥ maxr ,s ∈RRU |yr −
ys |. That is, the largest difference in x-values among points in

RU is at least as large as any difference in y-values among RU .

For all r in RRU , it is Pos
r
x > Pos

p
x . Without loss of generality,

let r0 be the point closest to p and rk the furthest from p in

Orderx , respectively. Formally, r0 = argminr ∈RRU Pos
r
x and rk =

argmaxr ∈RRU Pos
r
x . This implies that |xrk − xr0 | ≥ ∥rk − r ∥ for

all r ∈ RRU . As illustrated in Figure 8b, NNSearch(rk) accesses

Pos
r
x for all r ∈ RRU \ {rk } before accessing Pos

p
x . After accessing

Pos
r0
x and calling UpdateNN(r0), it holds for the variables in

NNSearch(rk) that δmax = ∆x−. The dashed line in Figure 8b

illustrates this. This means that NNSearch(rk) does not access
further positions of Orderx in this direction, and thus there is a

contradiction to rk ∈ Rx (p).

The second case,maxr ,s ∈RRU |xr −xs | < maxr ,s ∈RRU |yr −ys |,
is symmetric to the first one using Ordery instead of Orderx .

With r0 and rk being the closest and furthest point from q in Or-

dery , NNSearch(rk) also accesses all positions corresponding to

other points in RRU before Pos
q
y . Analogously, it is δmax = ∆y−

after calling UpdateNN(r0), as illustrated in Figure 8c. Thus

NNSearch(rk) does not access the position Pos
q
y , which contra-

dicts rk ∈ Ry (q).

As a result there are at most k points from Rx (p) ∩ Ry (q) in
RU . By symmetry, the same is true for RD, LD, LU . This yields

the lemma. �

Combining this lemma with other equations introduced in

this section yields the following limit for the total number of

iterations performed by all searches.

Lemma 5.2. For a set P ⊆ R2 of points, the total number of

iterations performed by NNSearch(p) for all p ∈ P is bounded as∑
p∈P I(p) ≤ (4 ·

√
n · k + 1) · n.

79

Proof. Following Lemma 5.1, each position of Ordery is ac-

cessed at most 4 · k times by searches accessing one specific

position of Orderx . More formally, with Equation 15, it is for

each p ∈ P

4 · k · n ≥
∑

q∈Rx (p)

|Vy (q)| ≥ 2 ·

Rx (p)−1
2∑

i=1
i

= 2 ·

Rx (p)−1
2
(
Rx (p)−1

2
+ 1)

2

≥

(
Rx (p) − 1

2

)
2

2

√
k · n ≥

Rx (p) − 1

2

4 ·
√
k · n ≥ Rx (p) − 1 (16)

Combining Equations 12, 14 and 16 yields∑
p∈P
I(p) ≤

∑
p∈P
|Vx (p)| =

∑
p∈P
|Rx (p)| ≤ (4 ·

√
k · n + 1) · n. (17)

�

Because k is a small constant, the time complexity of perform-

ing NNSearch for all points is in O(n ·
√
n). So the complexity

for each individual search is in amortized O(
√
n).

Theorem 5.3. NNSearch has an amortized time complexity of

O(
√
n).

5.2 Init and Iterate
We derive the time complexity for initializing and iterating IMIE.

In Init, most operations are assignments, of constant size

(Lines 2, 4) or of linear size (Lines 1, 3). The only exception

is sorting Orderx and Ordery , which is O(n logn). So the overall

runtime of Init isO(n logn). However, we show in the following

section that more efficient variants are possible for scenarios

encompassing more than one estimation task. Furthermore, our

experiments in Section 6 indicate that the actual runtime of Init

often is negligible in comparison to Iterate.

As for the runtime of Iterate, there are only two steps that

are not elementary assignments of constant size. One step is com-

puting the marginal countsMCx
k (p) andMC

y
k (p) (Line 6). It can

take place in O(logn), with binary searches on the sorted arrays

as follows. Let i be the smallest integer in {0, . . . , |P | − 1} with
xP [Orderx [i]] ≥ xp −δ

x
k (p). Similarly, let j be the largest integer in

{0, . . . , |P | − 1} with xP [Orderx [j]] ≤ xp + δ
x
k (p). Because Orderx

contains all points sorted by x-coordinate, it is MCx
k (p) = j − i .

