
How to Quantify the Impact of Lossy Transformations on Event Detection

Pavel Efros, Erik Buchmann, Adrian Englhardt, Klemens Böhm

Karlsruhe Institute of Technology, Karlsruhe, Germany

{pavel.efros, erik.buchmann, klemens.boehm}@kit.edu, adrian.englhardt@student.kit.edu

Abstract

To ease the proliferation of big data, it frequently is transformed, be it by compression, be it by anonymization. Such transformations
however modify characteristics of the data. In the case of time series, important characteristics are the occurrence of certain changes
or patterns in the data, also referred to as events. Clearly, the less transformations modify events, the better for subsequent analyses.
More specifically, the severity of those modifications depends on the application scenario, and quantifying it is far from trivial. In
this paper, we propose MILTON, a flexible and robust Measure for quantifying the Impact of Lossy Transformations on subsequent
event detectiON. MILTON is applicable to any lossy transformation technique on time-series data and to any general-purpose event-
detection approach. We have evaluated it with several real-world use cases. Our evaluation shows that MILTON allows to quantify
the impact of lossy transformations and to choose the best one from a class of transformation techniques for a given application
scenario.

Keywords: time series, lossy transformations, event detection, change detection

1. Introduction

Event detection on time-series data is an important building
block of many real-world applications [1, 2]. It perceives a time
series of measurements as one of events. Our notion of event
encompasses changes [2, 3] and frequent time-series patterns
(motifs) [4, 5, 6]. Changes are points of time when properties
(e.g., mean, probability distribution) of a time series change.
Frequent patterns are contiguous subsequences of a time series
that occur frequently, indicating a structure or information with
some regularity [4]. To illustrate the notion of event detection,
think of energy consumption data from a smart meter, which
serves as our running example. Event detection on such data
allows to detect interesting patterns (turning a device on/off, ab-
normal device activity). Detecting such events is necessary for
demand side management, peak shifting, peak shaping, etc. –
all elementary techniques to integrate renewable energy sources
into the Smart Grid. However, data transformation, e.g., lossy
compression or anonymization, can modify the data consider-
ably. This in turn can aggravate the subsequent detection of
those events significantly.

Example 1. An energy provider uses a lossy compression
technique for time series from smart meters in order to reduce
the data volume, before running an event-detection algorithm.
Due to the compression loss, (a) some events might be detected
at different points in time, or (b) their significance might be
altered, compared to the original time series. (c) events also
might go undetected at all, or (d) the compression might result
in new events. Using domain knowledge, the provider can as-
sess the importance of these impacts. Based on his assessment,
he wants to select a concrete compression technique, with a

good parameterization.

Approaches like lossy compression [7], estimation [8] or per-
turbation/anonymization [9] lossily transform the time series
before event detection takes place: A lossy transformation can
reduce the data volume, generate approximate versions of the
data, or remove personal information from a dataset. How-
ever, existing similarity measures for time series, applied to the
original time series and the one after lossy compression and
decompression, do not quantify the impact of a lossy transfor-
mation on event-detection quality in a way that is conclusive
in general [10, 11, 12, 13]. Such a quantification however is
needed to identify and parameterize a compression algorithm
or anonymization approach, given a certain dataset and quality
requirements on the event-detection result. This quantification
sought is difficult, for several reasons: First, as shown in Exam-
ple 1, the impact is manifold. One therefore needs to determine
possible effects of a lossy transformation on events. Second,
the definition of a measure for this impact is not obvious. It
is necessary to investigate application scenarios where one is
working on the transformed data, in order to come up with re-
spective requirements. Third, the measure envisioned should
be customizable to the concrete application scenario. Think of
the energy provider once again. For him, it will most likely be
more detrimental if compression eliminates certain events from
the data, as opposed to the insertion of new ones. In other con-
texts, the picture is different. Fourth, identifying the specific
effect of a transformation on an event (e.g., shift in time vs. dis-
appearance) is an application-dependent procedure, which must
take all events into account. This is because assigning an effect
to a certain event may cascade and influence the assignment of
effects to other events. Put differently, even if the measure is

Preprint submitted to Big Data Research December 1, 2016

defined, algorithms for its efficient computation remain to be
designed.

