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Abstract

Finding similar trajectories is an important task in moving object databases. However, classical similarity
models face several limitations, including scalability and robustness. Recently, an approach named t2vec
proposed transforming trajectories into points in a high dimensional vector space, and this transformation
approximately keeps distances between trajectories. t2vec overcomes that scalability limitation: Now it is
possible to cluster millions of trajectories. However, the semantics of the learned similarity values – and
whether they are meaningful – is an open issue. One can ask: How does the configuration of t2vec affect
the similarity values of trajectories? Is the notion of similarity in t2vec similar, different, or even superior
to existing models? As for any neural-network-based approach, inspecting the network does not help to
answer these questions. So the problem we address in this paper is how to assess the meaningfulness of
similarity in deep trajectory representations. Our solution is a methodology based on a set of well-defined,
systematic experiments. We compare t2vec to classical models in terms of robustness and their semantics
of similarity, using two real-world data sets. We give recommendations which model to use in possible
application scenarios and use cases. We conclude that using t2vec in combination with classical models may
be the best way to identify similar trajectories. Finally, to foster scientific advancement, we give the public
access to all trained t2vec models and experiment scripts. To our knowledge, this is the biggest collection
of its kind.

Keywords: Trajectory Similarity, Trajectory Embedding Models, Moving Object Databases, Trajectory
Databases, Trajectory Clustering, Deep Learning

1. Introduction

Advances in mobile computing have led to the
generation of massive trajectory data [1]. A trajec-
tory of a moving object usually is a sequence of GPS
points. Finding similar trajectories is an elemen-
tary but important task in moving object databases
(MODs). It is the foundation for downstream tasks
such as trajectory clustering [1, 2, 3, 4, 5], move-
ment pattern mining [6], finding popular routes [7]
and discovering moving groups [8]. Different kinds
of similarity models have been proposed, including
longest common subsequence (LCSS) [9], edit dis-
tance on real sequences (EDR) [10], edit distance
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with real penalty (ERP) [11], model-driven assign-
ment (MA) [12], and DISSIM [13]. All of them have
been shown to be useful for some of the aforemen-
tioned tasks.

However, all these classical models face several
limitations. A very important one is scalability [14].
The classical models hardly scale to datasets larger
than several thousand trajectories[4, 15, 16, 17]. In
real-world scenarios however, the number of trajec-
tories usually is in the millions.

It also has been shown in [14] that similarity com-
putation among trajectories with the classical mod-
els has three other drawbacks in terms of robust-
ness. This is mostly due to their local matching
property, which matches the points of two trajec-
tories that are closer to each other than a thresh-
old. We illustrate these drawbacks with the follow-
ing scenarios: First are scenarios with non-uniform
sampling rates. This causes the GPS records to be
dense in some time periods and sparse in others.
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With the existing models, it is hard or even impos-
sible to identify similar trajectories if the sampling
rates are different. The second scenario is when
the sampling rate is low. Geo-tagged tweets or on-
line check-ins are examples of such data [18]. The
third scenario is when the data is noisy. Noise could
come from different sources such as “privacy” (i.e.,
intentionally perturbing GPS data) or accidentally,
due to, say, connection problems between the GPS
device and the satellites.

To overcome these limitations, the authors of [14]
adopted the idea of a similarity preserving embed-
ding of a dataset (trajectories in this case) into a d-
dimensional vector space. The approach is named
t2vec (trajectory to vector) and is based on deep
representation learning and sequence-to-sequence
models [19]. This means that, with the use of neural
networks, t2vec represents GPS-point-based trajec-
tories as d-dimensional vectors so that vectors close
to each other correspond to trajectories which are
similar.

This idea is well known, for example, in natu-
ral language processing (NLP). Word embedding
models such as word2vec [20] and Glove [21] have
gained lots of attention. They have recently be-
come key tools for many NLP tasks like part of
speech (POS) tagging [22], named entity recogni-
tion (NER) [23], image annotation [24] and machine
translation [19, 25, 26].

There is further research such as GRAIL [27] in
the area of time-series analysis which addresses the
problem of representation learning. They focus on
time-invariant shifts in time series and are not di-
rectly applicable to noisy data sets.

These approaches show the usefulness of embed-
ding models in general. But for t2vec we are not
aware of any research on the semantics of the sim-
ilarity values of the learned trajectory vectors. In
this paper, we aim at evaluating these semantics.
This is required to work with t2vec in the future in
meaningful ways. This includes evaluating research
questions such as: What do similarity values com-
ing from this new embedding model mean? How
do the parameters of the embedding model change
the meaning of similarity values? For example, is
it possible that in one model two trajectories which
are 0.5-similar should be considered similar, and in
another model trained with different parameter set-
tings the same value implies dissimilarity? – These
questions are building blocks for downstream tasks
like trajectory clustering. Answering them helps to
understand the notion of similarity in t2vec and ul-

timately to answer how good an embedding-based
trajectory similarity model is.

On the other hand, classical similarity models
have exact definitions of similarity, allowing hu-
mans to understand the logic behind the definitions.
But when dealing with neural networks in general,
the trained model is not readily perceivable by hu-
mans. So it is necessary to compare non-embedding
(definition-based) classical models and embedding-
based models. In the comparison we are evaluating
the following important questions: What types of
relationship exist between similarity values coming
from an embedding model and a non-embedding
model? What are the causes of the similarities and
differences between them? Can we find mappings
between similarity values of embedding models and
non-embedding ones? Which model yields better
results in downstream tasks, such as clustering of
trajectories?

To our knowledge, there is not any prior work
in the area of moving object databases which ad-
dresses these questions. Work most related to ours
is in the area of word embedding models [28]. How-
ever, their method is not directly applicable to tra-
jectory embedding models, as there are fundamen-
tal differences between word embeddings and tra-
jectory embeddings, which we will point out in the
related work section.

Challenges. Several issues arise when studying
trajectory similarity models: Since the authors of
[14] choose the parameters of embedding model ex-
perimentally, it remains to be investigated on how
to choose the parameters of the new embedding
model, and how this will affect the similarity values
of the model. How can we compare models with
different parameters, and how can we compare dif-
ferent models in general? Finally, how to choose an
unbiased evaluation dataset?

Since the t2vec model highly depends on the pa-
rameter settings, we investigate the various com-
binations of its parameters to figure out how they
change the similarity values. This helps us to un-
derstand their semantics and to prepare for the next
step where we evaluate t2vec in downstream appli-
cations.

To our knowledge, there does not exist any
trajectory-similarity benchmark or test set which
let us quantify the quality of different models. This
makes evaluating the goodness of t2vec and com-
paring it to other models challenging.

Regarding the choice of an unbiased evaluation
dataset, different criteria may affect evaluation re-
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sults adversely. For example, we have to use a train-
ing set where the trajectory distribution is similar
to the entire dataset in every part of the full map.
Otherwise, we should not expect the model to ex-
tract equally meaningful representations of trajec-
tories on the whole map.
Contributions. Since embedding models such

as t2vec are based on neural networks, it is not
possible to understand the semantics of the learned
vectors and their similarity directly by evaluating
the underlying model. Our contribution is to pro-
pose a methodology to evaluate the meaningfulness
of the deep trajectory representations in t2vec. It
is two-fold: First, we evaluate how different pa-
rameter settings affect the similarity values of the
t2vec model. This includes all parameters, such as
the size of the training dataset and dimensional-
ity of the deep representation vector. To do this,
we first carefully build an evaluation set of trajec-
tory embeddings, with different parameter settings,
and then study the resulting distributions based on
statistical tests. We use two well-known trajectory
datasets, from Porto [29] and Beijing [30, 31]. We
conclude that the t2vec model is robust regarding
parameterization, by showing that the similarity-
value distributions are fundamentally very similar
between models trained with different parameters.