The other marginal countMC
y
k (p) is available analogously, using

Ordery ,yp and δ
y
k (p) instead. The other step is the nearest neigh-

bor search (Line 4), which has an amortized time complexity of

O(
√
n) by Theorem 5.3. As a result, Iterate also has an amortized

time complexity ofO(
√
n). Since P and thus ρ contain n elements,

IMIE requires time in O(n
√
n) to reach the final estimate, the

one equal to the KSG estimate. This means that IMIE is only

slightly slower in reaching the final result than the lower bound

O(n logn) for algorithms without preliminary results [32].

5.3 Scenario-specific Improvements
The initialization procedure presented in Section 4 explains the

core concept and properties. Init has been described in a way

that is always applicable. However, in many scenarios a user has

more than one estimation task based on the same or similar data.

Think of estimating the MI for overlapping attribute pairs when

searching for strongly dependent attributes. In such a case, it

may not be necessary for each instance of IMIE to sort the arrays

from scratch, which is the primary computational burden of Init.

In this section we present the improvements possible for IMIE

in scenarios with high-dimensional data as in Scenario 1 and

with streaming data as in Scenario 2. We consider benefits over

both the naïve initialization of IMIE as well as the non-iterative

estimation.

High Dimensional Data. The number of attribute pairs grows

quadratically with the number of attributes. If the data has d

attributes, the number of pairs is
d ·(d−1)

2
. We now consider using

one instance of IMIE for each pair to obtain the pairwise MI

estimates. A naïve initialization of these instances would require

time in O(d2 · n logn). However, we only need to sort the points

once per attribute to use the respective sorted arrays for several

attribute pairs. This reduces the time complexity for initialization

to O(d · n logn).
Non-iterative estimators for the KSG use two-dimensional

space-partitioning trees [19, 31, 32]. This means that each at-

tribute pair requires a different tree, which prohibits a similar

improvement. In addition, non-iterative estimators must commit

the computation time beforehand. IMIE in contrast can budget

computation time between different pairs of attributes, depending

on which pairs a user finds interesting, based on the preliminary

estimates.

Data streams. With data streams, new data is arriving contin-

uously, and computation time is limited. We consider estimating

the current MI using all points whenever new data arrives. This

means that most data points remain unchanged. When maintain-

ing up-to-date MI estimates, IMIE can reuse the instance of Data

Structure 1 used for the previous estimate instead of another ini-

tialization. Considering Data Structure 1, only the adjustment of

Orderx , Ordery and OrderR does not incur constant costs when

a new data point arrives. Adjusting Orderx and Ordery to ac-

commodate new data can take place in O(logn).1 Since OrderR
is shuffled randomly during the estimation, IMIE can also start

off with a (partially) shuffled order and only needs the addition

of new indices for new data items. This means that initialization

of a new estimator on a data stream can take place in O(logn)
instead of O(n logn).

Additionally, if the delays between items from the data streams

are irregular in length, IMIE automatically offers the best estimate

for the time available. Previous work regarding efficient, non-

iterative MI estimation on streams [4, 14, 32] imposes a fixed

computation time, and there is no easy adjustment if items arrive

faster.

Takeaway. While the time complexity of Init may appear

prohibitively large in the previous section, we have demonstrated

in this section that concrete settings can allow for more efficient

solutions. Note that the improvements described are not mutually

exclusive. This means that both improvements can be combined

when dealing with high-dimensional data in the form of streams.

Table 1 summarizes the impact of these techniques on the ini-

tialization of IMIE for pairwise MI estimation between d data

streams.

1
From a technical perspective, this time complexity requires Orderx and Ordery to

be implemented as binary search trees. For simplicity we keep calling them sorted

arrays.

