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ABSTRACT
Battery systems can reduce the peak electrical consumption through
proper charging and discharging strategies. To this end, consumers
often rely on historic consumption data to select a cost-efficient
battery system. However, historic data is an imperfect mapping of
the real consumption, because of a coarse sampling rate or measure-
ment inaccuracies. This can result in non-optimal decisions, e.g., by
underestimating the battery capacity required. In this article, we
analyze how aggregation affects a state-of-the-art battery sizing
algorithm for an industrial production site. We then use machine
learning on a short period of high-resolution data to correct this
error from historic data. Our experiments indicate that machine
learning models can correct this error in some cases. However,
adding a safety margin obtained from historic data to the battery
size is a more reliable way of reducing the error.

CCS CONCEPTS
• Information systems→ Data compression; • Applied com-
puting→ Electronics; • Hardware→ Batteries; Power estimation
and optimization.
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1 INTRODUCTION
Battery systems enable shifting times when energy is sourced from
the grid [7–9]. While there often are alternatives such as load shift-
ing which do not require a battery system, this requires demand
side flexibility. Such flexibility does not always exist [2].

Selecting a good configuration of a battery system is difficult.
It involves selecting the physical and chemical make-up and the
charging strategy [1]. When consumption does not change much
over time, one can rely on historic data to this end [6].

However, historic data is an imperfect representation of the
real consumption and subject to disturbances. Also, data often
is aggregated to minimize storage and computing infrastructure
requirements, resulting in loss of information for analyses [10]. So
deciding on a battery configuration based on historic data can be
non-optimal and cost inefficient. For example, when using batteries
to reduce peak consumption, aggregated historic data may suggest
battery sizes smaller than needed. This in turn is costly since large
consumers often are billed based on peak consumption. Therefore,
to make good investment decisions it is important for a system
planner to get information (a) on the expected error of the battery
sizing results, and (b) on the impact of using better measurement
infrastructure or more fine-grained measurements.

Example 1. Think of a plant manager who thinks about installing
a battery system to reduce peak consumption. Suppose that there
already is a large data set of historic consumption data available,
collected at 15 minute resolution. The manager intends to use this
data to decide on the size of the new battery. She also has the option
to install a high-resolution measurement device to collect additional
data for a certain period of time. However, it is unclear whether this
additional data is useful to improve the investment decision.

This scenario gives way to the following questions.Q1: How does
data aggregation affect solutions of battery sizing optimization?
Q2: Is it possible to estimate this effect from a short period of fine-
grained measurements?

Contributions. In this article, we study these questions based on
smart-meter measurements from an industrial production site [3].
We make two specific contributions. C1: We formulate an optimiza-
tion problem for battery-based peak shaving, to optimize battery
sizes for consumption time series and target maximum peak loads.
Based on it, we analyze the influence of aggregation intervals and
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Figure 1: Example application of a 30kWh battery for
battery-pased peak shaving on a one day load profile.

aggregation types and of the target maximum peak consumption
on the optimal battery size. C2a: We propose using a short period
of high-resolution measurements as training data to predict the
errors on battery sizing based on aggregated, historic data.1 C2b:
We apply machine learning to correct non-optimal battery sizes.

Results. A core takeaway from our article is that common aggre-
gation levels of 15 min or more affect the battery sizing significantly.
Lower aggregation levels help in making better sizing decisions.
Particularly, aggregation leads to underestimated battery sizes. A
second takeaway is that machine learning models trained on a short
period of high-resolution data do not significantly reduce this error
in our experiments. We conclude that adding a safety margin to the
battery size obtained from historic data is a more reliable way of
reducing the error for this use case.