We then turn to downstream tasks. In order to
assess the goodness of t2vec, we compare it to base-
line and state-of-the-art classical non-embedding
models. Since in this paper we are employing high-
quality trajectory data, we work with the LCSS
[9] similarity model, which is the state-of-the-art
model for such data [14]. We use Dynamic Time
Warping (DTW)[32] as a baseline model. There
are other classical similarity models such as edit
distance with projections (EDwP) [18] that yield
better results on non-uniform and low sampling rate
trajectories, but dealing with such noisy trajecto-
ries is not the focus of this paper.

We evaluate the differences between t2vec and
the classical models, such as their similarity-value
distributions or the semantics of similarity used by
them. By systematic qualitative evaluation, we
identify different scenarios where the combination
of the t2vec and classical models give more mean-
ingful results than using them separately. The last
part of the evaluation is quantifying the models in
identifying similar trajectories, i.e., their capabil-
ity of trajectory clustering. It turns out that t2vec
is better when clustering trajectories while at the
same time calculates trajectory similarity orders of

magnitudes faster than classical models.
As a final contribution, we make all the created

models and evaluation scripts publically available
on our website1. To our knowledge, this is one
of the biggest collections of trajectory-embedding
models trained with systematically different param-
eter settings. Building the models has taken more
than a month using a modern machine; hence, it
is a valuable resource for all researchers working in
this area.

Lastly, our findings regarding deep learning
frameworks in trajectory databases are not limited
to this specific domain. In fact, our evaluation
method can target any deep learning framework
to provide better insights into the trained models.
This is because we have not made any prior as-
sumption concerning the underlying deep learning
framework.

2. Fundamentals and Notation

In this section, we first review classical similarity
models, and then we introduce the t2vec model and
its corresponding parameters. Finally, we define the
default parameter setting which we use throughout
this paper.

2.1. Trajectory Similarity in Moving Object
Databases

A Moving Object Database (MOD) is a database
that can represent and query moving objects, i.e.,
objects whose position is changing over time. A
trajectory T ∈ T in a MOD is defined as T =
((p1, t1), . . . , (pn, tn)), where pk ∈ R2 is a location
in a 2-dimensional Euclidean space (i.e., map), and
tk ∈ R is a time-stamp. A route R ⊂ R2 is a con-
tinuous curve in the Euclidean plane.

The question of how similar two trajectories
(T 1, T 2) in an MOD are, is not trivial, for several
reasons. Figure 1 shows three such examples in
which it is not obvious whether we should deem
the two trajectories similar or not. On the figures,
the arrows represent the trajectories and the sphere
represents the border of a city. For the first fig-
ure, the question is whether two parallel trajecto-
ries which are almost identical but shifted in space
are similar or not. For the second one, it is whether
two almost identical trajectories only going to the

1http://dbis.ipd.kit.edu/2652.php
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opposite direction are similar. Finally, are two tra-
jectories both going from the side of the map into
the center similar or not?

Figure 1: Examples for Ambiguous Semantics of Trajectory
Similarity

2.2. Basic Trajectory Similarity Models

The näıve approach, to calculate the Euclidean
distance (dist) at every point in time and use
the sum of these values

∑
k∈{1,2,...,n} dist(p

1
k, p

2
k) as

similarity, fails for several reasons. First, the points
in time are not necessarily the same in the two tra-
jectories, hence the location comparison may be bi-
ased. Second, and this is almost always the case in
reality, if the lengths of the trajectories are differ-
ent, one cannot use this formula at all.

To overcome these problems, warping-based dis-
tances have been proposed. They match the points
of two different trajectories even when their times-
tamps are not equal, or their lengths are not the
same. Well-known representatives are: DTW,
LCSS, edit distance on real sequence (EDR) [11],
and edit distance with real penalty (ERP) [10]. In
this paper, we work with the DTW distance, a
prominent trajectory similarity model.

DTW Fundamentals. Dynamic Time Warping
(DTW) is an algorithm used to measure the dis-
tance between two time-series. Trajectories of mov-
ing objects are sequences of GPS points and there-
fore they can be interpreted as time-series. To ob-
tain the distance between two trajectories Ti and
Tj , DTW looks for the optimal match between the
points of Ti and Tj . The optimal match is the one
with minimal cost, where the cost is the sum of the
distances for each matched pair of GPS points.

Formally, the DTW operator is as follows:

DTW (Ti, Tj) =



0 if Ti and Tj are empty

∞ if Ti or Tj is empty

dist(pi1, p
j
1) + min(DTW (Tail(Ti),

Tail(Tj)), DTW (Tail(Ti), Tj)),

DTW (Ti, Tail(Tj)) otherwise

where Tail(T ) = (p2, . . . , pn) is the sequence of the
last n− 1 points in trajectory T (p1, p2, . . . , pn).

Since DTW is a distance measure, rather than a
similarity measure, the inverse of DTW distance is
used to calculate the DTW similarity as follows:

DTWsim(Ti, Tj) =
1

DTW (Ti, Tj)

However, [33] has shown that these warping-
based similarity models have other kinds of robust-
ness issues as well. As stated in the introduction,
these models consider the spatial proximity to align
points. This makes them error-prone in certain
cases which we explain in Section 4.

2.3. Advanced Trajectory Similarity Models

To overcome these robustness issues, the authors
of [34] have proposed an anchor-based model which
aligns the trajectories into fixed points called an-
chor points. They also have employed advanced
machine learning techniques together with histori-
cal trajectory data to transform the original trajec-
tories into ones with a unified sampling rate. Hence,
the similarity models mentioned previously can be
employed without explicitly dealing with the sam-
pling rate problem. However, the approach uses
hidden Markov models in which every state only
depends on the previous one. But this is not the
case in real-world scenarios. Moreover, this model
suffers from time-complexity issues even worse than
the previous ones. This also is the case for other
proposals such as EDwP, to tackle the problem of
data with low sampling rates. EDwP is threshold-
free, to dynamically interpolate the trajectories, by
using the idea of projections.

There exist other distance metrics in the area
of trajectory similarity which solely rely on the
shape of trajectories. This includes the Frechet
distance (FD) [35], symmetrized segment-path dis-
tance (SSPD) [36] and Hausdorf distance (HD).
However, since in MODs the direction of the move-
ment is important as well (rather than only the
shape of the trajectory), these shape-based models
are not the focus of this paper.

In this paper, we work with GPS data points
sampled at a high rate (i.e., location updates every
15 seconds) using a well-known trajectory dataset
[29] and the popular advanced similarity model
LCSS as a baseline. This baseline is in line with
previous work [14]. We now review LCSS and how
it calculates similarity values for trajectories.
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LCSS Fundamentals. LCSS is a variation of the
edit distance (ED) which, in contrast to the original
ED algorithm, allows some points of two trajecto-
ries to remain unmatched. Two parameters con-
trol the matching of the points between two trajec-
tories, ε and δ. ε controls the matching thresh-
old, i.e., how far two points can be away from
each other in space for the algorithm to match
them. δ determines how far one can go forward
in time in order to find a matching for a point.
This parameter usually is defined as a percentage
of the length of the trajectory in time. One defines
Head(T ) = H(T ) = (p1, p2, . . . , pn−1) as the first
n − 1 points in trajectory T (p1, p2, . . . , pn). The
LCSS operator now is as follows:

LCSSε,δ(Ti, Tj) =



0 if Ti or Tj is empty

1 + LCSSε,δ(H(Ti), H(Tj)),

if |pi:,n − pj:,m| < ε, |m− n| < δ

max(LCSSε,δ(Ti, H(Tj)),

LCSSε,δ(H(Ti), Tj)) otherwise

Based on the LCSS operator, the authors of [9]
have suggested the following formula for LCSS sim-
ilarity:

LCSSsimε,δ(Ti, Tj) =
LCSSε,δ(Ti, Tj)

min(n,m)

Here, n and m are the length of Ti and Tj re-
spectively. For LCSS parameters (i.e. ε and δ) we
follow the guidelines of the original paper [9] re-
garding the default values, i.e., ε = 400 meters and
δ = 20%. This means that the points of two tra-
jectories match if their distances in the x and y
directions are less than 400 meters, and they are
at most one-fifth of the full trajectory length away
from each other. For parameter ε, the guidelines
suggest to choose the standard deviation of dis-
tances between all pairs of points of two trajecto-
ries. We have calculated this number for 1000 tra-
jectory pairs in the Porto dataset and set ε to the
average of these numbers rounded to 100 meters.