In this paper, we propose and evaluate MILTON, a practi-
cal and flexible Measure which quantifies the Impact of various
Lossy Transformation methods for time series on subsequent
event detectiON. MILTON is applicable whenever one wants to
know how much a certain transformation approach for time se-
ries reduces the result quality of an event-detection technique,
as compared to event detection on the original data. This lets
an operator, say, decide how much he can compress or perturb
data without affecting event detection considerably. Thus, MIL-
TON is useful when choosing from several lossy transformation
techniques, by quantifying their impacts on events. To ensure
flexibility, we do not impose any restriction on the event detec-
tion or the transformation approach used, and we allow to flex-
ibly weight effects on events. We have also investigated several
cases that we deem recurrent and propose corresponding pa-
rameterizations of MILTON. In contrast to metrics of the qual-
ity of event detection methods (e.g., recall, precision, F-score),
MILTON’s purpose is to quantify the impact of lossy transfor-
mations on events. It is applicable to any event-detection algo-
rithm that takes place subsequently.

At first sight, a complement of MILTON or even an alterna-
tive to it might be a model of the loss of data quality due to a
transformation. However, such a model would have to be gen-
erally applicable. But it is difficult to impossible to integrate
each of the many existing lossy transformation techniques and
event-detection approaches into one model.

In this article, we now make the following contributions:
• We study characteristics of application scenarios that do

event detection on lossily transformed time-series data.
• We propose a measure of the impact of time-series trans-

formation methods on subsequent event detection.
• We carry out an evaluation of our measure using five

different use cases, namely compression, estimation,
anonymization, assisted living and activity hiding.

We have carried out extensive experiments, which have re-
vealed interesting insights on the relationship between the
transformation technique in use and event-detection quality.
For instance, different anonymization techniques may have a
very different impact on event detection, although they pro-
tect against noise filtering equally well. We also have found
MILTON suitable with any combination of lossy transforma-
tion technique and event-detection approach we have encoun-
tered. In addition, the design of MILTON enables a flexible cus-
tomization of the different effects a lossy transformation may
have on events. Finally, it is applicable in many application
areas in a straightforward manner.
Paper structure: Section 2 describes five application scenarios
for our measure. Section 3 introduces and explains MILTON,
which Section 4 evaluates. Section 5 reviews related work,
and Section 6 concludes. – This article is an extended version
of [14]. The extensions are the following: Our study of appli-
cation scenarios that consider time-series patterns is broader, as
is our respective evaluation. Next, we have extended all of our
approach so that it now also subsumes time-series patterns, as
opposed to only changes.

2. Application Scenarios

In this section, we describe five scenarios – this will serve
as motivation behind our measure. We then derive the require-
ments on it. We have consciously decided to describe these sce-
narios in much detail, in order to reveal the subtle differences
between them, which then give way to the requirements.

2.1. Compression Scenario
2.1.1. Description

The growing number of smart meters as well as the increas-
ing frequency at which data is collected make storing and trans-
ferring the data much more expensive. To illustrate, while
smart meter readings often take place every 15 minutes, me-
ters that collect and send data every second are now prolif-
erating. Moreover, such meters now collect and send several
values instead of just one, e.g., voltage, current, frequency, ac-
tive power, etc. The collected data is useful for analyses such
as energy-consumption forecasts [15] or energy disaggrega-
tion [16]. To store and communicate this data, recent research
has produced numerous model-based lossy compression tech-
niques [7, 17, 18, 19]. In contrast to lossless ones, they can
obtain significantly higher compression ratios. Lossy meth-
ods typically produce a piecewise approximation of the orig-
inal data within an error threshold ε. Thus, they do not only
modify the original data, but also the changes present in it. An
energy provider intending to use the compressed data for ana-
lytics needs to take these effects into account.

2.1.2. Problem Domain
The result of lossy compression methods depends on the

models they use (e.g., constants, straight lines, polynomials),
and how they use them. To evaluate their impact on changes in
the data, one thus needs to consider different classes of models.
Another important parameter here is the error threshold ε. We
expect compression results, and consequently their impact on
changes, to strongly depend on this parameter.