2 BATTERY-BASED PEAK SHAVING
In this section, we introduce peak shaving with minimal battery size
as an optimization problem. The idea is to find a minimum battery
size so that the consumption from the grid does not exceed a given
threshold over a selected time horizon. To illustrate, Figure 1 shows
a daily load profile that is shaved to the target maximum peak of
30 kW using a battery of 30 kWh. Here, the battery is recharged at
the end of the day. Since there often is no energy consumption at
night, one can optimize the battery size for each day individually
and take the maximum over all days as the final size. For our use
case, effects that are only visible for measurement frequencies above
1 Hz are not relevant. Therefore, we consider measurements spaced
at a few seconds. Higher frequencies would for example be useful
for systems for real-time charging decisions.

In a nutshell, peak shaving depends on two factors. On the one
hand, the consumption determines the potential for peak shaving.
Naturally, a flat consumption profile has less potential than one
with a steep, short peak in the middle of the day. In our case, the
profiles are given as a history of smart-meter measurements. On the
other hand, feasibility depends on the battery system configuration,
i.e., the maximum capacity, the maximum power, the efficiency, and
the strategy for charging and discharging. We formalize this as the
optimization problem MinBat, see Figure 2. It builds upon a Linear

1Our implementation and data is publicly available at https://github.com/
energystatusdata/aggregation-peak-shaving

Program that has been proposed to minimize the cost of PV and
storage installations [6].

MinBat: minimize
Pc ,Pd

C

subject to b(1) = C, (a)
b(T ) = C, (b)
b(t) ≤ C, t = 1, . . . ,T (c)
b(t) = b(t − 1) (d)

+ Pc (t − 1) · η · ∆t

− Pd (t − 1) · (1/η) · ∆t , t = 2, . . . ,T
Pc (T ) = 0, (e)
Pd (T ) = 0, (f)
Pc (t) · η · ∆t ≤ C − b(t), t = 1, . . . ,T (g)
Pd (t) · (1/η) · ∆t ≤ b(t), t = 1, . . . ,T (h)

Pc (t) ≤ max(L̂ − L(t), 0) · η, t = 1, . . . ,T (i)

Pd (t) = max(L(t) − L̂, 0). t = 1, . . . ,T (j)

Figure 2: Linear program to minimize battery capacity C.

Objective. The objective is to minimize battery capacity C by
deciding on how much to charge (Pc (t)) or discharge power (Pd (t))
between t and t + 1. This is, Pc (t) · ∆t and Pd (t) · ∆t is the energy
the battery is charged or discharged with.

Parameters. The optimization problem is parametrized by the
consumption L(t) (in kW), the target maximum peak L̂, the time
between consumption measurements ∆t , and the maximum time
step T . The battery efficiency η accounts for losses when charging
and discharging the battery.

Constraints. The state of charge of the battery b(t) (in kWh) is
full at the beginning of the time series (a) and at the end of the time
series (b). The charge of the battery is restricted by its capacity C
(c). The battery charge increases (decreases) during each time step
of length ∆t by the charging (discharging) power, multiplied with
∆t (d). At T , the battery is neither charged nor discharged (e and f).
The maximum charge and discharge of the battery depend on its
state of charge (g and h). Charging the battery must not exceed L̂
(i). The battery compensates loads that surpass L̂ (j).

Assumptions. In our optimization, we make two assumptions.
First, we choose a fixed battery efficiency η. The round-trip effi-
ciency ηbatt of lithium-ion batteries is between 95 % and 98 % [5].
With equal losses during charging and discharging, η = √

ηbatt is
between 97 % and 99 %. In the following, we assume η = 97 %. Sec-
ond, we do not consider the maximum charging and discharging
power. The maximum power provided by a lithium-ion battery de-
pends on its specific type, the length of the discharge pulse, the cell
temperature, and the age. In our use case, the maximum discharge
required is 55 kW, which most modern high-power cells achieve.
Thus, we do not consider the maximum power in the constraints.

