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Abstract Scientific data often is high-dimensional. In

such data, finding outliers is challenging because they

often are hidden in subspaces, i.e., lower-dimensional

projections of the data. With recent approaches to out-

lier mining, the actual detection of outliers is decoupled

from the search for subspaces likely to contain outliers.

However, finding such sets of subspaces that contain

most or even all outliers of the given data set remains

an open problem. While previous proposals use per-

subspace measures such as correlation in order to quan-

tify the quality of subspaces, we explicitly take the re-

lationship between subspaces into account and propose

a dimension-based measure of that quality. Based on it,

we formalize the notion of an optimal set of subspaces

and propose the Greedy Maximum Deviation heuristic

to approximate this set. Experiments on comprehensive
benchmark data show that our concept is more effec-

tive in determining the relevant set of subspaces than

approaches which use per-subspace measures.

Keywords Outlier Mining, Subspace Search, High-

Dimensional Data

1 Introduction

Outlier detection is a data mining paradigm to discover

unusual objects in data. Use cases come from many sci-

entific disciplines where researchers want to identify ob-

servations which are exceptional, compared to the bulk
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of their experimental or simulation data. Regardless of

the discipline, the challenge is the same: the detection

of rare events, which might even occur for the first time,

in large, multi-dimensional data sets.

An object is an outlier if it lies outside of the range

of data objects considered normal. To quantify the dif-

ference between normal and outlying objects, conven-

tional approaches rely on proximity and locality. How-

ever, these principles loose meaning in high-dimensional

data spaces, as there is a concentration of distances

[23]. The prevalent way of addressing this difficulty is

by searching for outliers in low-dimensional projections

of the data, where those principles still hold. Subspaces

can also increase the interpretability of outliers, by giv-

ing them a context where they appear unusual [15,6].

However, the number of subspaces grows exponentially

with the data dimensionality. This makes an exhaustive

subspace search infeasible. Hence, identifying subspaces

where most or all outliers occur is challenging.

Recent approaches detach the search for subspaces

from the actual outlier detection [19,18,7]. With this,

outlier detection is a two-step process. The first step is

to identify subspaces with a high potential to reveal out-

liers in the subsequent step. Because subspace search

is unsupervised, respective approaches must rely on a

heuristic measure to quantify this potential. In what

follows, we refer to this potential as the subspace qual-

ity. In the second step, conventional outlier-detection

algorithms, which score the outlierness of each object

in a certain space, are applied to the subspaces that are

the result of the first step. The scores from each sub-

space then typically are combined to an overall outlier

score per object. This final scoring allows to evaluate

the so-called search-result quality, i.e., how well out-

liers are detected in the set of subspaces. To evaluate
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Fig. 1 Two subspaces with different dimensions

the search-result quality, one must compare the outlier

scores to an external ground truth.

Since the number of subspaces in a d-dimensional

data set is 2d − 1, an exhaustive search is intractable.

Much work has been devoted to schemes to traverse

this search space efficiently. Existing approaches rely

on the assumption that a subspace is of high quality if

its dimensions are highly correlated. As a result, these

so-called correlation-based approaches return a set of

highly correlated subspaces. However, it is typically left

to the user to pick a cutoff value that discerns “high cor-

relation” from “not-so-high” or some other parameter

of this nature.

Example 1 (Motivational example) Figure 1 de-

picts two subspaces with different dimensions. The data

in the subspace on the left has a stronger correlation

than in the right subspace. However, the outlier only

occurs in the right subspace, i.e., the combination of

Dimensions s1 and s3.

The example shows that, with correlation as the

only measure of interest, subspace search may miss sub-

spaces. Additionally, based on current literature [8] and

preliminary experiments by ourselves, we hypothesize

that adding an irrelevant dimension to a highly cor-

related subspace reduces the correlation only slightly.

In other words, subspaces that also comprise irrelevant

dimensions still may have a high correlation. As a con-

sequence, highly correlated dimensions are likely to be

overrepresented in the top-k subspaces. Any ranking or

thresholding of subspaces purely based on correlation

reduces the variety in the final result set.

The discussion so far uncovers a major weakness

of existing approaches: Existing measures of subspace

quality do not differentiate between the different dimen-

sions of the subspace. This has two implications. First,

the subspace-search heuristic might prune all subspaces

containing a certain dimension from the search space.

Second, any cutoff value to discern between high and

low correlation in the search result is arbitrary. The rea-

son is that outliers might only manifest themselves in

the dimensions that have been pruned from the search

space. So disregarding the subspace dimensions can re-

sult in information loss, for these two reasons. The core

hypothesis behind this article now is that a more gen-

eral measure of subspace quality might do away with

this problem. Finding such a measure is the problem

studied in this paper.

The main contribution of our work is a novel way

of assessing subspace quality that goes beyond correla-

tion as the only criterion. We address the weakness of

existing approaches in the following way. Instead of as-

sessing the quality of a subspace solely based on its cor-

relation, we propose to assess the quality per dimension

of the subspace. In Figure 1 for example, the subspace

[s1, s2] might have a high quality for Dimension s1 and

s2, while the subspace [s1, s3] has a high quality for Di-

mension s3. In other words, both subspaces should be

included in the result set of subspace search. Compar-

ing subspaces per dimension turns out to be superior

to purely correlation-based methods in many scenarios.

This is because it allows a differentiated view on the

subspaces.

With our dimension-based evaluation, we propose

the notion of dominance between sets of subspaces. In-

tuitively, a subspace S is dominated if there exists a set

of other subspaces that have a higher quality for each

of the dimensions of S. A dominated subspace should

not be in the search result, and we will show that a

dominated subspace can even have a negative impact

on the outlier detection. With a dominance-based selec-

tion, the search objective is to find a non-dominated set

of subspaces. This does away with the need for a cutoff

threshold. We then propose the Greedy Maximum De-

viation (GMD), a heuristic that exploits the notion of

dominance as part of the subspace search.

We have carried out a comprehensive evaluation of

our subspace-search method, with the following criteria:

1. Search-result quality: In our context, a set of

subspaces is good if it reveals many outliers. We

apply an existing outlier-detection method to the

subspaces found and use the Area under the Curve

(AUC) as the quality measure.

2. Robustness: The search-result quality should be

insensitive to properties of the data set, such as the

proportion of outliers, as well as to the specific pa-

rameter values.

3. Number of subspaces: Fewer subspaces are bet-

ter regarding interpretability of the search result.

4. Runtime: This is self-explanatory.

According to our evaluation, there is no subspace-search

approach which is superior in all scenarios. However,

while correlation-based approaches and baseline strate-
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gies do return better results than GMD for some of the

data sets, GMD outperforms its competitors regarding

the above criteria.