80

Optimization Time Complexity

Naïve application O(d2 · n logn)
Reuse previous data structure O(d2 · logn)
Reuse sorted dimensions O(d · n logn)
Both O(d · logn)

Table 1: Impact of optimization techniques for initializing
IMIE for pairwise MI of d data streams.

6 EXPERIMENTS
In this section we investigate the performance of IMIE in terms

of runtime and estimation quality. We also perform experiments

to test the potential benefits from the statistical guarantees and

the anytime property of IMIE.

As reference for the performance of IMIE we use the KSG (see

Equation 5), because it offers high-quality estimations, and it is

the basis of IMIE. To ensure competitive runtime of the KSG we

use KD-Trees for its nearest-neighbor search, resulting in the

optimal computation complexity ofO(n logn) [32]. As a reference
point for faster estimates with lower estimation quality, we use

the KSG on subsamples of the data. Since the number of points

subsampled can be expressed as a percentile of all points or as

an absolute number, we introduce a notation for both. Using a

random sample of p% from all data points to compute the KSG is

denoted as KSG%p. Subsampling exactly q points at random from

all data points to compute the KSG on this subsample is denoted

as KSG@q.

Setup. All approaches and experiments are implemented in

C++ and compiled using the Microsoft
®
C/C++ Optimizing Com-

piler Version 19.00. We use the non-commercial ALGLIB
2
im-

plementation of KD-Trees for the KSG. We also use the non-

commercial ALGLIB
2
implementation of the cumulative density

function of the standard normal distribution Φ and its inverse

Φ−1 when computing our statistical guarantees. All experiments

are conducted on Windows 10 using a single core of an Intel
®

Core™ i5-6300U processor clocked at 2.4 GHz and 20GB RAM.

6.1 Data
In our experiments we use both synthetic and real-world data. As

synthetic data, we use dependent distributions with noise used

to compare MI estimators, see [15], uniform distributions used

to compare MI with the maximal coefficient, see [16], as well as

independent uniform and normal distributions. As real data, we

use smart meter readings from an industrial plant (HIPE) [3],

recorded smart phone sensors to recognize human activities

(HAR) [7], and physical quantities for condition monitoring of

hydraulic systems (HYDRAULIC) [12]. As proposed by the inven-

tors of the KSG [19], we prevent duplicate points in real-world

data by adding noise with minimal intensity. Beginning with

real-world data, we now briefly describe the data specifics.

HIPE. This data set, available online
3
, contains high-resolution

smart meter data from 10 production machines over 3 months.

This data has over 2000 attributes total and over 1.5 million data

points. We consider a reduced data set containing the first 1000

data points of themachines “PickAndPlaceUNIT”, “ScreenPrinter”

and “VacuumPump2” with a grand total of 333 attributes.

2
ALGLIB (www.alglib.net)

3
https://www.energystatusdata.kit.edu/hipe.php

10

1
E

X

Y

10

1
F

X

Y

10

1
G

X

Y

10

1
A

X

Y

10

1
B

X

Y

10

1
C

X

Y

10

1
D

X

Y

Figure 9: An overview of the uniform distributions used.

HAR. This data set, available at the UCI ML repository
4
, fea-

tures accelerometer and gyroscope sensor readings from smart-

phones to classify the activity of the human carrying the phone.

The data set contains 561 attributes and a total of 5744 data points.

HYDRAULIC. This data set, available at the UCI ML reposi-

tory
5
, features recordings of several physical quantities such as

temperature, vibrations and efficiency factors at different sam-

pling rates. For our experiments we use all quantities with a

sampling rate of 10 Hz. As a result, each of the 2205 data points

has 480 attributes.

For synthetic data, we use the following distributions with

known MI values [16, 23]. For distributions with a noise parame-

ter σr , we vary σr between 0.1 and 1.0.