2.1.3. Setting
The energy provider employs a forecasting application that

uses the compressed time series to predict the energy consump-
tion. By detecting changes in data streams and integrating them
in the learning model, he can improve forecasting [20] or en-
hance stream mining [21]. Thus, here, detecting a change in the
time series triggers an update of the model behind the forecast-
ing algorithm, to improve predictions. In such a case, it makes
sense to penalize changes which disappear (“missed”, also re-
ferred to as “false negative” in the literature) more than those
which emerge (“false positives”) as an effect of the transforma-
tion. This is because a missed change prevents the forecast-
ing algorithm from updating its model when necessary. This
may impact its accuracy significantly. A false-positive change
in turn will trigger an unnecessary update of the model, which
may cause additional effort, but should not affect forecasting
accuracy considerably. Regarding shifts of changes in time, the
provider deems them important for forecasting, as they will de-
lay or vice-versa advance the update of the underlying model.

2

On the other hand, modifications of the importance of changes
are not crucial in this case, so he chooses to ignore them alto-
gether. This makes sense here because, once a change is de-
tected, the model is updated regardless of that importance.

2.2. Estimation Scenario

2.2.1. Description
The share of computer-energy consumption has been esti-

mated at 7.15% of the total electricity consumption and will
increase to 14.6% by 2020 [22]. Quantifying this type of con-
sumption reliably is thus important for many business cases.
The cost of deploying a smart meter for each computer that
is currently operational however is daunting. Instead of mea-
suring it, some recent approaches estimate the consumption
of computers [8], based on, say, specific information on the
hardware [23] or based on a profile of the computer-power us-
age [24]. This can be seen as another lossy transformation tech-
nique, which we refer to as estimation.

Estimates of computer-energy consumption are useful in
many use cases. For instance, a data-center manager can use
such data in the design phase of the data center or to keep
track of the energy consumption of the IT infrastructure when
running the center [8]. He can also use the data for other
use cases which employ change-detection methods including
consumption-event characterization or detection of abnormal
consumption. A data-center manager thus needs to to choose
an estimation method appropriate for subsequent change detec-
tion.

2.2.2. Problem Domain
Estimation methods function differently from each other

in order to obtain approximations. We are aware of several
classes: A first class performs a sophisticated calibration pro-
cess [25], while another one relies on specific models of com-
ponents [26]. They thus obtain estimates of different accuracy.
In an evaluation, it would be interesting to study the impact of
estimation methods from different classes on the changes. An-
other parameter here is the time granularity of the estimates.
There is a trade-off between this granularity and accuracy [8].

2.2.3. Setting
Here, the data-center manager will use estimates to balance

energy demand and supply with the following application: A
significant event will trigger an alarm, so that the energy sup-
ply adjusts to the new level. This means that shifts and mod-
ifications of the importance of events are critical to the subse-
quent application. Regarding missed and false-positive events,
the manager uses a similar logic as in the previous scenario. A
missed event is critical here because it prevents from balanc-
ing energy consumption and supply. A false positive however
only implies an unnecessary readjustment. Even though this
indicates additional costs, it is not critical to the subsequent ap-
plication.

2.3. Anonymization Scenario

2.3.1. Description
Smart meters can measure the energy consumption of house-

holds with a high frequency and communicate it. While these
measurements are useful for analytical purposes, they also al-
low to infer personal information, such as the daily routine of
residents [27, 28]. The pseudonymization of the data is not suf-
ficient. This is because an easy re-identification of consumers
using simple statistical measures is possible [27]. Adding noise
(e.g., white noise) to the data does not facilitate privacy either,
as one can easily filter it out [9]. One way to prevent filtering
out noise is to first transform the data to another basis (e.g., ap-
ply a Wavelet transform), then to add noise to the data in that
basis, and finally to re-transform the data to the original ba-
sis [9]. Such methods ensure that certain pieces of information
contained in the original data are perturbed. We refer to these
methods as anonymization methods in the following.