Paper outline: After preliminaries in Section 2, we dis-

cuss related work in Section 3. In Section 4, we formally

refine objectives for a dimension-based subspace search

approach. We introduce the Greedy Maximum Devia-

tion heuristic in Section 5 and present experiments in

Section 6. Section 7 concludes.

2 Notation

Let DB be a d-dimensional database with a set of di-

mensions D = {s1, s2, . . . , sd} and N data objects.

Each data object x is a vector x = (xs1 , xs2 , ..., xsd).

A subspace S is an orthogonal, lower-dimensional pro-

jection of the d-dimensional space. It is a subset of the

available dimensions S ⊆ D, and we use the notation

S = [s1, ..., sd] to describe a subspace. Its dimensional-

ity is |S|. D is called the full space.

In the following, RS = {S1, S2, ..., Sk} is a subspace

search result. Most of the traditional outlier detection

algorithms assign a score value score(x) to each object

to quantify its outlierness. Score values can be ordered,

and the ranking allows to select the top-k outliers.

The probability density function (pdf) of X is p(X),

while we write p̂(X) to refer to the estimation of the pdf.

We use psi(X) for the marginal pdf of the dimension si,

i.e., the pdf of the one-dimensional projection on si.

3 Related work

3.1 Full space outlier detection

There exists a variety of outlier models from recent

years. A common differentiation is by the underlying

outlier definition, such as cluster-based, distance-based

or density-based. However, they all struggle with high

dimensionality of data, i.e., the concentration effect in

high-dimensional data spaces.

There have been efforts to make full space methods

more stable with increasing dimensionality. One exam-

ple is to use the variance of angles between vectors as

a measure of outlierness [12]. Another example for cat-

egorical attributes are feature selection methods which

remove noisy features from the full space [21,20].

3.2 Subspace search

Subspace search methods examine multiple low-dimen-

sional projections to detect outliers that are hidden in

the full space. An exhaustive search is infeasible, be-

cause the number of subspaces grows exponentially with

the dimensionality of the data. Approaches explicitly

searching for interesting subspaces to support the in-

terpretation of outliers are different from approaches

like [17,24,22] which rely on random subspace sampling

and do not explicitly select subspaces with interesting

characteristics. Explicit search approaches fall into two

classes: object-based and correlation-based.

3.2.1 Object-based

The idea of object-based subspace search is to identify

a set of subspaces for each object. The outlierness is

then evaluated based on the object’s individual set of

subspaces and is often coupled with a specific definition

of outlierness [10,11,16,26]. Object-based outlier mod-

els can be particularly beneficial for the identification

of subspaces where an outlying object deviates most.

However, these approaches are prone to overfitting and

suffer from the data-snooping bias [28].

3.2.2 Correlation-based

These methods aim to identify one set of subspaces

for all data objects. They identify the best set based

on the assumption that outliers are more likely to oc-

cur in subspaces whose dimension have a high corre-

lation [7,19,18]. Hence, the search for subspaces is de-

coupled from the actual outlier model. Existing purely

correlation-based approaches differ in the way they esti-

mate the correlation in subspaces and how they traverse

the search space.

The decoupling of subspace search from outlier de-

tection was first introduced in [7]. The authors proposed

HiCS, which quantifies the correlation in subspaces as

the difference between the expected joint distribution,

assuming independence between dimensions, and the

observed data distribution. The difference is called the

contrast of a subspace.

contrastHiCS(S) = diff (pSexpected, p
S
observed) (1)

The contrast is 0 for

pSexpected =pSobserved =

d∏
i=1

psi(Xi) (2)

with S = {s1, ..., sd}. The more the conditional pdf

deviates from the marginal pdf, the more the indepen-

dence assumption is violated. Estimating the observed

joint pdf for a multi-dimensional subspace is not triv-

ial. Therefore, HiCS uses a dynamic slicing concept to

avoid the problem of data sparsity in high-dimensional

spaces. A subspace slice basically is an adaptive grid
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cell in the higher-dimensional space. It is constructed

for a dimension si ∈ S by restricting the domain of all

remaining dimensions sj ∈ S, sj 6= si to an interval

[lj , rj ], lj ≤ rj . We refer to the set of conditions for the

reference attribute si as C−i. The pdf for the reference

attribute on the subspace slice is the conditional pdf.

psi|C−i
= p(xi |xj ∈ cj ∀ j ∈ {1..|S|} \ i) (3)

The idea is that, if a subspace is uncorrelated, restrict-

ing the data on a subspace slice C−i for any si ∈ S

does not change the distribution of si. I.e., the con-

ditional pdf is the same as the marginal pdf for all

possible reference attributes of a subspace. This makes

sense intuitively, because it means that all dimensions

are mutually independent. For mutually independent

dimensions, the joint pdf ps1,...,sd(X) is the product of

all marginal pdfs psi(X). The deviation function, or

short dev, quantifies the violation of the independence.

It assesses how much the conditional pdf deviates from

the marginal pdf. The difference in Equation 1 is the

average deviation of the conditional pdf and marginal

pdf over all attributes si ∈ S.

contrastHiCS(S) =
1

M

M∑
m=1

dev(p̂si , p̂si|C−i
) (4)

It is approximated by a Monte Carlo simulation with

M iterations and a random selection of the reference

attribute si and subspace slice C−i in each iteration m.

One must select an appropriate deviation function.

In this work we stick to the two-sample Kolmogorov-

Smirnov (KS) test. It has been used in the benchmark

experiments of [7]. The test statistic uses the peak of

the difference between the marginal and conditional cu-

mulative distribution functions F .

dev(p̂si , p̂si|C−i
)= sup

xi∈DB
|F̂si(xi)− F̂si|C−i

(xi)| (5)

The larger the peak difference, the higher the deviation.

Note that the deviation function using the KS test is

bound to the interval [0, 1].

HiCS follows an Apriori-style search scheme to iden-

tify the set of the highest contrast subspaces. Other ap-

proaches like 4S [18] and CMI [19] have been proposed

to overcome the shortcomings of Apriori. They all intro-

duce their own notion of correlation. However, all these

approaches define the subspace quality solely based on

the correlation, regardless of the subspace dimensions.

In this work, we focus on correlation-based methods.

We use the well-known LOF algorithm [3] as the outlier

detection method in the subspaces, as it is widely used

as a reference point [7,18,19].