Linear To construct the point pi ∈ P , we draw the value

xi from the normal distribution N (0, 1). Additionally, we
draw some noise ri from the normal distribution N (0,σr),
where σr is the noise parameter of the distribution. This

yields the point pi = (xi , xi + ri).
Quadratic This distribution is generated analogously to the

linear distribution, except that the point ispi = (xi , x
2

i +ri).
Periodic For each point pi ∈ P , we draw the value xi from

the uniform distributionU [−π , π]. Additionally, we draw
some noise ri from the normal distributionN (0,σr), where
σr is the noise parameter. This yields the point pi =
(xi , sin(xi) + ri).

Uniform The uniform distributions A to G we use are illus-

trated in Figure 9. Note that the striped areas contain twice

as many points as the dotted areas. For these distributions,

each striped area with size 0.25 · 0.25 contains 25% of all

points, while dotted areas of the same size contain 12.5%

of all points.

Independent Lastly, we use the distributionsUInd andNInd,

where each point consists of two values drawn indepen-

dently fromU [0, 1] and N (0, 1), respectively.

6.2 Synthetic Benchmarks
We first evaluate the concrete runtimes of IMIE. While we have

established in Section 5 that the time complexity is competitive,

actual runtimes may have constant factors that time complexity

does not capture.We also look at the estimation quality offered by

IMIE after a variable number of iterations. Since the true MI value

of real data is unknown, we perform these experiments using

4
http://archive.ics.uci.edu/ml/datasets/Smartphone+Dataset+for+Human+

Activity+Recognition+(HAR)+in+Ambient+Assisted+Living+(AAL)

5
http://archive.ics.uci.edu/ml/datasets/Condition+monitoring+of+hydraulic+

systems

81

 0.001

 0.01

 0.1

 1

 10

 100

 100 1000 10000

T
im

e
[m

s]

Data Size

IMIE Iterate 0%
IMIE Iterate 5%

IMIE Iterate 20%
IMIE Iterate 100%

KSG%5
KSG%25

KSG%100

Figure 10: Average runtime depending on the data size for
IMIE and subsampling variants.

synthetic data. Each synthetic data set corresponds to one pair

of attributes, for which we produce samples of varying sizes. For

each pair, sample size and estimator, we perform 100 estimates

and average the runtime and mean absolute error (MAE).

Figure 10 shows the average runtime of IMIE with various

numbers of iterations and the KSG with various subsampling set-

tings. Note that the concrete performance of IMIE when iterating

until convergence and KSG%100 is very similar. This means that

computing the exact KSG in the conventional way with a KD-tree

and without preliminary results is not faster than using IMIE.

Another point to observe is the difference in runtime between

IMIE with only the initialization and IMIE that has performed

some iterations. Even with only 5% of the iterations, IMIE already

consumes more than double the time used for initialization. This

shows that the time used for iterations quickly dominates the

time required for initialization, even though Init has a high time

complexity.

Figure 11 graphs the MAE of subsampling and IMIE depending

on the runtime. The plot shows curves per estimator correspond-

ing to a specific sample size, and the time is measured relative to

the runtime of the naive KSG estimation for this size. Each point

corresponds to the average runtime and absolute error of 100 esti-

mations with the same number of iterations or subsampling size,

respectively. In other words, the leftmost point corresponds to

subsampling 5% or iterating 5% respectively, while the rightmost

point uses all points or iterates until convergence, respectively.

The result is that IMIE and KSG with subsampling offer the same

time-quality-tradeoff for data of size 1000, with IMIE being some-

what faster for smaller data and somewhat slower for larger data.

However, this assumes “optimal” subsampling, in the sense that

it is known beforehand which subsampling size is desired. In

cases where it is not clear how much time is available or how

much time an estimate for a given subsample size takes, this is

not given. The time spent finding a good subsampling size is

discussed in Section 6.4.