Energy providers can apply such methods to protect user pri-
vacy. However, using them has a significant impact on differ-
ent use cases. As an example, [29] has studied the impact
of anonymization on local energy markets. In such a market,
participants can place bids based on their consumption data,
which contains private information. To enhance their privacy,
participants can choose to anonymize their consumption data.
However, this infers additional costs as the market now oper-
ates with perturbed data instead of the real one. The impact
of anonymization on events in the data is not yet known. A
participant in such a market intending to anonymize energy-
consumption data nevertheless needs to quantify this effect.
This is because the data should remain useful for subsequent
analyses.

2.3.2. Problem Domain
The result of anonymization using the above-mentioned

methods depends on the basis chosen for the transformation of
the data (e.g., Fourier or Wavelet). The other important param-
eter in this case is the magnitude of the noise σ added to the
original data. We conjecture that, the larger the noise added to
the data, the larger is the impact on the changes.

2.3.3. Setting
Here, the use case is the general one of data publishing, im-

plying that the provider has little or no information on the sub-
sequent use of the data. He does not differentiate between a
shift in time or importance of changes. He does the same for
missed and false-positive changes.

2.4. Assisted Living Scenario

2.4.1. Description
Time-series motifs are sequences of time series which are

similar to each other [30]. They are useful in many domains, as
they may hint at interesting structures. In energy-consumption
time series, these may be activity patterns, i.e., consumption

3

patterns of devices. Detecting these can enable interesting ap-
plications: building an energy-consumption profile of a house-
hold or enabling an automatic surveillance of energy consump-
tion [31]. Compressing this data piecewisely in a lossy man-
ner [7, 17, 18, 19] may alter such patterns significantly and
make this data less usable for those applications. Thus, an en-
ergy provider intending to offer such applications needs to take
the effects of lossy transformations into consideration.

2.4.2. Problem Domain
The result of lossy compression methods depends on the

compression model they use. Moreover, as compression meth-
ods depend on the error threshold ε, we will study the impact of
lossy compression on motifs for different values of this param-
eter.

2.4.3. Setting
The energy provider will use the compressed time series for

an automatic surveillance in assisted home living. If the com-
pression causes consumption patterns to disappear, an alarm
will be set off although this is not adequate. Therefore, in this
case, it makes sense to introduce penalties if patterns disappear.
At the same time, if the compression introduces patterns which
do not occur, this will prevent necessary alarms to be set off.
Thus, we must also penalize the occurrence of false-positive
patterns significantly. Additionally, we should penalize shifts
of such usage patterns in time or score according to their mag-
nitude, as they may hint to anomalous activity although there is
none.

2.5. Activity Hiding Scenario

2.5.1. Description
Smart meters facilitate inferring personal information. Such

information may correspond to private daily activities, such as
taking a shower or watching television. The methods described
in the subsection on the anonymization scenario can perturb
certain pieces of personal information. We consider here the
extraction of personal information from energy consumption
time-series. Thus, in the current scenario, an energy provider
wants to investigate perturbation methods and determine which
ones can conceal private information in the form of daily ac-
tivities. Additionally, the energy provider wants to find ade-
quate parameters, so that the necessary amount of perturbation
is added to the time series.

2.5.2. Problem Domain
As in the case of the anonymization scenario, the result of the

perturbation depends on the basis chosen for the corresponding
transformation [9]. As the perturbation methods also depend on
the extent σ of noise added, we will also investigate how this
parameter influences the detection of patterns in time series.

2.5.3. Setting
In this scenario, the energy provider will use an existing per-

turbation method to hide private activities. It is thus important
to quantify to which extent events in the perturbed data can be

matched to events in the original one. Perturbation methods
typically are evaluated by counting how many events that are
detected in the original data can be detected in the transformed
data as well. However, we believe that the evaluation of these
methods should be more elaborate than this conventional one.
For some applications, it is important if events are shifted in
time, while a modification of their significance is less impor-
tant. Such an elaborate evaluation should be possible with our
measure. In this scenario, we use the general case of data pub-
lishing, where no information on the subsequent use of the data
is known.