2.4. Trajectory Embedding Model

The t2vec model is similar to the conventional
sequence to sequence (seq2seq) models. As intro-
duced in [19], a seq2seq model consists of two parts:
an encoder and a decoder, both of them being neu-
ral networks. As shown in figure 2, the encoder
encodes the input sequence x = 〈x1, x2, . . . , xn〉 to
vector v ∈ Rvdim, and the decoder decodes v into

the output sequence y = 〈y1, y2, . . . , ym〉. vdim is a
predefined parameter of the algorithm denoting the
dimensionality of the embedding space. EOS is a
special token which denotes the end of a sequence,
and ht denotes the hidden state of the decoder at
time t. In our case, the encoder encodes a trajec-
tory as a vector v, and the decoder is vice versa.

Figure 2: General seq2seq Model

To obtain a deep representation of the trajecto-
ries, t2vec first trains the neural networks. The
training of t2vec works as follows. Having a route
R and a trajectory of a moving object T , the ulti-
mate goal of the training is to maximize the prob-
ability of outputting the actual route when feeding
trajectory T into the neural network as input. This
can be intuitively written as follows (we explicitly
describe the loss function later in this section.):

Maximize P (R|T )

However, since a route consists of an infinite num-
ber of points, maximizing this probability is not fea-
sible. In contrast, if we have a good representative
of a route (i.e., a trajectory sampled at a high rate),
one can train the model, with the help of noise con-
trastive estimation, as follows. Suppose that Tb is a
trajectory sampled at a high rate and Ta is one with
a low rate. The training strategy can be modified,
to maximize the following conditional probability:

Maximize P (Tb|Ta)

Having a trajectory Tb sampled at a high rate,
by injecting two types of noise, namely downsam-
pling (ds) and distortion (dist), we generate cor-
responding low-quality trajectories. The procedure
is as follows: We have two sets of noise rates, one
for downsampling (Sds), and the other for distor-
tion (Sdist). For every combination of these two
sets, say r1 ∈ Sds and r2 ∈ Sdist, we do the fol-
lowing. We drop each GPS point of Tb with the
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downsampling probability r1 and we keep the point
with probability 1− r1. We distort each remaining
point with a distortion probability r2 and do not
distort it otherwise. Distortion means that we in-
ject Gaussian noise in the x- and the y-dimension of
the GPS points according to the following formula:

xnew = xold + C · dx, dx ∼ N (0, 1)

ynew = yold + C · dy, dy ∼ N (0, 1)

Here, (xnew, ynew) is the distorted position of the
point (xold, yold). C is a constant which is the mag-
nitude of the distortion, and dx and dy are two stan-
dard normal distributions. Therefore, if |Sds| = n
and |Sdist| = m, for each trajectory Tb we have
(n ∗m) low-quality trajectories T(a,1), . . . , T(a,n∗m)

which we can use for training. Then the objective
is to maximize the joint conditional probability:

Maximize

N∏
i=1

K∏
j=1

P (T ib |T i(a,j))

Here N is the size of the training set and K =
n ∗m.

As neural networks work with finite inputs and
outputs, one has to transform GPS points, which
have an infinite domain, to discrete tokens by grid-
ding the Euclidean space. This means that we di-
vide the city into grid cells with the help of the cell
size (cs) parameter of the model. Since the num-
ber of cells usually is large, and hence some cells
contain only a few GPS locations, one can limit the
cells used to the ones which contain a predefined
minimum number of GPS locations. We set this
threshold with the minimum cell frequency (mcf)
parameter. When the cells used (i.e., the vocab-
ulary) are identified, we give the sequence of cells
representing each trajectory as input to the seq2seq
model. In order to update the weights of the neural
networks, i.e., train the model, we need a loss func-
tion which should be minimized. In conventional
seq2seq models a baseline loss function is to mini-
mize the negative log-likelihood (NLL) product as
follows:

L1 = −log
m∏
t=1

P (yt|y1,...,t−1, x)

For each input trajectory sequence x and cor-
responding output trajectory y = 〈y1, . . . , ym〉 we
update the weights of the neural network based on
this minimum. However, NLL does not take into

account the spatial proximity of the cells, i.e., the
loss is the same if the corresponding cells are neigh-
bors or they are on the other side of the map, which
is obviously not reasonable. To overcome this issue,
we can use a weighted loss function in which the
weight of each cell is reversely proportional to the
distance from its corresponding target cell:

L2 = −
|y|∑
t=1

∑
u∈V

wuyt log
exp (WT

u ht)∑
u∈V exp (WT

u ht)
,

wuyt =
exp(−||u− yt||/θ)∑
v∈V exp(−||v − yt||/θ)

Where wuyt is the weight of cell u when decod-
ing target yt. W

T is the matrix which projects ht
into the vocabulary space and WT

u is the u-th row
of this matrix. Operator ||.|| denotes the Euclidean
distance between the centroid of the corresponding
cells and V is the set of all available vocabular-
ies. The parameter θ > 0 is used for scaling. If
θ → 0 then the loss function will be equal to NLL.
The bigger θ is, the heavier the loss function penal-
izes distance error. In order to decode each yt, we
need to summarize over the whole vocabulary twice
which makes this loss function very inefficient. To
overcome this, we are using the following approxi-
mate loss function which limits the number of used
cells in the sum operation to a fixed number K, i.e.,
only the K nearest neighbors of yt will be consid-
ered in the summarization:

L3 = −
|y|∑
t=1

∑
u∈Nk(yt)

wuyt =
exp(−||u− yt||/θ)∑

v∈Nk(yt) exp(−||v − yt||/θ)

NO = Nk(yt) ∪O(yt)

Nk(yt) is the set of K-nearest-neighbors of yt and
O(yt) is a randomly sampled data from V −Nk(yt)
containing 500 cells.

So far in the neural network, the input nodes
have represented the grid cells of the vocabulary.
This is not a suitable choice because such we ignore
the spatial proximity among cells, hence it takes
extra time to train the neural network. Neural
networks allow to use any number of input nodes,
hence we can extend the cell representations to mul-
tiple nodes for each cell, which lets the neural net-
work to be better optimized. For example, repre-

6



senting each cell with its centroid solves the spa-
tial proximity issue, but restricts the cell represen-
tation to two-dimensional vectors, i.e., two input
nodes in the neural network. Using the idea of the
skip-gram [37] model we create the context c(u) for
each cell u ∈ V . This means we sample cells which
are usually near to u in trajectory sequences. For
u

′ ∈ Nk(u) the probability of being sampled is:

p(u
′
) =

exp(−||u− u′ ||/θ)∑
v∈Nk(yt) exp(−||u− v||/θ)

Then, using skip-grams with the negative sam-
pling algorithm [20], we obtain a vector representa-
tion for each cell u based on its context c(u) by the
following formula:

Maximize
∑
u∈V

log p(c(u)|g(u))

g(u) ∈ Rcdim is the representation of cell u, where
cdim is a predefined parameter denoting the dimen-
sionality of the cell representation. Further discus-
sion on cell representation algorithms can be found
in [14]. Finally, after training the model with ap-
propriate parameter settings, we have an encoder,
which maps trajectories into vectors v ∈ Rn with
the property that similar trajectories have close cor-
responding vectors. Summing up, the encoder is a
function which embeds every trajectory of the MOD
into a vdim dimensional vector space, based on dif-
ferent parameters:

F (T, vdim, cdim, cs,mcf, Sds, Sdist, C) ∈ R|T |·vdim

2.5. Related Work in Embedding Models

As mentioned earlier, we are not aware of
any prior work on trajectory embedding mod-
els which investigates the semantics of similarity
values. There is similar work such as [28] for
word-embedding models. However, trajectory and
sequence-to-sequence models are different for the
following reasons:

• In word embedding models, words are the
building blocks. In t2vec, the building blocks
are grid cells, i.e., GPS positions mapped to
cells. A sequence of words is a sentence, and a
sequence of grid cells is a trajectory. Hence
t2vec rather has analogies with a sentence-
embedding model rather than with a word em-
bedding model in NLP. On the other hand, as

explained in the previous section, t2vec embeds
the grid cells as well, which would correspond
to a word embedding model.

• There is a fixed and finite number of words per
language. Hence, words are common among
different datasets, i.e., corpora. In contrast,
the grid cells are not common among different
datasets, so a t2vec model is only valid for a
trajectory dataset on which it is trained.

• In word embedding models, word combinations
(words found within a window of size n in a
text) are only weakly correlated. In t2vec in
turn, cell combinations are strongly correlated.
This is because one can only move from one cell
to a neighboring cell.

In the area of moving objects, there is other work
which has applied embedding models for applica-
tions other than similarity search. These include
human mobility identification [38], hierarchical re-
inforcement learning [39] and clustering [40]. All
these approaches show the usefulness of embedding
models in trajectory databases. But none of them
deals with trajectory similarity, which is the focus
of this paper.

3. t2vec Parameter Investigation

To understand the semantics of similarity values
in t2vec and to evaluate the robustness of t2vec in
this section, we investigate how the different pa-
rameters affect the similarity values among trajec-
tories. First, we state two hypotheses regarding
the similarity-value distribution of t2vec. Second,
we present our experimental setup, introducing the
dataset used and explaining how we evaluate the
similarity distributions. Then we evaluate each pa-
rameter one-by-one in separate subsections.

3.1. Investigation Objectives

The first contribution of this paper is to help to
understand the semantics of the similarity values
in the embedding space of t2vec. To this end, we
evaluate how different parameter values of the tra-
jectory embedding model affect the similarities. We
will see that similarity values in t2vec models can
differ significantly when trained with different pa-
rameters.

Hypothesis 1. The semantics of similarity values
can be very different for t2vec models trained with
different parameter settings.
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We plan to confirm this hypothesis by showing
that the similarity value distributions of models
trained with different parameter settings have dif-
ferent statistical characteristics (mean values, max-
imal similarity values, etc.) which make general
statements on the semantics of similarity values
meaningless. We present two intuitive examples of
such semantic differences between models in the fol-
lowing.

Example 1. Think of two models trained with dif-
ferent parameter settings, Model A with an average
similarity between two trajectories of 0.0 and Model
B with an average of 0.5. This means that the sim-
ilarity value is negative for roughly half of the pairs
in Model A and for hardly any pair in Model B. If
one now assumed that a negative similarity value
implied dissimilarity between the pair of trajecto-
ries, this assumption would have a highly different
meaning for the two models.

Example 2. Again think of two models trained
with different parameter settings. The highest sim-
ilarity score of a trajectory pair is 0.8 in Model A
and 0.5 in Model B. Saying that a pair with a
similarity above 0.7 is definitively similar could be
meaningful in Model A, but makes no sense in B.
This is because there is not even a single pair with
such a similarity value.

Although the similarity-value distributions of the
models trained with different parameter settings
can significantly differ in certain characteristics, we
hypothesize that t2vec is robust to parameteriza-
tion. This means that the distributions are all sim-
ilar in shape, with only their means and standard
deviations depending on the parameters. This leads
to our second hypothesis:

Hypothesis 2. While the parameters do influence
the similarity-value distributions of the t2vec model,
these distributions are almost identical when nor-
malized.

We plan to confirm the hypothesis as follows.
First, we standardize all distributions, so that they
have 0 mean and 1 standard deviation. We then
randomly draw 1000 values from all distributions
and compare the samples pairwise by means of the
two-sample Kolmogorov-Smirnov (K-S) test [41]
with 99% confidence. This test checks if two sam-
ples are drawn from the same distribution. We will
see that the K-S test cannot distinguish between the

distributions, so they are very similar. Our main
contribution in this section is that we conduct the
evaluation systematically for all the parameters al-
ready introduced.

3.2. Experimental Analysis

We now introduce the dataset used, details of
the evaluation procedure and the hardware specifi-
cation.

3.2.1. Dataset Description

We work with the Porto dataset, which is well
known in the area of MODs [29]. This dataset is
collected in the city of Porto for 19 months and
contains more than 1,700,000 trajectories. In line
with previous work [14], we remove all trajectories
whose length is less than 30.

Table 1 shows statistics of the remaining dataset.
From this remaining dataset, we choose the first one
million trajectories as our training corpus.

Table 1: Statistics of the PORTO Dataset Used for Training

# Points # Trajectories Mean Median
60,231,921 1,000,000 60.21 50

3.2.2. Experimental Setup

As we will see in this section, t2vec highly de-
pends on different parameters. To quantify the
effects of the different parameters separately, we
use a fixed default setting of the parameter values,
and for each parameter, we evaluate how the model
changes when only this parameter changes. The de-
fault parameter settings recommended in [14] are
the following: vdim = 256, cdim = 256, cs =
100meter, mcf = 50, Sds = [0, 0.2, 0.4, 0.5, 0.6],
Sdist = [0, 0.2, 0.4, 0.6], C = 50meter, and using
80% of the trajectories from the Porto dataset as
training data.

As explained in Section 2.4, we train the embed-
ding models with two types of noise, downsampling
noise, and distortion noise. We downsample the
points of each trajectory T with rates r1 ∈ Sds,
and for each downsampled trajectory, we apply dis-
tortion noise with rates r2 ∈ Sdist. So we have 20
noisy trajectories in the training set for each tra-
jectory T . 50 meters is the default value for the
constant part C of the distortion noise parameter.
When dividing Porto into grids, the default cell size
is 100 m, and the minimum frequency for a cell to
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be considered in the vocabulary is 50. This means
that cells with fewer than 50 GPS locations are not
considered when training the model. Both the di-
mensionality of the embedding space and the cell
representation is 256 by default.

The original paper uses Euclidean distance to
quantify the similarity of trajectory vectors. In this
paper, we use the cosine distance, for several rea-
sons. First, the Euclidean distance is not upper-
bounded and by definition heavily depends on di-
mensionality. This makes the comparison of sim-
ilarity values between models ambiguous, for ex-
ample when trained with different dimensionalities
of the embedding space. This is not the case for
the cosine distance, as its values are in the range
[-1,+1] for any space. Second, if we normalize the
vectors, it is computationally cheaper to calculate
the cosine distance between two vectors than the
Euclidean distance. Given millions of trajectories,
even a slight improvement in scalability saves a sig-
nificant amount of time.

To use another similarity model instead of the
one recommended by the authors we have compared
the similarity values between the two models. It
turns out that the similarity values are more than
99% correlated, and the biggest difference for any
trajectory pair between the two models is less than
0.02. So which one we use does not make a differ-
ence in qualitative terms.