3.3 Score combination

For correlation-based methods, an outlier algorithm is

applied to each subspace, and the final score is cal-

culated by combining the individual scores. The most

prominent combination functions have been maximum

and average. The right choice of combination function

is application dependent and has been discussed con-

troversially in literature [1,27]. In this work we rely on

the summation of scores.

scorefinal(x) =
∑

S∈RS

scoreS(x) (6)

4 Subspace search objectives

Subspace search aims at identifying the subspaces that

contain outliers. In general, outliers do not form a ho-

mogeneous class in the data, i.e., they do not follow

a common distribution. Consequently, one cannot di-

rectly assign a probability to a subspace that indicates

how likely it contains outliers. Instead, we say that a

subspace has a potential to reveal outliers if there are

areas where non-trivial outliers [9] can be placed. This

potential of a subspace depends on the underlying type

of outlier definition. Under the density-based definition,

we consider a subspace to have such a potential if pro-

jections of low-density areas fall into high-density areas

in the low-dimensional subspaces.

Our goal is to derive a search objective that is in-

dependent of a specific outlier detection algorithm. We

discuss the search objective of purely correlation-based

methods in Section 4.1. We then examine the identified

weakness of correlation-based methods in some detail

before we propose our novel, dimension-based approach

in Section 4.3.

4.1 Weakness of correlation-based approaches

We now discuss the weakness of correlation-based ap-

proaches. The search objective of these approaches is

to identify the top-k subspaces with the highest corre-

lation. Existing algorithms differ in the way they con-

struct the candidates, but their focus is on maximizing

the correlation between attributes.

Example 2 (Discarded subspace) Think of a sub-

space [s1, s2] which shows a slightly higher correlation

than the subspace [s2, s3]. During the search, the sub-

space [s2, s3] might be pruned because it is not one of

the best subspaces that are kept during the search. Al-

though we have not formally introduced dominance yet,

one might agree intuitively that this is because of the
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assumption that [s1, s2] dominates [s2, s3]. In conse-

quence, subspace [s2, s3] is discarded in favor of [s1, s2].

If no other subspaces that contain Dimension s3 are in

the final result set, then there is no way to find any

outlier that manifests itself in subspaces with Dimen-

sion s3.

So current approaches rely only on the correlation mea-

sure, and do not consider the diversity of the result set.

Also, it is not possible to come up with any statement

on how many subspaces need to be searched for outliers,

or which correlation values are deemed good enough for

subsequent consideration. The prevalent way to bypass

this issue is to use only the top-k subspaces identified

as input to the outlier detection.

Furthermore, it is problematic to assess two differ-

ent sets of subspaces simply by the correlation of the

subspaces they consist of. The reason is that highly

correlated dimensions can quickly be overrepresented

in the result set. This is particularly true if the sub-

space search algorithm follows an elitist approach and

only keeps track of the best subspaces found.

Example 3 (Inflated search result) Table 1 illus-

trates the result set produced by HiCS on one of its

benchmarking data sets. Dimensions s19 and s20 are

part of all but three subspaces among the top-20 re-

sults. This is a result of [s19, s20] having a high correla-

tion, and adding an additional, non-correlated dimen-

sion, only affects the correlation slightly. The diversity

among the top-20 subspaces is low.

Rank HiCS contrast Subspace

1 0.47 [s19, s20]
2 0.34 [s12, s19, s20]
3 0.34 [s9, s10, s11, s12, s13]
4 0.33 [s6, s19, s20]
5 0.33 [s9, s19, s20]
6 0.33 [s1, s2, s3]
7 0.32 [s11, s19, s20]
8 0.32 [s3, s19, s20]
9 0.32 [s1, s19, s20]
10 0.32 [s14, s15, s16, s17, s18]
11 0.31 [s10, s19, s20]
12 0.31 [s15, s19, s20]
13 0.31 [s14, s19, s20]
14 0.31 [s5, s19, s20]
15 0.30 [s7, s19, s20]
16 0.29 [s17, s19, s20]
17 0.29 [s2, s19, s20]
18 0.29 [s16, s19, s20]
19 0.29 [s18, s19, s20]
20 0.29 [s13, s19, s20]

Table 1 Results from the HiCS search on a 20-dimensional
synthetic benchmark data set

Consequently, a meaningful comparison between two

result sets is only possible ex-post, i.e., based on the

outlier scorings. This requires to run an outlier detec-

tion algorithm on each result set and to match the final

scores against a ground truth. However, this contradicts

the nature of an unsupervised search where no informa-

tion on the object class labels is available.

4.2 Symmetry in other correlation measures

The loss of information by averaging the deviations

over all dimensions of the subspace is not unique for

HiCS. Any subspace search approach that uses a sym-

metric correlation measure on a subspace suffers from

this weakness. The reason mainly is that other statis-

tical correlation measures use joint information on the

variables instead of combining one-dimensional infor-

mation. We exemplarily examine Mutual Information

(MI), Spearman Correlation and the Cumulative Mu-

tual Information (CMI) [19] regarding their symmetry.

MI is one of the most commonly used measures to

describe the relationship between two variables. It is

defined as

I(X;Y ) =

∫∫
p(x, y) log

p(x, y)

p(x)p(y)
dydx (7)

It describes the dependency of two random variables

and can be used as a correlation measure. Since the

joint probability function p(x, y) and the product of

the marginal distributions p(x)p(y) are symmetric, the

measure itself is symmetric.

I(X;Y ) = I(Y ;X) (8)

The Spearman correlation coefficient quantifies the

relationship between the ranks of ordered variables. It

is based on the covariance between ranks, which is sym-

metric. Therefore, the coefficient is symmetric as well.

CMI is a more involved approach to estimate corre-

lation in multi-dimensional spaces. The CMI of a sub-

space consisting of the random variables X1, ..., Xd is

CMI[X1,...,Xd] =

d∑
i=2

diff (p(xi), p(xi|x1, ..., xi−1)) (9)

The idea is to sum up the contrast of the lower-dimen-

sional projections (X1, X2), (X1, ..., Xi), ..., (X1, ..., Xd)

of the subspace. Hence, the CMI depends on the per-

mutation of the dimensions of the subspace. However,

the contrast of a subspace is defined as the maximum

CMI over all permutations π.

contrastCMI(S) = CMI(πopt(X1, ...Xd)) (10)

with πopt as the permutation with maximal CMI. Thus,

the contrast is symmetric for all dimensions as well.
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4.3 Dimension-based approach

Our goal is to derive a notion of optimality of a set

of subspaces. Intuitively, a set of subspaces is optimal

if adding or removing subspaces will affect the search-

result quality, i.e., how well outliers are detected within

the set, negatively. We first introduce some definitions

to describe the optimality of a search result formally.

Then, we propose a framework that allows to compare

different sets of subspaces based on individual dimen-

sions. We show that our framework finds an optimal set

of subspaces without the need for any cutoff value.

Definition 1 (Superfluousness of a subspace) A

subspace S is superfluous if it can be excluded from a

set of subspaces without a negative effect on the results

of the subsequent outlier detection.

Even though there may be a set of subspaces where

none of the subspaces is superfluous, there might be

another set that consists of fewer subspaces and is of the

same quality. This gives way to the following definition.