6.3 Statistical Quality Indicators
Next, we investigate the practical relevance of the statistical

guarantees. The scenario considered is high-dimensional data. A

common information need for high-dimensional data is finding

highly dependent attributes. In our experiments we want to know

for each of the
d ·(d−1)

2
pairs of attributes whether it is above or

below a threshold τ . For IMIE we keep iterating the estimate

and perform the test from Equation 11. To be precise, one test is

performed for I (P) > τ , and one test is performed for I (P) < τ . To

 0.01

 0.1

 1

 0 20 40 60 80 100 120 140 160

M
ea

n
 a

b
so

lu
te

 E
rr

or

RunTime relative to KSG [%]

IMIE (n=100)
Subsampling (n=100)

KSG (n=100)
IMIE (n=1000)

Subsampling (n=1000)
KSG (n=1000)

IMIE (n=10000)
Subsampling (n=10000)

KSG (n=10000)

Figure 11: MAE of IMIE and subsampling depending on
the runtime relative to KSG for the same data.

reduce the necessary Šidák-correction for our significance level

αtest we perform these two tests only every 10 iterations. We start

with a minimum sample size of 30 to reduce effects of minimal

sample sizes. The exact choice of initial iterations and iterations

between tests is arbitrary as long as they are not extreme, e.g.,

performing statistical tests with sample size one or iterating

|P |
4

times between tests. Regarding the target significance level,

we test different values α ∈ {0.1, 0.05, 0.01, 0}. We use fixed

percentile subsamples for comparison, i.e., KSG%5, KSG%25 and

KSG%50.

Figure 12 shows the results for the three real-world data sets

with τ varying between 0 and 1. The figure contains two plots

per data set. The “Error Rate” shows the number of pairs falsely

classified over or under τ as a relative count of all pairs (left axis)

and as absolute count (right axis). The “Run Time” shows the

total execution time relative to the "naïve" estimation using the

KSG (left axis) and as absolute time (right axis). The behavior

depending on τ is different per data set. This is because the

dependencies in the data are distributed differently. The closer

τ is to the actual MI value, the easier it is for an approximate

result to be above the threshold while the actual value is below,

or vice versa. So it is harder to obtain statistical certainty that

the actual value is above or below. To illustrate, the attributes

in HIPE are largely independent. This yields MI values close to

zero, resulting in high error rates for subsampling approaches

and longer execution times for IMIE. Conversely, the attributes

of HYDRAULIC are highly dependent. This in turn increases

error rates and computation times, for subsampling and IMIE

respectively, for higher threshold values.

Nevertheless, there are several common patterns. One is that

IMIE does offer better time-quality-tradeoffs than subsampling.

I.e., for each subsampling rate there is an α such that IMIE yields

fewer errors using less time. A second pattern is that IMIE does

adapt to “tough threshold values” by increasing the computation

time used. Subsampling in turn makes more false claims. A third

interesting pattern is that IMIE with α = 0 is almost always faster

than the naïve KSG estimation. IMIE can speed up such queries

significantly with essentially no risk of error.
6

6.4 Anytime Experiments
Now we test the performance of IMIE as anytime algorithm. In

other words, the available time is not known beforehand. To

6
Technically there could still be errors due to rounding, numerical evaluation of

Φ−1 and the approximation in Section 4.3. However, no such error has occurred in

any of our experiments.

82

 0

 2

 4

 6

 8

 10

 0
 2500
 5000
 7500
 10000
 12500

E
rr

or
s

[%
]

E
rr

or
s

ab
so

lu
te

HAR Error Rate

 0

 20

 40

 60

 80

 100

 0
 600
 1200
 1800
 2400
 3000

T
im

e
[%

]

T
im

e
[s

]

HAR Run Time

 0

 2

 4

 6

 8

 10

 0

 2000

 4000

 6000

 8000

 10000

E
rr

or
s

[%
]

E
rr

or
s

ab
so

lu
teHYDRAULIC Error Rate

 0

 20

 40

 60

 80

 100

 0

 150

 300

 450

 600

 750

T
im

e
[%

]

T
im

e
[s

]

HYDRAULIC Run Time

 0

 2

 4

 6

 8

 10

 0

 1000

 2000

 3000

 4000

 5000

E
rr

or
s

[%
]

E
rr

or
s

ab
so

lu
teHIPE Error Rate

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1
 0
 20
 40
 60
 80
 100
 120
 140

T
im

e
[%

]

T
im

e
[s

]

Query Threshold [nat]

HIPE Run Time

IMIE α = 0.1
IMIE α = 0.05
IMIE α = 0.01

IMIE α = 0

KSG%5
KSG%25
KSG%50

Figure 12: Time and error rate of IMIE and subsampling
variants, depending on the chosen threshold τ .

mimic the behaviour of IMIE to improve the estimate with addi-

tional time, we also examine two strategies based on subsampling.