In the remainder of this section, we present the
results for each parameter in the same way. For
each parameter, there will be two figures. The first
figure shows the similarity value distributions of the
models. For these plots, we randomly select 10000
trajectories from the full training set and calculate
the similarity values of each pair. To obtain the
frequency of different similarity values, we group
the similarity values in 0.01 intervals in the range
[−1,+1], and we count the number of similarity val-
ues belonging to each group. In the figures, the x-
axis shows the groups of similarity values and the
y-axis the relative frequency.

The second figures are the results for k-nearest
neighbor (KNN) queries. We again randomly
select 10000 trajectories {T1, T2, . . . , T10000}
from the dataset. For each trajectory Ti,
we calculate the 1000 nearest neighbors
{Ti,1, Ti,2, . . . , Ti,1000}, with their respective
similarity values {si,1, si,2, . . . , si,1000}. i.e. si,j is
the similarity of Ti and Ti,j . By definition, for any
0 < j < k <= 1000, si,j > si,k. We then calculate
the average similarity value for every set of KNN,

dubbed avg sim(k) = average(s : ,k). We plot the
results with different values of k on the x-axis and
avg sim(k) on the y-axis.

Since we group the similarity values for the first
plots, and k is an integer number in the second
plots, we would have discrete plots, but for better
visibility we connect consecutive values.

At this point, we are not trying to answer why
different parameters affect the similarity values as
they do; we are investigating how they affect the
values. This means that we are not making qualita-
tive statements. We are not making any statement
that any model is better or worse than another one,
but only to which extent they are different in their
similarity semantics, and how robust the model gen-
erally is.

3.2.3. System Specification

Our code is written in Python and Julia. We use
a modern machine with 16 CPU cores (2.4GHz),
132 GB RAM, Nvidia GeForce GTX 1080 GPU
(1.6GHz, 8.23TFLOPS).

3.3. Training Set Size

We now evaluate how the size of the training
set affects the similarity values and KNN query
results in t2vec. We compare five models which
are trained with differently sized subsets of the full
trajectory dataset. Sampling is performed by ran-
domly retaining different percentages of the full
dataset. Then the corresponding training set is
built by downsampling noise and distortion noise.
To capture the effect of solely the training-set size
on the models, we keep all other parameters fixed,
using the default values.

Figure 3a shows that the less training data we
use, the narrower and more right-centric the distri-
butions are, i.e., they have a smaller standard devi-
ation and a higher mean. This means that, as the
training-set size decreases, the vectors tend to be
denser in one part of the embedding space. On the
other hand, when using more trajectories for train-
ing, their vectors tend to fill the entire space. Af-
ter standardizing the distributions to check whether
they have the same fundamental shape, the K-S
tests confirm that this is indeed the case. Every p-
value is higher than 0.01. This means that the sta-
tistical test cannot reject the null hypothesis which
assumes that two sample sets come from the same
underlying distributions. So we can deem the dis-
tributions very similar.
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Regarding the KNN queries, figure 3b shows that
models trained on smaller training sets generally
have higher similarity values. This follows from
the generally higher similarity values which we have
seen in the first figure. Both the two models trained
on the largest (80 % and 100%) and the smallest
(20% and 40%) training sets are almost identical in
their KNN similarity values.

Figure 3: Training Set Size Similarity Value Distributions

Result interpretation. We conclude that our hy-
potheses hold for the size of the training set, as
the similarity-value distributions of the models are
clearly different, but almost identical when normal-
ized. This means that this parameter changes the
semantics of the similarity values for t2vec signifi-
cantly. However, the model is generally robust to
the size of the training set.

3.4. Dimensionality of the Embedding Space

When measuring the similarity of the trajectory
vectors, the number of dimensions they are embed-
ded in is a parameter which should strongly influ-
ence the similarity values. In this section, we train
the trajectory embedding model with hidden lay-
ers of different size, i.e., dimensionalities of the em-
bedding space. Again, all other parameters of the
model have the default values.

Figure 4a shows that the lower the dimension-
alities of the models, the narrower are their simi-
larity distributions. Similarly to the evaluation of
the size of the training set, the average similarity
value increases with smaller dimensionality as well.
In contrast to the visibly different distributions, we

again show that the distributions are fundamentally
similar, as the K-S test cannot distinguish the stan-
dardized distributions, with 99% confidence.

As shown in figure 4b, the higher the dimension-
ality of the embedding space, the lower are the sim-
ilarity values. We have expected this, as vector
spaces with lower dimensionality are denser when
filled with the same number of trajectory vectors
than those with higher dimensionality. This leads
to closer trajectories and higher similarity values
for the KNN queries.

Figure 4: Dimension Size Similarity Value Distributions

Result interpretation. The experimental results
on the dimensionality of the embedding space pa-
rameter confirm our hypotheses. The models are
very different in their similarity distributions; how-
ever, the results of the statistical tests show that
they are fundamentally very similar. Hence, the
model is robust regarding this parameter as well.

3.5. Dimensionality of Cell Representation

As explained in Section 2.4, not only the trajecto-
ries but the cells as well are embedded into a vector
space for better representation properties. We now
investigate how the dimensionality of the cell repre-
sentation affects the similarity values of the model.

Figure 5a,b show very similar patterns as for
the previous two parameters. Similarly, the aver-
age similarity value increases and the standard de-
viation decreases with smaller cell dimensionality.
Again, the normalized distributions are very simi-
lar, as all p-values in the K-S tests are way above
0.01.

Result interpretation. The cell dimensionality
parameter affects the similarity value distributions
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Figure 5: Dimensionality of Cell Representation Similarity
Value Distributions

very similarly as the embedding dimensionality pa-
rameter. An exception is that in this case, the dis-
tributions corresponding to two middle parameter
values are very similar, in contrast to the previ-
ous case, where they were more similar to the dis-
tributions corresponding to the extreme parameter
values. Nonetheless, the models are very different
in their similarity distributions, but very similar to
each other when normalized. This confirms both
hypotheses.

3.6. Grid Cell Size

When dividing the region into grid cells, we can
choose different cell sizes according to our needs.
The size of the grid cell directly influences the vo-
cabulary size; the smaller the grids are, the larger
the vocabulary tends to be. However, when the
grids are very small, and the cell minimum fre-
quency parameter is high, the vocabulary may be
small as well. Larger vocabulary size needs more
training time. So our investigation of this param-
eter could help to understand the performance-
accuracy tradeoff of the trajectory representations.

Figure 6a shows the similarity-value distribution
of the models trained with different cell-size param-
eters. It shows that, when the cells are small, the
distribution has high average similarity and small
standard deviation. This means that the vectors are
dense in one part of the vector space. When the cell
size, in turn, is high, the vectors fill a larger part of
the space. Both figure 6a, b show that the distri-
butions, as well as the KNN query values, change
only slightly above the grid cell size of 100 meters.

We test the normalized similarity distributions
pairwise with the K–S test. Every p-value again is
above 0.01. This means that the models are very
similar.

Figure 6: Cell Size Similarity Value Distributions

Result interpretation. The cell size parameter
affects the similarity-value distributions the most.
However, this is only true below a certain value,
which is roughly 100 meters. Above this value, the
distribution barely changes.

3.7. Effects of Loss Function

We evaluate the effect of the loss function in this
section. Note that the original loss function without
speed-up, introduced in Section 2.4, is not covered
in our experiments since it does not converge in
reasonable time on training sets of our size.

Figure 7a,b shows that the models trained with
different loss functions highly differ in their similar-
ity values. The conventional L1 approach embeds
the trajectories much closer to each other, as we
can see from its spiky distribution with high aver-
age similarity value. The two new approaches are
quite similar in their distributions; however, the L3

tends to have higher similarity values. The pair-
wise K-S tests confirm that the distributions are
indeed very similar when normalized. When com-
paring the L1 model with the other two however,
the p-values are only slightly above 0.01 (0.018 and
0.023, respectively). So its distribution is somewhat
different from the other two.