Definition 2 (Minimal set of subspaces) A set of

subspaces is minimal if no subspace is superfluous, and

a union of two or more of the subspaces has a negative

effect on the search-result quality.

Example 4 (Minimal set) Consider a database D =

{s1, s2, s3 s4, s5} and the set S1 = {[s1, s2], [s1, s3],

[s4, s5]}. None of the three subspaces in S1 is superflu-

ous. The reason is that removing any of the subspaces in

S1 would exclude one of the dimensions s2 or s3 or both

s4 and s5 from the set. However, according to Defini-

tion 1 the set S2 = {[s1, s2, s3], [s4, s5]} is preferred over

S1 if S2 yields the same or a better search-result qual-

ity. S2 is also minimal according to Definition 2 if the

search-result quality on the set S3 = {[s1, s2, s3, s4, s5]}
is lower than on S2.

We now propose the following optimality criterion.

Definition 3 (Optimal set of subspaces) Given an

outlier definition OutDef, a set of subspaces RS is op-

timal if

1. there exists no other set of subspaces RS′ 6= RS

that increases the search-result quality for an outlier

model based on OutDef, and

2. RS is minimal.

RS abstracts from specific outlier models and only re-

lies on the underlying outlier definition (e.g., distance-

based or density-based). Because of the broad variety

of meaningful outlier models, there are different instan-

tiations of OutDef with different search-result qual-

ity. However, changing RS cannot improve this qual-

ity for any of these instantiations. The evaluation of

the search-result quality depends on the metric used. A

common metric is the area under the ROC curve.

To sum up, using the optimal set of subspaces as

a search objective is reasonable, but bears difficulties

in practice. In particular, the search-result quality de-

pends on an ex-post evaluation that is bound to an

outlier detection algorithm. Thus, in unsupervised sub-

space search, one cannot make use of the optimality

criterion directly.

4.4 Framework for subspace comparison

In an unsupervised setting, the potential of subspaces

to reveal outliers needs to be comparable without an

ex-post evaluation. To achieve this, we link the quality

of a subspace to its dimensions.

Definition 4 (Subspace-Quality Function) Let S

be a subspace and sk ∈ D be a dimension of the full

space D. A Subspace-Quality Function (SQF) is a func-

tion of type

q : D × P(D)→ [0, 1]

with the property

q(sk, S) = 0 ∀sk /∈ S.

The function q is a measure of subspace quality. Be-

cause an SQF is dimension-specific, a subspace with d

dimensions corresponds to d different SQF values. In-

tuitively, q(sk, S) is zero if Dimension sk is not part of

the subspace, i.e., sk /∈ S. The reason is that the sub-

space cannot reveal outliers for sk if this dimension is

not part of the subspace. We further require that SQF

values need to be directly comparable for the same ref-

erence dimension.

Definition 5 (Directly comparable SQF) Let two

subspaces S, S′ be given that both contain a dimension

sk. Then an SQF q is directly comparable with regard

to sk if

q(sk, S) > q(sk, S
′), S 6= S′

means that S has a higher potential to reveal outliers

for sk.

It is straightforward to compare two subspaces by

their correlation. However, this comparison becomes

slightly more involved with SQF values. We first define

a partial ordering:

SA �q SB ⇐⇒ ∀sk∈SA∪SB : q(sk, SA)≥q(sk, SB)(11)

We illustrate why this order is partial with an example.
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Example 5 (Partial ordering) Consider the two

subspaces SA = [s1, s2, s4] and SB = [s1, s2, s3] with

q(s1, SA) = 0.6, q(s2, SA) = 0.7 and q(s4, SA) = 0.2

q(s1, SB) = 0.5, q(s2, SB) = 0.6 and q(s3, SB) = 0.7.

With Equation 11, we observe SA �q SB and SA �q SB

because q(s3, SA)=0 and q(s4, SB)=0.

Consequently, this comparison is only useful when com-

paring subsets of subspaces. So the usefulness of Equa-

tion 11 is limited. Therefore, we move away from com-

paring subspaces with each other and compare a sub-

space to a set of subspaces.

Definition 6 (Set of subspaces � subspace) Let S
be a set of subspaces where each subspace is a subset

of the full space D, and let q be an SQF. Let SA be a

subspace with SA ⊆ D, SA /∈ S. Then S dominates SA

with respect to q if the following holds:

S �q SA ⇔ ∀sk ∈ SA : ∃S′ ∈ S
s.t. q(sk, S

′) > q(sk, SA)
(12)

A set of subspaces S dominates a subspace SA if for

every dimension of SA there is at least one subspace

S′ ∈ S with a higher SQF value. The rationale is to

rule out compensation of SQF values across dimensions.

So far, we have defined domination only in one di-

rection, such that a set of subspaces can dominate a

single subspace. The inversion also holds. This is be-

cause a single subspace can dominate a set of subspaces

as well. This inverted relation is also true with equality,

as a single subspace should be preferred over a set of

subspaces. We hence complement Definition 6 with

Definition 7 (Subspace � set of subspaces) A sub-

space SA dominates a set of subspaces S:

SA �q S ⇔ ∀sk ∈ SA,∀S′ ∈ S :

q(sk, S
′) ≤ q(sk, SA)

(13)

This means that a subspace can replace other subspaces

in the current solution if it dominates them.

Example 6 (Subspace Dominance) Consider sub-

spaces SA = [s1, s2, s3], SB = [s1, s3] and SC = [s2, s3]

with

q(s1, SA) = 0.5, q(s2, SA) = 0.6, q(s3, SA) = 0.7

q(s1, SB) = 0.4, q(s3, SB) = 0.5

q(s2, SC) = 0.6, q(s3, SC) = 0.6

Then SA �q {SB , SC}.

With this new notion of dominance, subspaces are di-

rectly comparable.

From Definition 6 and Definition 7, one can derive

a set of subspaces where no subspace is dominated.

Definition 8 (Non-dominated set of subspaces)

A non-dominated set of subspaces is a set of subspaces

SND where

∀S ′ ⊆ SND, ∀SA ∈ SND, SA /∈ S ′:
S ′ � SA ∧ SA � S ′

(14)

Within a set of non-dominated subspaces SND, it is

not possible to find a subset S ′ and a subspace SA /∈ S ′
such that the subset dominates the subspace or vice

versa. We cannot remove any subspace from the solu-

tion without risking a negative effect on the results of

the subsequent outlier detection. None of the subspaces

in a non-dominated set is superfluous.

Instead of searching the top-k subspaces, it is pos-

sible to apply the domination principle to find a non-

dominated set of subspaces in the following way. An

SQF evaluates the subspaces encountered during the

search. For each new subspace, we can apply Defini-

tion 6 to check if the current solution dominates the

subspace found. If so, the subspace can be discarded.