Aggregation. To study the effect of data aggregation, we aggre-
gate the consumption measurements L(t) over time. We use aggre-
gation over non-overlapping windows of length ∆t . We consider

https://github.com/energystatusdata/aggregation-peak-shaving
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Figure 3: The error for different aggregation intervals for a
target maximum peak of 40kW.

two types of aggregation. The first one is averaging, i.e., taking the
average value over each time window. The second one is zero-order
hold (ZOH) sampling. For each window, we take the first value.
We call ∆t , i.e., the number of seconds per window, an aggregation
interval. For a day worth of measurements, ∆t = 1 h results in 24
aggregated values, and ∆t = 1 min in 24 · 60 = 1440 values.

3 EXPERIMENTS
Our experiment consists of two parts. First, we evaluate the effects
of aggregation on the result of battery size optimization. Secondly,
we use data mining to correct the battery size obtained from aggre-
gated data based on a few days of fine-granular measurements.

3.1 Setup
In our experiments, we use high-resolution consumption data from
a manufacturing site for electronic components [3] as a ground
truth. In particular, we use data from the main terminal, i.e., the
overall consumption of the site. The data set contains 281 days with
a varying measurement resolution of a few seconds. The overall
peak load is 93.41 kW.

We space the measurements equally to 5 s with linear interpola-
tion. The aggregation intervals in our experiments are ∆t ∈ {10 s,
30 s, 1 min, 5 min, 15 min, 30 min, 60 min}. We look at different peak
shaving targets L̂ ∈ {38 kW, 40 kW, 42 kW, 45 kW, 50 kW}. With a
target maximum peak L̂ < 38 kW the battery cannot be recharged
by the end of the day in some cases. This results in non-feasible
optimization problems.

3.2 Effects of Aggregation
We determine the ground truth battery size C∗ for a single day
from the 5 s interpolated time series. The battery size based on
aggregated data is C̄∗. The error is R = C̄∗ − C∗. Figure 3 shows
the error for different aggregation intervals for a target maximum
peak of 40 kWwith amaximum capacityC∗

max = 94.55 kWh over all
days.We observe small errors, i.e., less than 10 kWh, for aggregation
intervals of up to 1 min. The error grows with aggregation intervals
beyond 15 min up to around 25 kWh. A further observation is that
the error size depends on the aggregation type: ZOH results in larger
errors than averaging. An explanation is that averaging uses more
information since it is a summary of all measurements, while ZOH
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Figure 4: The error for different target maximum peaks for
an aggregation interval of 900 s.

Table 1: C̄∗
max and the error Rmax = C̄

∗
max−C

∗
max for different

target maximum peaks L̂ and aggregation intervals types.

zero-order hold average

L̂ C∗
max ∆t C̄∗

max Rmax C̄∗
max Rmax

[kW] [kWh] [s] [kWh] [kWh] [kWh] [kWh]

38 94.55

300 87.99 −6.56 76.26 −18.30
900 72.90 −21.65 75.94 −18.62
1800 69.76 −24.79 75.78 −18.77
3600 55.42 −39.12 61.38 −33.18

40 78.89

300 72.37 −6.52 78.87 −0.03
900 76.89 −2.00 78.47 −0.43
1800 81.01 2.12 78.62 −0.28
3600 57.14 −21.75 59.45 −19.45

relies on only one measurement. With averaging, the algorithm
tends to underestimate the capacity, while ZOH leads to both over-
and underestimates. This is intuitive, since the average is always
less than or equal to the maximum in the aggregation window, i.e.,
it underestimates the peak load.

Next, we compare the error over different target maximum peaks
for the aggregation interval 900 s, see Figure 4. For ZOH, results
are similar across different target maximum peaks. For averaging,
the absolute error tends to become larger for larger target peaks.