Result interpretation. The loss function affects
the distributions of the similarity values very much.
The approximate approaches embed the vectors
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Figure 7: Loss Function Similarity Value Distributions

more evenly in the space than the NLL based train-
ing, so the later tend to have higher similarity val-
ues.

3.8. Summarizing Parameter Effects

Our evaluation in this section has confirmed the
two hypotheses from Section 3.1. We have shown
that different parameter settings and loss functions
indeed affect the value distributions of embedding
models significantly; hence, the semantics of the
similarity values can be very different for different
models. This answers the question from the intro-
duction of this paper as well: It is indeed possible
that a similarity value of 0.5 can imply both sim-
ilarity and dissimilarity, depending on the model.
However, at the same time, all distributions have
the same abstract bell shape. This remarkable ro-
bustness implies that the user can build a t2vec
model with any parameter settings according to her
needs, without having to worry about the model be-
ing distorted.

3.9. Further Experiments with the T-Drive Dataset

The previous sections have confirmed the two hy-
potheses from Section 3.1 when training the model
on the Porto dataset. Although this is useful for
individuals working with this specific dataset, in or-
der to generalize our findings, we aim to show that
the results are independent of the training dataset.
In this section, we show that our findings hold for
other real-world datasets as well.

In order to do so, we use another well-known tra-
jectory dataset to train the t2vec model on, the T-

Drive dataset 2 [30, 31]. This dataset contains all
trajectories of 10357 taxis in Beijing during a one
week period. The total number of GPS points is
about 15 million, and the total distance of trajecto-
ries is about 15 million kilometers. The total num-
ber of trajectories during the week is 68122. Out of
these trajectories, we used 60000 and 5000 random
trajectories as the training and validation set, re-
spectively. In order to compare the results with the
ones from the Porto dataset, we set the model pa-
rameters to their default values. This means that
the cell size parameter is 100 meters, resulting in
40000 tokens (i.e., vocabularies). To be fair in our
comparisons, we use the default parameter setting
for t2vec as follows: vdim = 256, cdim = 256, cs =
100meter, mcf = 50, Sds = [0, 0.2, 0.4, 0.5, 0.6],
Sdist = [0, 0.2, 0.4, 0.6], C = 50meter, and we use
80% of the trajectories from the T-Drive dataset as
training data. We conduct the same experiments
with the model trained on the T-Drive dataset as
in Section 3. The results are presented in Figure 8.

Figure 8: Different Datasets Similarity Value Distributions

Figure 8 shows how the underlying dataset affects
the similarity values of the corresponding models.
The similarity values obtained from the Beijing
dataset tend to be higher than the ones of the Porto
dataset. However, the shapes are very similar. Ap-
plying the K-S test confirms that two distributions
are almost identical when normalized. As for the
KNN queries, we can see that the model trained

2Available at https://www.microsoft.com/en-
us/research/publication/t-drive-trajectory-data-sample/
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on the Beijing data has higher average similarity
values. We think that these differences are conse-
quences of the different training sizes of the two
models. If we compare the model trained on the
Beijing dataset to a model trained on the Porto
dataset with a similar number of trajectories, the
results are almost identical (see Figure 3).

Result interpretation. Our results show that
our hypotheses are independent of the underlying
dataset, as the similarity values obtained from two
different datasets are very similar. This means that
the semantics of similarity in the t2vec model is ro-
bust against using different training datasets.

4. Comparing t2vec to Classical Models

In this section, we compare the new embedding-
based trajectory-similarity model to classical mod-
els. To this end, we use the DTW and LCSS simi-
larity models introduced in Section 2.2 and 2.3. It
has been shown that LCSS constantly performs bet-
ter than DTW, especially when working with noisy
data, and it is considered the current state-of-the-
art similarity model in trajectory databases [9, 14].
Hence, for qualitative comparisons, we only com-
pare t2vec to LCSS. For general comparisons such
as distributional differences and scalability, we com-
pare t2vec to both LCSS and DTW.

It is not trivial how one can compare two simi-
larity models since we are not aware of any exist-
ing similarity-value benchmark. Neither is there a
method to quantify the goodness of a model. Hence,
to learn the differences between t2vec and LCSS we
do a three-fold comparison, explained in the follow-
ing.

First, we compare their scalability and similarity-
value distributions and compute their correlation.
Second, we conduct a systematic qualitative com-
parison of the two models and study why the ob-
served differences occur. Third, we cluster trajec-
tories based on different models and evaluate the
clustering results. Based on all these comparisons,
we draw conclusions regarding the goodness and ap-
plicability of the models in different use cases and
real-world scenarios.

4.1. Distributional Differences

Now we compare the similarity-value distribu-
tions of t2vec, LCSS, and DTW. In Section 3, we
have already evaluated how the parameters affect
the t2vec model. It turns out that LCSS and DTW
similarity distributions are different.

Figure 9 shows the distributions. As a result of
how LCSS calculates the similarity, most LCSS sim-
ilarity values are exactly 0. This is not the case
for t2vec, where the values are continuously dis-
tributed between [−1,+1]. This property lets us
compare two trajectory pairs with low similarity
scores in the t2vec case, but not in the LCSS case
because their corresponding similarity is 0.0 with
LCSS. This makes t2vec more robust in terms of
the number of comparable trajectory pairs. Note
that DTW does not have an upper bound by its
formal definition. However, in order to make the
comparisons more meaningful, we map DTW simi-
larity values to the [0, 1] interval.

In general, higher t2vec scores should correspond
to higher LCSS and DTW similarity. To quantify
the similarity between the models, we calculate the
Pearson correlation of the corresponding similarity
values. These values are 0.381 and −0.006 for LCSS
and DTW, respectively. This means that t2vec sim-
ilarity is moderately correlated to LCSS, but not at
all to DTW. DTW does not correlate with LCSS
either (−0.016). Considering that LCSS has been
proven to be a better trajectory similarity model
than DTW, we conclude that DTW is just not suit-
able for noisy real-world data such as the Porto
dataset.

Figure 9: LCSS and t2vec Similarity-Value Distributions

4.2. Runtime Comparison

In this section, we compare the models regarding
scalability. Figure 10 shows our runtime results.
To obtain these results, we have randomly sampled
10000 trajectories from the Porto dataset and cal-
culated all pairwise similarity values using t2vec,
LCSS, and DTW models. We calculate the simi-
larities using both CPU and GPU for t2vec. For
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LCSS and DTW, because of the unequal length of
the trajectories, GPU does not speed up the calcu-
lations.

Figure 10: Runtime for t2vec, LCSS and DTW Models

The results show that t2vec calculates trajectory
similarities 31-37 times faster than LCSS on aver-
age. This number can be even bigger with longer
trajectories, since the runtime of LCSS is quadratic
with the length, in contrast to t2vec with a linear
dependency. The same holds for the DTW model as
well, since its runtime is almost identical to the one
with LCSS. Using GPU it has taken 2184 seconds to
calculate all similarity values with t2vec, with CPU
2645 seconds. These numbers are 79122 and 77986
for LCSS and DTW, respectively. However, there is
an additional overhead for the t2vec model, which
is to train the model. This has taken 37341 seconds
on average, of all trained models in Section 3. We
can see that, even with this overhead, and even for
such a small number of trajectories as 10000 (less
than 1% of all trajectories in the dataset), it has
taken less than half the time to calculate the simi-
larities with t2vec compared to LCSS and DTW.

The total runtimes are quadratic in the number of
trajectories we want to compare. This means that
the more trajectory similarities we calculate, the
bigger is the runtime benefit for t2vec. For exam-
ple, for 100,000 trajectories it would take about 27
times more time to calculate the similarities with
the classical models. On the other hand, if we
need to calculate the similarities of less than several
thousand trajectories the classical models can do it
faster, because of the overhead of model building.