Otherwise, it extends the non-dominated set.

Example 7 (Motivational example cont.) Let us

assume that the search encounters the subspace [s1, s2]

as the first subspace, i.e., RS = ∅ ∪ [s1, s2]. In the next

step, the search encounters [s1, s3]. By Definition 6,

it is [s1, s2] �q [s1, s3] and [s1, s2] ⊀q [s1, s3]. Hence,

[s1, s3] extends the non-dominated set to RS = {[s1, s2],

[s1, s3]}.

We now show that one can find an optimal set of

subspaces by using this strategy. For each dimension in

the full space, it is possible to find a subspace S with

the maximum SQF value for that dimension, i.e.,

q(sk, S) > q(sk, S
′) ∀S′ ⊆ D, S 6= S′

We obtain an optimal set of subspaces with regard to

the SQF by identifying such a subspace for each dimen-

sion.

Theorem 1 (SQF and optimality) If q is an outlier

identifying SQF and D a set of dimensions, then a non-

dominated set

OS = {S ⊆ P(D) | ∀sk∈D ∃S∈S ∀S′ ⊆ D :

q(sk, S) > q(sk, S
′) }

(15)

is an optimal set of subspaces with regard to q.
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Proof Theorem 1 satisfies the first axiom of Definition 3.

OS is defined such that, for each dimension in D, there

exists a subspace in OS which maximizes the SQF.

Higher values of an outlier-identifying SQF stand for

a higher potential of identifying outliers. For an SQF

with this characteristic, the best set that one can find

contains a subspace for each dimension that maximizes

the SQF.

OS does not contain superfluous subspaces. Any

subspace that does not have the maximal SQF value for

at least one dimension is dominated by OS. Because OS

is non-dominated, such a subspace cannot exist in OS.

If we could replace two subspaces with one, this single

subspace would need to have a higher SQF value for

each dimension. Such a subspace does not exist either.

This is because every subspace in OS already maximizes

the SQF for one dimension. Hence, OS is minimal and

also satisfies the second axiom of Definition 3.

In general, it is also possible to retain multiple non-

dominated sets during the search. One would add a sub-

space detected to all the sets where it is non-dominated.

Using our framework to find several, alternate solutions

is future work.

5 Maximum deviation subspaces

So far, we have not proposed any concrete instantia-

tion of the SQF. In the following we instantiate the

SQF with a deviation function which has been used for

the purely correlation-based subspace search in [7]. We

first generalize the deviation function so that it becomes

an SQF and then propose the Greedy Maximum De-

viation (GMD). GMD is a dimension-based subspace-

search approach, a heuristic to approximate the optimal

set of subspaces.

5.1 Deviation function as an SQF

We observe that one can generalize the definition of

deviation in Equation 5 to an SQF as follows.

dev(sk, S) =

{
0 ifsk /∈ S
dev(p̂sk , p̂sk|C−k

) otherwise
(16)

Instead of averaging deviations over all dimensions of

a subspace to calculate the contrast, as in Equation 4,

the deviation can be calculated individually for each Di-

mension sk of the subspace. dev(sk, S) fulfills the prop-

erties of a directly comparable SQF according to Defini-

tions 4 and 5. The image of dev(sk, S) is [0, 1] if we use

the KS test as an instantiation of the deviation function

(see Equation 5). dev(si, S) and dev(si, S
′) also are di-

rectly comparable: A higher deviation means that, on

average, the difference between the marginal and con-

ditional distribution is higher. Hence, there are more

areas in the data space where non-trivial outliers can

occur, i.e., the potential to reveal outliers is higher.

With the framework introduced in Section 4.4 and

with Definition 16, we can return to Example 3 and

offer an explanation why the search result is inflated.

Example 8 (Inflated search result cont.)

The reason for the inflated search result becomes ob-

vious when looking at the individual deviations, instead

of the overall contrast. For the subspace [s2, s19, s20] at

rank 17 in Table 1, we calculate the deviation of the

individual dimensions according to Equation 16.

dev(s2, [s2, s19, s20]) = 0.15

dev(s19, [s2, s19, s20]) = 0.37

dev(s20, [s2, s19, s20]) = 0.39

Dimension s2 has a small deviation compared to s19 and

s20. But if we take the subspace at rank 6, we observe a

better subspace with dev(s2, [s1, s2, s3]) = 0.36. We also

observe

dev(s19, [s19, s20]) = 0.45

dev(s20, [s19, s20]) = 0.46

Hence, according to Definition 6, we infer the relation-

ship

{[s1, s2, s3], [s19, s20]} �dev [s2, s19, s20]

We can therefore exclude the subspace [s2, s19, s20] from

the result set. Because the contrast is an average over
all the dimensions, other dimensions can be added to

[s19, s20] with only a minor decrease of the overall con-

trast. This explains the overrepresentation of {s19, s20}
in the top-20 subspaces.

Evaluation of the initial result, the top-20 subspaces

found by HiCS, by using LOF on each subspace and

by summing up the scores yields an AUC of 0.80. If

we exclude the superfluous subspaces, the remaining set

is {[s19, s20], [s9, s10, s11, s12, s13], [s1, s2, s3], [s14, s15,

s16, s17, s18]} with AUC = 0.84. This means that we

can improve the search-result quality by removing 16 out

of the top-20 subspaces. This is because they reduce the

ability to correctly discern outliers from regular objects.

5.2 Greedy maximum deviation

To identify the optimal set of subspaces according to

Theorem 1, one needs to find the subspace maximizing
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Algorithm 1 Greedy Maximum Deviation (GMD)

Input: Data set D with dimensions {s1, s2, ..., sd}
Output: Set of subspaces RS with one subspace per dimen-

sion in D

1: RS ← ∅
2: for si in D do
3: SC ← {[si, sj ] | sj ∈ D\{si}}
4: Tmax

si
← arg max

T∈SC
dev(si, T )

5: SC ← SC \ {Tmax
si

}
6: while |SC| > 0 do
7: Tcand ← arg max

T∈SC
dev(si, T )

8: if dev(si, Tmax
si

∪ Tcand) > dev(si, Tmax
si

) then
9: Tmax

si
← Tmax

si
∪ Tcand

10: end if
11: SC ← SC \ Tcand

12: end while
13: RS ← RS ∪ Tmax

si

14: end for

the deviation for each dimension. Due to the exponen-

tial number of subspaces, a brute force search is not

feasible. Instead, we propose Greedy Maximum Devi-

ation (GMD), a heuristic to approximate the optimal

set of subspaces.