Table 1 summarizes C̄∗
max, the erroneous maximum capacity over

all days, for different aggregation intervals∆t and aggregation types
for the two target maximum peaks 38 kWh and 40 kWh. Apart from
one case (L̂ = 40 kWh, ∆t = 1800 s, ZOH), C̄∗

max is less than C∗
max,

resulting in a negative error, i.e., a size underestimation.
This finding has implications on the decision of the plant man-

ager. A battery that is too large can still provide the peak shaving
required. A smaller and cheaper battery would have been sufficient
in this case. However, if the battery capacity is too small, the target
maximum peak will be surpassed, which in turn results in higher
costs for peak consumption. If these costs outweigh the cost of
additional battery capacity, one may add a safety margin on the
battery size. For our data, a margin of about 30 % is sufficient for
aggregation intervals between 5 min and 30 min.
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Table 2: Improvement γmax for different target maximum
peaks L̂ and aggregation intervals and types.

zero-order hold average

L̂ ∆t max γ median γ max γ median γ
[kW] [s] [kWh] [kWh] [kWh] [kWh]

38

300 0.75 −0.30 0.16 0.10
900 3.09 0.92 0.40 0.16
1800 6.48 1.61 0.23 −0.31
3600 2.15 −4.11 2.73 0.99

40

300 0.65 −0.52 0.21 −0.22
900 3.50 −2.31 0.41 0.16
1800 0.73 −2.32 0.99 −0.87
3600 5.65 2.36 0.36 −0.84

3.3 Predicting Errors on Historic Data
Naturally, adding a blanket safety margin on the resulting capacity
can result in overestimating C∗

max. The unused additional capacity
then increases the cost of the battery. In this section, we use ma-
chine learning to predict how much one overestimates the battery
capacity estimated from aggregated data.

We consider the following scenario, similar to Example 1. For a
given L̂, we want to find out from a short set of high frequency data
how we need to correct C̄∗

max on a larger data set with a known
aggregation interval. So the response variable of our model is the
error R. As model input, we derive several features: the 0.1-, 0.25-,
0.5-, 0.75-, and 0.9-quantiles, minimum, maximum, mean, standard
deviation, variance and Fourier coefficients of the aggregated mea-
surements. The Fourier coefficients are derived as follows. We first
create the single-sided amplitude spectrum of the discrete Fourier
transform. We then take 12 windows of equal width in the resulting
frequency series and take one average value for each window as a
feature. In other words, we derive 12 characteristic values from the
frequency spectrum. All in all, 24 values describing the frequency
spectrum of the time series are available to the model. In addition,
we provide the model with C̄∗

max, i.e., the estimated capacity on
aggregated data.

We take 70 days from the data, which is about 25 % of the days
as the training data. The rest of the days are test data. On the
training data, we train a stochastic gradient boosting model [4]. To
assess the quality of the method, we create 20 such scenarios by
randomly splitting the data as described above. For each scenario,
we determineC∗

max and C̄∗
max for the days in the test data set. Lastly,

we use our model to predict R for each day and add it to C̄∗
max. We

call this corrected value C̄∗+.
Over all days that have been corrected this way, we again cal-

culate the maximum C̄∗+
max. We define the overall improvement

through machine learning as the reduction of the error γ = |C∗
max −

C̄∗
max | − |C∗

max −C∗+
max |. Table 2 displays statistical data about all γ

for different L̂ and ∆t . We see that the models cannot be used to
reliably increase the quality of our results. However, there exist
cases in which the models could significantly improve the results.
This is indicated by a maximum γ which is larger than 3 kWh in 4
of the observed cases.

4 CONCLUSIONS
We have studied the relationship between the quality of energy-
consumption data and the one of peak shaving derived from it.
Specifically, we have analyzed how this optimization problem reacts
to consumption data that is aggregated with different aggregation
intervals and types. In our experiments, aggregation intervals that
are larger than 5 min lead to significant errors in the sizing decision
for a set of days. Adding a safety margin to the battery size yields a
battery capacity that is capable of shaving to the desired maximum
peak load. However, this comes at the risk of adding too much
unused capacity to the battery. To approximate the real values
more precisely, we have trained machine learning models on the
resulting error of aggregation. In our experiments, models trained
on a short period of high-resolution data do not reliably reduce this
error. Currently, adding a safety margin obtained from historic data
to the battery size is a more reliable way of reducing the error.
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