4.3. Qualitative Comparison

In this section we give a systematic comparison
of the LCSS and t2vec models.

In order to do so, we assign the similarity val-
ues of t2vec and LCSS models into similarity value
groups ”low”, ”medium” and ”high”. The ”low”
group contains the low similarity values ([−1, 0.3]
and [0, 0.2] for t2vec and LCSS, respectively), the
”medium” group includes the medium similarity
values ([0.3, 0.6], [0.2, 0.5]) and ”high” group con-
tains high similarity values ([0.6, 1], [0.5, 1]) of each
model. This divides the similarity space into a 3∗3
grid, see Figure 11.

Figure 11: Heatmap Obtained by Similarity Groups: Low,
Medium and High

We count the number of trajectory pairs assigned
to each of these 9 grid cells. A brighter cell color
stands for a higher number of trajectory pairs. Note
that we use the log scale of the numbers to color the
cells.

In each of the following subsections we present
one case of Figure 11. We aim to understand why
such trajectory pairs occur at such specific intervals
of similarity values.

4.3.1. Low LCSS, Low t2vec Similarity Values

In this case, both similarity values are low. It is
easy to understand which kind of trajectory pair be-
longs to this group. As the examples in Figure 12
show, they do not or only slightly intersect, their
shape is different, and they go to different direc-
tions. Both models understand that such trajectory
pairs should have low similarity scores.
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Figure 12: Low LCSS, Low t2vec examples

Figure 13: Low LCSS, Medium t2vec examples

4.3.2. Low LCSS, Medium t2vec Similarity Values

The case when the LCSS score is low, but the
t2vec score is in the medium range is much more
interesting. We can see in Figure 13 that again the
two trajectories intersect only slightly if at all, but
tend to look similar. With this, we mean that either
their shape or their vector from start to endpoint
is similar. This means that, in contrast to LCSS,
the t2vec model is able to capture such information,
even when the respective points are far from each
other.

4.3.3. Low LCSS, High t2vec Similarity Values

Figure 14: Low LCSS, High t2vec examples

When the LCSS score is low, and the t2vec score
is in its highest interval, the examples show a spe-
cific pattern, see Figure 14. These trajectory pairs
have small intersections at one end of the trajecto-

ries, they look similar, and their other end is close
to each other. This means that, if the t2vec score is
high, both ends of the trajectories are close to each
other.

4.3.4. Medium LCSS, Low t2vec Similarity Values

Figure 15: Medium LCSS, Low t2vec examples

In the case of medium-range LCSS values and
low t2vec values the examples, such as the ones on
Figure 15, show a quite specific pattern. These
are trajectory pairs which intersect on a long
sub-trajectory but have substantially distinct sub-
trajectories as well. In the meantime, their shape
and start and endpoints are very different.

4.3.5. Medium LCSS, Medium t2vec Similarity
Values

Figure 16: Medium LCSS, Medium t2vec examples

In the middle of the grid, the same trend appears
that we have seen in the section on low LCSS and
medium t2vec scores, but this time with a substan-
tial intersection between the two trajectories. This
means that, as shown in Figure 16, the trajecto-
ries not only intersect but they look similar as well.
However, their start and endpoint are not necessar-
ily close to each other.

4.3.6. Medium LCSS, High t2vec Similarity Values

The description for the previous case holds for
this case as well, with one difference. Here, not only
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Figure 17: Medium LCSS, High t2vec examples

the shapes are similar but the start and endpoint
of the trajectories are both close to each other, if
not the same. Again, as in the previous high t2vec
score section, the intersections tend to be at the
beginning or at the end of the trajectories, or at
both ends. Figure 17 features examples of this case.

4.3.7. High LCSS, Low t2vec Similarity Values

Figure 18: High LCSS, Low t2vec examples

In this case, when LCSS values are high and t2vec
values are low, the trajectories look very differently
from each other, and typically one trajectory al-
most fully contains the other one. See Figure 18
for examples.

4.3.8. High LCSS, Medium t2vec Similarity Values

Figure 19: High LCSS, Medium t2vec examples

Medium t2vec similarity values together with
high LCSS values results in trajectory pairs with

substantial intersection and similar looks. One path
usually almost fully contains the other one, but in
the meantime, their start and endpoint are closer,
and their shape is much more similar than in the
previous section. Examples for this case are shown
in Figure 19.

4.3.9. High LCSS, High t2vec Similarity Values

Figure 20: High LCSS, High t2vec examples

As we reach the other end of the spectrum for
both models, we see a group of trajectory pairs,
shown in Figure 20, which are almost identical.
This means that they have substantial common
sub-trajectories, and their shape is very similar.
They tend to have a slightly different start or end-
point, but these points are close to each other.

4.3.10. Summarizing the Qualitative Differences

Based on the previous evaluations of each case,
we now give a summary of the differences of the
LCSS and t2vec trajectory similarity models.

Interpreting the T2vec model. To start, we
give an intuition how the t2vec model works. As we
look through the cases one by one with fixed LCSS
values and increasing t2vec values we find the same
pattern: When the t2vec value is low, the trajec-
tories have different directions, their start and end-
point are not close to each other, and their shape is
different. In one word, they look differently. When
the t2vec value is in the medium range usually ei-
ther the start or endpoint of the trajectories are
close to each other, or at least the two trajectories
have the same general direction, and their shape is
similar. However, at this point, the similarity of
their shape usually means that the trajectories are
mirrored or shifted versions of each other. Finally,
when the t2vec value is high, this implies that both
ends of the trajectories are close to each other, and
they have similar shapes in between as well. The
closeness of the two ends of the trajectories usually
implies similarity in shape as well, but not in every
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case. In summary, we can say that the t2vec sim-
ilarity captures a combination of both similarities
in shape and similarity of the starting points.
Interpreting the LCSS model. Now we ex-

plain the specifics of the LCSS model that are re-
sponsible for the effects just described. In particu-
lar, we look at the cases with fixed t2vec but dif-
ferent LCSS values. One can see that the exam-
ples are similar between the cases, the difference is
just that when the LCSS value increases, the in-
tersection of the trajectory pairs becomes larger as
well. However, when the t2vec value is small, one of
the trajectories is a sub-trajectory of the other one.
Namely, if the two trajectories have long common
sub-trajectories, they inevitably tend to look more
similar, hence the only way for the t2vec value to
remain small is when one is much longer than the
other. In summary, we can say that LCSS similar-
ity models the extent of intersection between the
trajectories. However, it is more than an algorithm
that only compares the lengths of sub-trajectories.
This is because of the variable grid cell settings,
which let LCSS capture the similarity between close
but not identical trajectories as well.
Combining the Two Similarity Models.

When looking at the two models in isolation, we
have seen that one cannot perfectly describe what
increasing values mean in terms of similarity seman-
tics. If we group the examples from the previous
sections based on only one of the models, for exam-
ple, all the examples with medium t2vec values, we
can see that it is hard to generalize their attributes.
However, when explaining the cases in the grid, we
were able to come up with descriptions how that
group of trajectory pairs generally looks like. So
we recommend using both models when one wants
to find trajectory pairs of a certain kind. Table 2
summarizes our findings regarding the characteris-
tics of similarity models and what kind of semantics
of similarity one can expect in each case.

We can see that Shape and Direction are the
characteristics which are present when t2vec yields
high similarity values. These two attributes are
consistently changing with the t2vec values. This is
not the case for the Distance attribute: Here, dif-
ferent LCSS values imply different behavior when
increasing the t2vec value. For example, when the
t2vec value is low and the LCSS is medium, the
trajectories can be close to each other, but this is
never the case when the LCSS is high. This means
that the Distance attribute depends on both t2vec
and LCSS.