GMD is a dimension-based heuristic, because it uses

a SQF to quantify the subspace quality per dimen-

sion. During the search, GMD constructs subspaces in

a greedy way. In each search step, it picks the solution

which improves the objective function the most. The

idea is that we iterate over each dimension si ∈ D and

construct a subspace that strives to maximize the de-

viation for this dimension. This leads to an output of

|D| subspaces that form a non-dominated set. Because
this is the only search criterion, the dimensionality of

the maximum deviation subspaces can differ for the di-

mensions in D.

The pseudo code for GMD is in Algorithm 1. In

the following, si is the reference attribute and T =

[si, sj ], i 6= j a two-dimensional subspace. dev(si, T ) is

the deviation for the reference attribute si in the sub-

space T . SC is a set of two-dimensional subspaces. SC

is initialized with the Cartesian product of all dimen-

sions with the reference attribute si (Line 3). The ini-

tial subspace Tmax
si is the two-dimensional space with

the highest deviation for the reference dimension si
(Line 4). In each iteration, the subspace Tcand with

the highest deviation among the remaining two-dimen-

sional projections is chosen. If the reference dimension

and the added dimension show a high deviation in the

two-dimensional projection, we hypothesize that this

relation also has an impact on the deviation in higher-

dimensional subspaces. This monotonicity assumption

is weaker than the one behind HiCS. There, every lower-

dimensional projection of a subspace needs to have a

high contrast.

If the deviation for si in the subspace Tmax
si ∪ Tcand

increases, the best solution found so far is updated

(Line 9). Tcand is then removed from the set of re-

maining subspaces. Unlike HiCS, there is no need for a

subspace to have a high contrast. Instead, any positive

increase of the deviation leads to the inclusion of the

dimension in the subspace. The iteration stops if SC

is empty, i.e., there are no two-dimensional subspaces

left to consider. The final subspace for each dimension

is added to the result set (Line 13).

Note that the result of GMD is independent of the

ordering of D. This is because the heuristic constructs

a subspace individually for each dimension, indepen-

dent of the subspaces of the other dimensions. The two-

dimensional deviations determine the order in which a

dimension is added to Tmax
si .

Example 9 (GMD subspace construction)

Think of a five-dimensional full space, and we apply

GMD to it. GMD iterates over all subspace dimensions

and starts with s0. Table 2 illustrates the subspace con-

struction. The two-dimensional subspaces for s0 are or-

dered by decreasing dev(s0, [s0, sj ]: j 6= 0). Then, step

by step, GMD adds dimensions s1, s4, s3, and s2 and

calculates the deviation of the extended subspace. In the

second step, GMD discards s3 because adding s3 to the

subspace does not improve the deviation for s0.

5.3 Runtime complexity

The runtime complexity of outlier-detection approaches

that include subspace search depends on two variables:

the complexity of the subspace search algorithm and the

number of subspaces in the result set that are searched

for outliers.

5.3.1 Complexity of GMD

The runtime complexity of GMD depends on the one

of two subproblems, referred to as search and index.

We use C(·) to refer to the runtime complexity of the

subproblems.

C(GMD) = C(search) + C(index) (17)

We first derive C(index). The index keeps the order of

the data objects for each dimension individually. Hence,

building the index has the complexity of sorting the N

data objects in each dimension.

C(index) ∈ O(|D| ·N · log(N)) (18)

We now derive C(search). It depends on the num-

ber of subspaces the deviation is calculated for and
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sj dev(s0, [s0, sj ])

s1 0.4
s4 0.35
s3 0.28
s2 0.27

step subspace S dev(s0, S)

0 [s0, s1] 0.4
1 [s0, s1, s4] 0.42
2 [s0, s1, s3, s4] 0.35
3 [s0, s1, s2, s4] 0.49

Table 2 Example for GMD subspace construction

on the complexity of this calculation. For each dimen-

sion, GMD examines all two-dimensional projections

(Algorithm 1, Lines 4–5). Then GMD selects the two-

dimensional projection with the highest deviation and

adds each of the other dimensions step by step (Lines 6–

12).

The selection of the highest deviation needs a cal-

culation of |D| − 1 two-dimensional deviations and a

sort of the result set. The step-by-step addition results

in another |D| − 2 deviation calculations. So the total

number of deviation calculations is |D| − 1 + |D| − 2.

Consequently, the complexity of the step-by-step addi-

tion is in O(|D| · C(dev)). Sorting the two-dimensional

projections is in O(|D| · log(|D|). GMD repeats these

calculations for all dimensions in the data set, i.e., |D|
times (Line 2). Hence, the resulting complexity is

C(search) ∈ O (|D| · [|D|·log |D|+ |D|·C(dev)]) (19)

Next, we derive C(dev), the complexity of the deviation

calculation. The deviation is calculated by the KS test

on a random subspace slice. Let the result of the slicing

be a vector r= (r1, r2, ..., rN ) of N bits, where ri with

i=1, . . . , N relates to the i-th object of the data set. At

the beginning of the slicing, r is initialized with 1. Then

the slicing procedure selects a random interval between

0 and N for each of the non-reference dimensions. For

each of these intervals, the values of r outside of the

interval are set to 0. After the slicing, the bits with

value 1 indicate the objects that remain in the slice.

The initialization of r is in O(N). The selection of

the random interval can be performed in O(1). This is

because the index stores the order of the objects for

each dimension individually. The random interval in

one dimension is just a block of consecutive entries in

the index. So selecting an interval reduces to a random

selection of one of the interval borders. The number of

objects outside of the interval, for which the bit in r

is set to 0, depends on the parameter α ∈ [0, 1] and is

(1− |S|−1
√
α) ·N [7]. With the number of dimensions in a

subspace |S|, the number of interval selections required

to extract a subspace slice is |S| − 1. Hence, the slicing

is in O (|S| ·N).

The KS test statistic (cf. Equation 5) relies on the

pointwise distance between the cumulative distribution

function of the conditional and of the marginal distri-

bution. One can calculate it directly on r.

KS = sup
k∈{1,...,N}

| k
N
−

k∑
i=1

ri∑N
j=1 rj

| (20)

The test statistic is in O(N) because it needs one pass

over r. The deviation is then averaged over M Monte

Carlo iteration results. Hence, the resulting complexity

is

C(dev) ∈ O (N + (|S| ·N) ·M) (21)

In our scenario, α and M are external parameters and

are constant for all our experiments. In addition, sub-

space search is effective on samples of the data. There-

fore, we subsample to a constant number of objects, i.e.,

N is a constant. In this case, (21) and (18) reduce to

C(dev) ∈O(|S|) (22)

C(index) ∈O(|D|) (23)

Substituting (22) into (19) and (23) and (19) into (17)

gives

C(GMD) ∈ O(|D|2 · log(|D|) + |D|2 · |S|+ |D|) (24)

In practice, the constant factors for sorting are much

smaller than for the deviation calculation. For high-

dimensional data sets, we can also assume that |S| �
|D|. This is because GMD searches for lower-dimen-

sional projections of D. Hence, the runtime of GMD

mainly depends on the number of subspaces the devia-

tion is calculated for. It is quadratic in the number of

dimensions.