KSGLin consecutively computes KSG%10, KSG%20, . . . , KSG%100

as long as time is available. We also consider KSGExp, which com-

putes KSG@10, KSG@20, KSG@40, KSG@80, etc. until no time is

left.

For this experiment we randomly select 100 pairs of attributes

from each real-world data set and estimate MI using IMIE, KSGLin

and KSGExp. After some time the estimate is interrupted, and the

most recent result is used. Since IMIE and subsampling appear

most comparable in our synthetic benchmarks for data size n =
1000, we use the first 1000 data points of each attribute pair. Given

the small scale of time per estimate (cf. Figure 10), we use 1000

estimators in parallel for each pair. One “iteration” then performs

the next computation sequentially for each of these estimators.

Figure 13 shows the mean absolute error compared to a KSG

estimate using 1000 points as well as the mean standard devi-

ation of estimates for the same attribute pair. Additionally, for

each estimate from IMIE we use the statistical quality indicator

to determine the distance ϵ . Additionally, the plot displays the
average value ϵ such that our preliminary estimate is wrong

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

In
fo

rm
at

io
n
 [

n
at

]

Time Per Estimate [ms]

IMIE MAE
IMIE MSD

IMIE ε
KSGLin MAE
KSGLin MSD
KSGExp MAE
KSGExp MSD

Figure 13: Mean absolute error (MAE) and mean standard
deviation (MSD) of anytime approaches as well as the
mean ϵ of IMIE.

by at most ϵ with a confidence of 95%. This value is obtained

for each estimate using Equation 10. Note that KSGLin does not

consistently produce estimates with time less than 0.3 ms per

estimate, and IMIE does not consistently finish the first iteration

in 0.1 ms.

A result of this experiment is that IMIE has smaller errors

on average than the subsampling approaches, even though they

are comparable in Figure 11. This is because the subsampling

strategies are not efficient for iterative estimation. Estimates

from previous iterations are discarded without further benefit,

and iteration steps are less granular. This means that only a

part of the overall time available is spent on the estimate that is

ultimately presented.

6.5 Discussion
To summarize this section, IMIE offers a time-quality tradeoff

similar to the one when estimating the KSGwith varying subsam-

pling settings. The time necessary for IMIE to converge towards

the KSG result is slightly lower for small data and slightly higher

for larger data, compared to the naive KSG estimation. But IMIE

also offers preliminary results and achieves this time-quality

tradeoff even if the time available is not known beforehand. This

means that IMIE offers significant benefits for tasks that use

these features, such as threshold queries or irregular data-stream

processing, without notable drawbacks for regular tasks.

7 CONCLUSIONS
In this work, we have studied the iterative estimation of Mutual

Information (MI). The goal has been to provide an estimator that

offers a first estimate quickly and improves the estimation with

additional time. It should also use the available time efficiently,

even if the time available is not known beforehand. To this end,

we have proposed IMIE.

By design, IMIE converges towards the same result as the pop-

ular MI estimator (KSG) by Kraskov et al. [19] after sufficiently

many iterations. Before convergence, the preliminary results of

IMIE also offer helpful statistical quality indicators which one

can use to infer information regarding the final estimate, i.e., the

KSG result. This can take the form of confidence intervals or the

probability of surpassing a certain threshold. In addition to these

formal results on estimation quality, we also have studied the

time complexity of IMIE both in general and when tailored to-

wards specific use cases. One result is that this complexity when

computing the exact KSG estimate is only slightly larger than an

83

optimal implementation to compute the KSG that does not offer

any preliminary result.