In the next paragraph, we give examples of use
cases and real-world applications where finding tra-
jectories from specific parts of the grid is relevant.

Use Cases and Applications. In Section
4.3 we have presented examples of each similarity
group, i.e., of each cell of the 2-dimensional grid
in Figure 11. We argue that different applications
call for different semantics of similarity. For exam-
ple, for some applications such as ride sharing, the
length of the overlapping part of two trajectories is
of high importance, hence one may look for cases
with high LCSS and medium or high t2vec similar-
ity values. On the other hand for other scenarios,
it suffices for the users only to look for trajecto-
ries that are spatially close rather than fully over-
lapping. This is the case, for example, in down-
stream applications such as monitoring big events
[42], monitoring crowd behavior [42] or finding hur-
ricane movement patterns [43]. In such cases, hav-
ing a close source or destination (or both) is enough
for the user to deem two trajectories similar. In this
case, one may look for scenarios where the t2vec
similarity value is high, whether this is the case
for the LCSS or not. In other domains, such as
when the problem is to find movement patterns in
a city, i.e., trajectories that move in the same di-
rection, but in different spatial locations, one may
look for directional similarities without considering
distance or overlap. In some ”non-movement” ap-
plications such as finding similar handwritings, the
only concern is whether the two handwritten tra-
jectories are of the same shape. There are various
other applications in which the aim is to find shape-
based patterns. For example, animals tend to have
different search patterns [44], and their shape de-
termines whether they are random or planned and
oriented. Other applications include determining
similar fishing activities from trajectories of vessels
[45] and sign-language recognition [46].

4.4. Clustering

To further check the validity of the similarity val-
ues of t2vec, we evaluate how appropriate they are
for trajectory clustering. To this end, we study the
differences on the CROSS [47] dataset. In contrast
to the Porto dataset, the CROSS dataset is anno-
tated; hence, one can quantify the quality of the
clusters. The CROSS dataset contains the trajec-
tories of moving objects in foursquare, as shown in
figure 21.

It contains 1900 trajectories which are annotated
(19 clusters with 100 trajectories in each cluster)
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Table 2: Similarity Models and Applications

LCSS t2vec Overlap Shape Direction Distance

low low 7 7 7 7

low medium 7 3 7/3 7

low high 7 3 3 7/3

medium low 7/3 7 7 7/3

medium medium 7/3 3 7/3 7/3

medium high 7/3 3 3 7/3

high low 7/3 7 7 7

high medium 3 3 7/3 3

high high 3 3 3 3

Figure 21: CROSS Dataset

based on the lanes in which the cars come in and
leave the square. The trajectories are generated
from visual data (i.e., video recording), hence it
uses pixels as base units of length. Statistics of
the dataset are in table 3.

Table 3: Statistics OF CROSS
Dataset

#P #T ML #C 1

24,420 1900 13 19
1 P = Points; T = Trajecto-

ries; ML = Mean Length;
C = Clusters

Clustering with LCSS. It has been shown in
[47, 48, 49] that spectral clustering combined with
LCSS yields good results in surveillance environ-
ments. Morris et al. [47] have proposed a method
to cluster the CROSS trajectories based on LCSS
and spectral clustering [50]. We explain this in
the following in some detail, because we use the
same method in the next subsection to cluster with

the t2vec model. So we can compare the effect of
solely the similarity models on the clustering. The
method consists of four steps:

• Deriving the LCSS similarity for all pairs of
trajectories and building the similarity matrix
S = {sij} with the Gaussian kernel function

sij = e−
LCSS(Ti,Tj)

2

2σ2

Here, sij is the similarity of trajectories Ti and
Tj , and σ is a normalization parameter to con-
trol the range of the values.

• Calculating the Laplacian matrix from the sim-
ilarity matrix as follows:

L = I −D− 1
2SD

1
2

Here, D is a diagonal degree matrix with the
diagonal elements being the sum of the corre-
sponding rows in S.

• Calculating the first K eigenvectors of L and
building the matrix U ∈ R(N ∗K) which con-
tains these K eigenvectors of L as columns.

• Considering the rows of U as representations of
the trajectories, and clustering the rows using
the fuzzy C-means (FCM) algorithm [51].

T2vec vs LCSS Clustering Comparison. Since
the number of clusters is not known a priori, we
set the number of clusters to 30 initially for the
FCM clustering in both cases. However, when vali-
dating the clusters we apply a “match and merge”
procedure introduced in [47], to merge the clusters
close to each other. For this, Dynamic Time Warp-
ing (DTW) [32] is used to find such clusters with
an average distance smaller than ε, or the number
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of their common points is higher than a threshold
T . For more details, we refer to the original pa-
per [47]. This yields 19 clusters in both cases; see
figure 22. There are very similar clusters, such as
four different vertical lines, but representing differ-
ent lanes on the foursquare, hence they should not
be clustered together.

Figure 22: The resulting clusters based on t2vec

Table 4 contains qualitative statistics regarding
the two resulting clusterings. We see that t2vec
yields better clusters than the LCSS model. This
result is even more significant since we have used a
clustering algorithm which has originally been de-
veloped for the LCSS distance.

Table 4: Clustering Validation

Hom. Comp. V AMI ARI 1

t2vec 0.981 0.982 0.981 0.981 0.971
LCSS 0.961 0.963 0.962 0.960 0.940
1 Hom. = Homogenity; Comp. = Complete-

ness; V = V-Measure;AMI = Adjusted Mutual
Information; ARI = Adjusted Random Index

4.5. Summary

We have shown in Section 4.2 that t2vec can cal-
culate trajectory similarity values faster than classi-
cal models, even with the model-training overhead,
especially when dealing with large datasets. In Sec-
tions 4.3 we have shown that t2vec and LCSS tend
to capture different spirits of similarity, hence we
propose to consider using a combination of the two
models. In Section 4.4 we compared the clustering
ability of the two models and have concluded that
trajectory clusters produced by t2vec are better.

All this means that we can work with t2vec with-
out having to worry about any qualitative bias in
the future. On the other hand, the scalability of
t2vec opens up new possibilities, such as clustering
of large real-world trajectory datasets, which has
not been possible with classical models.

5. Conclusions and Future Work

Recently, a new trajectory-embedding model,
t2vec, has been proposed that allows computing
trajectory similarities efficiently. Since t2vec is
built on a neural network which maps the trajec-
tories into an embedding space and computes the
similarities in this vector space, it is not trivial how
one should interpret the semantics of its similarity
values. In this paper, we propose a methodology
which lets us evaluate the meaningfulness of the
deep trajectory representations in t2vec.

Our first contribution is that we evaluate the se-
mantics of similarity values in t2vec as well as the
robustness of the model to parameterization. To
this end, we have studied how the distribution of
similarity values evolves when changing the param-
eters of t2vec. As a result, the semantics of similar-
ity values highly depend on the parameters, i.e., the
same value can represent different grades of similar-
ity in different models.

Our second contribution is to evaluate the good-
ness of t2vec in downstream tasks. In order to do
this, we compare the embedding model to a base-
line and a state-of-the-art classical similarity model.
We show that the t2vec similarity model captures
different semantics of similarity than the classical
models, hence they are the best when used together.
Moreover, we show that t2vec is qualitatively better
for clustering trajectories while calculating similar-
ity values orders of magnitudes faster than classical
models.
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Our final contribution has been that we make
all the trained embedding models publically avail-
able. This is one of the biggest collections of its
type available on the web.

In the future, we intend to create a benchmark for
both similarity and clustering of trajectories, since
there is no such benchmark for large datasets such
as Porto. We want to investigate as well whether
the trajectory-embedding models can be seen as
an operator, i.e., whether it is meaningful for the
learned vectors to be added or subtracted from each
other.
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