5.3.2 Complexity of outlier detection in subspaces

The number of subspaces output is at most |D|. Con-

sequently, the subsequent outlier detection algorithm is

applied to |D| subspaces. The complexity of outlier de-

tection algorithms usually depends onN . Consequently,

the runtime complexity of the subspace search is small

compared to the outlier detection because D � N for

most applications. Our experiments will confirm these

theoretical considerations.
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Fig. 2 Experimental results for 24 different synthetic data sets. The figure reports the average AUC and standard deviation
grouped by the data set dimensionality

6 Experiments

We evaluate the dimension-based approach with exper-

iments on synthetic and real world data sets. Our fo-

cus is to compare the dimension-based framework with

purely correlation-based approaches.

6.1 Experiment setup

We benchmark GMD against HiCS [7], CMI [19] and 4S

[18]. For comparability to earlier benchmark results [7],

we use LOF [3] as the outlier detection model. In addi-

tion, we also run LOF on the Full Space (FS) and on

randomly selected three-dimensional subspaces (RS3)

as a baseline. For RS3, we set the number of subspaces

to the data set dimensionality. We provide data sets,

preprocessing scripts, our reference implementation and

our experiment framework to facilitate the reproducibil-

ity of our experiments1. For CMI and 4S, we use the

respective implementations provided by the authors.

The deviation function used by GMD and by HiCS

relies on two parameters. α sets the expected number

of data objects in a subspace slice after conditioning on

C−i. M is the number of Monte Carlo iterations. We

use the settings α = 0.1 and M = 100 for both GMD

and HiCS.

The HiCS framework as well as CMI make use of two

search beams to identify the subspace candidates. The

first beam stores the subspaces with highest contrast for

each Apriori level and is used to generate the candidates

for the next iteration. Its size is the candidate cutoff

parameter. Increasing candidate cutoff can expand the

coverage of the search space. However, choosing a good

cutoff for high dimensional data is not intuitive. The

second beam limits the number of subspaces in the fi-

nal result which we refer to as output cutoff . In the

1 https://www.ipd.kit.edu/trittenb/gmd/readme

synthetic data benchmark, we follow the author recom-

mendations and set candidate cutoff for HiCS to 500

and for CMI to 400. The number of output subspaces

is set to the top-100 subspaces with the highest con-

trast in both cases. For real world data, we increase

candidate cutoff to 5000 and output cutoff to 1000 to

better cope with the high number of dimensions. For

4S, we use the version with Multi-Pruning. For all ap-

proaches, we remove duplicate subspaces in the result.

In each run of LOF, we vary the MinPts parameter

from 10 to 100 with step size 10 and take the result with

the highest AUC. This reduces the dependence of the

result on the LOF parameter setting.

6.2 Evaluation metrics

We use different metrics to evaluate a subspace-search

method.

6.2.1 Search-result quality

We use the widely used Area Under the ROC Curve

(AUC) to assess the outlier ranking. This metric de-

scribes how well outliers are ranked relatively to inliers.

6.2.2 Robustness

A subspace search is robust if it is insensitive to (a)

the properties of the data set and (b) to the search

parameter settings. For synthetic data sets, to study

(a), there are three different versions created for each

dimensionality independently. For real world data, we

create several versions of an initial data set by sampling

down to different outlier percentages multiple times.

Each of the data sets created is used as a fair compar-

ison between subspace search approaches. We deem an

approach more robust if it outperforms its competitor

on most of the data sets.
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Table 3 Average number of Subspaces returned by the subspace search for the synthetic data sets

Dataset GT GMD HiCS 4S CMI FS RS3

10-dim 3 5 100 6 54 1 10
20-dim 6 14 100 12 100 1 20
30-dim 9 22 100 20 100 1 29
40-dim 11 31 100 29 100 1 40
50-dim 14 40 100 38 100 1 49
75-dim 23 57 100 60 100 1 75
100-dim 29 78 100 80 100 1 100
250-dim 115 139 100 111 100 1 250

6.2.3 Number of subspaces

Recent research [2,15] has observed that outlier-detec-

tion methods should not only return the outliers them-

selves, but also additional information allowing to com-

prehend these results. With object-based methods in

particular [11,16,26], this additional information for an

object is a subspace where it is outlying. If the number

of subspaces explaining the outlierness of all objects in

the result is small, then the result as a whole is easier

to comprehend, i.e., has higher interpretability. In addi-

tion, a small number of subspaces returned is good be-

cause of the multiplicative impact on the runtime. This

is because outlier detection runs on each subspace.

6.2.4 Runtime

Subspace search and outlier detection are decoupled

processing steps. We therefore measure the runtimes

separately. We limit the runtime comparison to our

R/C++ implementation of GMD and HiCS. This makes

both algorithms directly comparable. Runtime compar-

ison with different programming languages and frame-

works used in [18,19] is not meaningful.

6.3 Experiments on synthetic data

We use synthetic data sets which several outlier related

benchmarks [7,14,5,25] have used. The data has di-

mensionalities from 10 to 100. For each dimensionality

there are three randomly generated data sets. In each

of them, randomly selected subspaces of dimensionality

between 2 and 5 are artificially correlated. In each of

these subspaces, 5 objects have been placed that de-

viate from the general distribution in that subspace.

These objects are placed in a way that they are not

visible in any of the lower-dimensional projections of

that subspace. Each outlier can also appear in several

subspaces.

We also use three randomly generated data sets of

250 dimensions. There, 50 dimensions contain 2-5 di-

mensional correlated subspaces with 6 outliers. We have

placed them in each subspace in the same manner as

with the other synthetic data sets. Among the remain-

ing 200 dimensions, two-dimensional subspaces of high

correlation have been created without any additional

outliers.

Search-result quality and robustness: Figure 2 graphs

the average AUC and its standard deviation. For all

versions of the data sets, the dimension-based frame-

work outperforms the competitors. Hence, GMD is the

more robust approach. For data sets between 10 and

100 dimensions, GMD identifies the relevant subspaces

almost perfectly. As expected, the full space approach

is only slightly above a random guess with increased

dimensionality, as outliers are hidden in the full space.

For the 250-dimensional data sets, HiCS fails to identify

relevant subspaces. A reason might be that highly corre-

lated two-dimensional projections take over the search

beam and prevent HiCS from identifying the important

subspaces that contain outliers. GMD instead identifies

a large share of the relevant subspaces.

Number of subspaces: Table 3 lists the number of sub-

spaces identified by the search approaches. The ground

truth (GT) is the number of subspaces that are known

to be artificially correlated.