Using extensive experiments, we have evaluated the practical

performance of IMIE in terms of concrete runtimes and quality

on real data. Among other results, IMIE remains competitive with

its estimation quality per time, even when being compared to

approaches without preliminary results. The experiments also

demonstrate a significant runtime improvement when searching

for attribute pairs with high MI in high-dimensional data.

ACKNOWLEDGMENTS
This work was partially supported by the DFG Research Training

Group 2153: “Energy Status Data − Informatics Methods for its

Collection, Analysis and Exploitation”.

REFERENCES
[1] Periklis Andritsos, Renée J Miller, and Panayiotis Tsaparas. 2004. Information-

theoretic tools for mining database structure from large data sets. In Proceed-

ings of the 2004 ACM SIGMOD international conference on Management of data.

731–742.

[2] Ira Assent, Philipp Kranen, Corinna Baldauf, and Thomas Seidl. 2012. Anyout:

Anytime outlier detection on streaming data. In International Conference on

Database Systems for Advanced Applications. 228–242.

[3] Simon Bischof, Holger Trittenbach, Michael Vollmer, Dominik Werle, Thomas

Blank, and Klemens Böhm. 2018. HIPE – an Energy-Status-Data Set from

Industrial Production. In Proceedings of ACM e-Energy (e-Energy 2018). 599–

603.

[4] Jonathan Boidol and Andreas Hapfelmeier. 2017. Fast mutual information

computation for dependency-monitoring on data streams. In Proceedings of

the Symposium on Applied Computing. 830–835.

[5] Lei Cao and Elke A Rundensteiner. 2013. High performance stream query

processing with correlation-aware partitioning. Proceedings of the VLDB

Endowment 7, 4 (2013), 265–276.

[6] Thomas M. Cover and Joy A. Thomas. 2006. Elements of information theory (2.

ed.). 243–256 pages.

[7] Dua Dheeru and Efi Karra Taniskidou. 2017. UCIMachine Learning Repository.

http://archive.ics.uci.edu/ml

[8] Richard Durstenfeld. 1964. Algorithm 235: Random Permutation. Commun.

ACM 7, 7 (1964), 420.

[9] Weihao Gao, Sewoong Oh, and Pramod Viswanath. 2017. Demystifying fixed

k-nearest neighbor information estimators. In IEEE International Symposium

on Information Theory (ISIT). 1267–1271.

[10] Lukasz Golab, Howard Karloff, Flip Korn, Divesh Srivastava, and Bei Yu. 2008.

On generating near-optimal tableaux for conditional functional dependencies.

Proceedings of the VLDB Endowment 1, 1 (2008), 376–390.

[11] Eric A Hansen and Shlomo Zilberstein. 2001. Monitoring and control of

anytime algorithms: A dynamic programming approach. Artificial Intelligence

126, 1-2 (2001), 139–157.

[12] Nikolai Helwig, Eliseo Pignanelli, and Andreas Schütze. 2015. Condition

monitoring of a complex hydraulic system using multivariate statistics. In

Instrumentation and Measurement Technology Conference (I2MTC). 210–215.

[13] Ihab F Ilyas, Volker Markl, Peter Haas, Paul Brown, and Ashraf Aboulnaga.

2004. CORDS: automatic discovery of correlations and soft functional depen-

dencies. In Proceedings of the 2004 ACM SIGMOD international conference on

Management of data. 647–658.

[14] Fabian Keller, Emmanuel Müller, and Klemens Böhm. 2015. Estimating mutual

information on data streams. In Proceedings of the 27th International Conference

on Scientific and Statistical Database Management (SSDBM’15).

[15] Shiraj Khan, Sharba Bandyopadhyay, Auroop R. Ganguly, Sunil Saigal, David J.

Erickson, Vladimir Protopopescu, and George Ostrouchov. 2007. Relative

performance of mutual information estimation methods for quantifying the

dependence among short and noisy data. Phys. Rev. E 76, 2 (2007), 026209.

[16] Justin B Kinney and Gurinder S Atwal. 2014. Equitability, mutual information,

and the maximal information coefficient. Proceedings of the National Academy

of Sciences 111, 9 (2014), 3354–3359.