GMD achieves higher AUC with significantly fewer

subspaces than HiCS. It might be possible to improve

HiCS by optimizing its cutoff parameters. In general,

however, we expect the AUC to decline with a reduced

search beam size due to inflated search results (cf. Ex-

ample 3). For example, setting output cutoff = 20 for

the 30-dim data set, which is the number of subspaces

GMD returns, worsens the AUC of HiCS. CMI also

makes use of cutoff parameters, and the interpretation

of the results is similar to the one of HiCS. The number

of subspaces for 4S is comparable to GMD. However,

results are significantly worse.

Runtime: Average runtimes are less than 300 seconds

for most of the data sets. This is low compared to the

real world experiments. The runtime comparison on
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Fig. 3 Experimental results on high dimensional real world data sets. Each data set is resampled multiple times to different
percentages of outliers to produce a meaningful benchmark

synthetic data sets is not overly insightful because of

a small number of observations and the small search

beam size. We provide a more extensive runtime eval-

uation for real world data in Section 6.4.

6.4 Experiments on real world data

Benchmarking outlier-detection methods on real world

data is challenging, as there are only few data sets pub-

licly available. Most of these data sets are adapted from

related disciplines, such as classification, by downsam-

pling one class to represent the rare, outlying objects.

This preprocessing introduces a bias. The resulting data

set depends on which class is selected as the outlying

class and on whether the downsampling actually pro-

duces outliers or just decreases object densities.

Search-result Quality: Recently, Campos et al. have

pusblished a study on outlier-detection benchmarking

[4]. They propose to do the downsampling in different

ways, e.g., regarding different outlier percentages. In

this way, the benchmark runs on multiple versions of

the same data set, to make the preprocessing bias vis-

ible. From the benchmark repository used in [4], only

the data sets Arrhythmia and SpamBase have a suf-

ficient number of dimensions to be considered high-

dimensional. So we use further data sets. These are the

Human Activity Recognition (har) data, the SECOM

data set and the musk (version 2) data set from the UCI

Machine Learning Repository [13]. We preprocess them

similarly to [4]. Table 4 features the number of observa-

tions before preprocessing and the dimensionalities of

the data sets. Table 5 lists the number of variants af-

ter the downsampling. We run our experiments on the

normalized versions of the data sets to be able to also

compare our approach to 4S and CMI.

Due to the large number of individual experiment

settings described so far, we sample data sets with N >
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Table 4 Average number of Subspaces returned by the subspace search for the real world data sets

Dataset |D| N GMD HiCS 4S CMI FS RS3

Arrhythmia 260 452 198-214 1000 42-57 1000 1 257-259
har 561 10299 471-493 1000 19-27 1000 1 559-561
musk2 166 6598 146-157 1000 11-14 1000 1 165-166
secom 538 1567 300-307 1000 67-75 1000 1 421-422
SpamBase 58 4601 39-47 1000 12-30 1000 1 54-57

Table 5 Listing of the percentage how often the algorithm performs best on a variant of a dataset. The second column (#Var)
is the number of resampling variants of the dataset

Dataset #Var GMD HiCS 4S CMI FS RS3

Arrhythmia 40 0.45 0.10 0.15 0.02 0.10 0.18
har 30 0.00 0.30 0.00 0.00 0.33 0.37
musk2 30 0.93 0.00 0.03 0.00 0.00 0.03
secom 20 0.10 0.10 0.55 0.00 0.05 0.20
SpamBase 40 0.92 0.00 0.00 0.00 0.00 0.08

1000 down to 1000 observations to reduce runtime for

the subspace-search approaches.

Figure 3 graphs the resulting AUC over the different

versions of the same data set. The results are visualized

as boxplots for different percentages of outliers. GMD

yields the best performance on the Arrhythmia, musk2

and SpamBase data sets. On the har data set, none of

the subspace-search approaches is significantly better

than FS or RS3. For the secom data set, the correlation-

based 4S results in a better search-result quality than

GMD. However, all approaches are close to an AUC

of 0.5, i.e., results are not much better than a random

outlier ranking.

Robustness: Besides the distribution of AUC values

over all data sets, it is important to also study the direct

comparison on each version of the data set separately.

Table 5 compares the various algorithms. GMD is the

most robust one on Arrhythmia, musk2 and SpamBase.

4S is the most robust approach on the secom data set.

For har, the most robust approach is the baseline RS3

followed by the baseline FS.

Number of subspaces: We now look at the number

of subspaces identified with each approach. For HiCS

and CMI to deal with high-dimensional data, the cut-

off parameters must be large enough. However, find-

ing a good values for these is not intuitive, and the

choice can only be evaluated ex-post. Due to the long

runtimes, we have refrained from trying variations ex-

haustively. In our experiments, the number of spaces

output is smaller for GMD than for HiCS and CMI.

4S yields the smallest number of subspaces. However,

the small number of subspaces comes with a low search-

result quality for many of the data sets. We hypothesize

that this is because 4S might miss relevant subspaces

and only detects a few outliers correctly. In this case,

the low search-result quality foils the benefit of a small

number of subspaces.

Runtime: For the real world data sets, we also mea-

sure the runtime of the subspace search and of the

actual outlier detection. Figure 4 depicts the average

runtimes. GMD results in a lower runtime overall for

all data sets when comparing to HiCS. The reason is

the number of subspaces that need to be searched for

outliers and the complexity of the outlier-detection al-

gorithm. For LOF, the runtime is in O(N2), i.e., it in-

creases with the number of observations. Because the

outlier-detection algorithm needs to run on every sub-

space, their number affects the overall runtime signif-

icantly. The time to search for subspaces in turn is

almost negligible for an increasing number of obser-

vations. Other approaches that produce only few sub-

spaces, such as FS and 4S, can also result in low run-

times for subsequent outlier detection. This is particu-

larly true since subspace search is effective and efficient

on samples of the data.

7 Conclusions

Purely correlation-based subspace search aims to find

all subspaces of a data set where outliers are likely to

occur. These approaches use the correlation of the sub-

space dimensions to quantify the potential that a sub-

space contains outliers. A major weakness of these ap-

proaches is that correlation is independent of the spe-

cific subspace dimensions. As a consequence, some of

the data set dimensions might not be represented in

the search result.

In this paper, we have proposed a dimension-based

evaluation of subspaces, allowing for a more differen-

tiated view on a subspace. Using this evaluation, we
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have introduced a notion of dominance, to make sets

of subspaces directly comparable. We have proposed

GMD, a heuristic that builds upon the dimension-based

framework. It is a greedy algorithm that identifies the

relevant set of subspaces. Comprehensive experiments

on synthetic and real world data sets demonstrate the

advantages of our dimension-based approach for high-

dimensional data sets.
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