[17] LF Kozachenko and Nikolai N Leonenko. 1987. Sample estimate of the entropy

of a random vector. Problemy Peredachi Informatsii 23, 2 (1987), 9–16.

[18] Philipp Kranen and Thomas Seidl. 2009. Harnessing the strengths of anytime

algorithms for constant data streams. Data Mining and Knowledge Discovery

19, 2 (2009), 245–260.

[19] Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. 2004. Estimating

mutual information. Phys. Rev. E 69, 6 (2004), 066138.

[20] Sebastian Kruse and Felix Naumann. 2018. Efficient discovery of approximate

dependencies. Proceedings of the VLDB Endowment 11, 7 (2018), 759–772.

[21] Don O Loftsgaarden and Charles P Quesenberry. 1965. A nonparametric

estimate of a multivariate density function. The Annals of Mathematical

Statistics (1965), 1049–1051.

[22] Son T Mai, Xiao He, Jing Feng, Claudia Plant, and Christian Böhm. 2015.

Anytime density-based clustering of complex data. Knowledge and Information

Systems 45, 2 (2015), 319–355.

[23] Angeliki Papana and Dimitris Kugiumtzis. 2009. Evaluation of mutual infor-

mation estimators for time series. International Journal of Bifurcation and

Chaos 19, 12 (2009), 4197–4215.

[24] Hanchuan Peng, Fuhui Long, and Chris Ding. 2005. Feature selection based

on mutual information criteria of max-dependency, max-relevance, and min-

redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence

27, 8 (2005), 1226–1238.

[25] Josien PW Pluim, JB Antoine Maintz, and Max A Viergever. 2003. Mutual-

information-based registration of medical images: a survey. IEEE Transactions

on Medical Imaging 22, 8 (2003), 986–1004.

[26] Peng Qiu, Andrew J Gentles, and Sylvia K Plevritis. 2009. Fast calculation

of pairwise mutual information for gene regulatory network reconstruction.

Computer methods and programs in biomedicine 94, 2 (2009), 177–180.

[27] John Rice. 2006. Mathematical statistics and data analysis. Nelson Education,

Chapter Survey Sampling, 199–220.

[28] Claude Elwood Shannon. 1948. A mathematical theory of communication.

The Bell System Technical Journal 27 (1948), 379–423, 623–656.

[29] Zbyněk Šidák. 1967. Rectangular confidence regions for the means of multi-

variate normal distributions. J. Amer. Statist. Assoc. 62, 318 (1967), 626–633.

[30] Jaroslaw Szlichta, Parke Godfrey, and Jarek Gryz. 2012. Fundamentals of order

dependencies. Proceedings of the VLDB Endowment 5, 11 (2012), 1220–1231.

[31] Martin Vejmelka and Kateřina Hlaváčková-Schindler. 2007. Mutual informa-

tion estimation in higher dimensions: A speed-up of a k-nearest neighbor

based estimator. In International Conference on Adaptive and Natural Comput-

ing Algorithms (ICANNGA’07). 790–797.

[32] Michael Vollmer, Ignaz Rutter, and Klemens Böhm. 2018. On Complexity and

Efficiency of Mutual Information Estimation on Static and Dynamic Data. In

International Conference on Extending Database Technology (EDBT ’18). 49–60.

[33] Janett Walters-Williams and Yan Li. 2009. Estimation of mutual information:

A survey. In International Conference on Rough Sets and Knowledge Technology

(RSKT’08). 389–396.

[34] BP Welford. 1962. Note on a method for calculating corrected sums of squares

and products. Technometrics 4, 3 (1962), 419–420.

[35] Ying Yang, GeoffWebb, Kevin Korb, and KaiMing Ting. 2007. Classifying under

computational resource constraints: anytime classification using probabilistic

estimators. Machine Learning 69, 1 (2007), 35–53.

[36] Shlomo Zilberstein. 1996. Using anytime algorithms in intelligent systems.

AI magazine 17, 3 (1996), 73–83.

84

	Iterative Estimation of Mutual Information with Error BoundsMichael Vollmer, Klemens Böhm