2.6. Measure Requirements

Based on these application scenarios, we have compiled the
following requirements on our measure:
R1: Generalizability Given the huge number of scenarios,

transformation techniques and event detection schemes
currently in existence, the measure should be independent
of the event-detection algorithm and should provide mean-
ingful results for any combination of event-detection ap-
proach and lossy transformation.

R2: Flexibility A transformation can have various effects on
events in the data. These effects may have different
weights, depending on the subsequent application. Thus,
the user should be able to configure the measure to dis-
tinguish and weight at least four cases according to the
subsequent application: shifts of events in time, modifi-
cations of their importance, disappearance of events and
emergence of new events.

R3: Robustness The measure should be robust. Here, robust-
ness means that computation should return meaningful re-
sults for any parametrization of the measure.

Observe that a measure cannot fulfill all requirements in all
situations. As an example, a user can assign certain weights
to the different impacts of a transformation, i.e., flexibility is
given. This however has an adverse impact on robustness, as
the weighting is unlikely to lead to meaningful results in all
situations.

3. MILTON

In this section, we first describe the main ideas behind MIL-
TON. We then present MILTON in detail and say how we have
parameterized it.

3.1. Problem Definition

An event-detection algorithm ED transforms a time
series of measurements X into one of events (patterns,
changes) ED(X) = {(t1, s1), (t2, s2), . . . , (tm, sm)}. Here,
ti with i = 1, . . . ,m denotes the time the event oc-
curred at, while si denotes its score. Many state-
of-the-art event-detection approaches associate with
each event a score [2, 3], which characterizes its signifi-
cance. As an example, in the case of a change, this corresponds
to how abrupt it is, i.e., how big the difference in parameters
of a time series before and after the change is. In the case

4

of time-series motifs, the significance could be defined as
the similarity of a motif to a given occurrence. Without loss
of generality, we assume that an event has a score of 1 if an
event-detection approach does not provide scores. A change is
given whenever the difference in a property (e.g., probability
distribution) between two subsequences of a time series crosses
a given threshold. A motif occurs in a time series once the
distance between a subsequence of the time series and the
motif is smaller than a given threshold. A lossy transformation
T on X produces a modified time series of measurements T(X).
Applying ED on T(X) thus produces a time series of events
ED(T(X)), which is possibly different from ED(X). Table 1
sums up our notation introduced so far.

Symbol Definition
X original time series
T lossy transformation
ED event detection algorithm
ED(X) time series of events

Table 1: Notation Summary
When comparing the events in ED(X) and ED(T(X)), we can

assign each event to one of the following sets:
PE = pairing(ED(X),ED(T(X)): As a result of the lossy

transformation of X, events of ED(X) might have been
shifted in time or have their score altered. The set PE
(“paired events”) contains pairs of events of the form
(x ∈ ED(X), y ∈ ED(T(X))). Here, x is an event of ED(X),
and y is its corresponding event in ED(T(X)), eventually
shifted or of altered score. The function pairing identifies
such pairs of events from ED(X) and ED(T(X)).

MISS = ED(X) − PE: As a result of the transformation, some
events of ED(X) might not have a match in ED(T(X)). The
set MISS contains such events, called “misses”.

FP = ED(T(X)) − PE: In contrast, new events might appear in
ED(T(X)), which do not have any match in ED(X). We
refer to such events as “false positives”, which form the
set FP.

From Requirement R2 (cf. Subsection 2.6), it follows that
MILTON must consider each set defined above differently. In
particular, we must determine the events the transformation
has affected in a quantitative way (quantitative = shift in time
or modification of score; PE), how many have disappeared
(MISS), and how many have emerged as a result of the trans-
formation (FP). Second, we should allow for application-
dependent weights describing the importance of each set. For
example, if missed events are critical to the subsequent appli-
cation, our measure must attribute larger weights to such cases
than to false positives or vice-versa. To evaluate the impact of
a lossy transformation on subsequent event detection, MILTON
quantifies how similar ED(X) and ED(T(X)) are, i.e., we sum the
weighted differences between the events ED(X) and ED(T(X))
assigned to PE, and the weights of the events in MISS and FP.

3.2. Calculating PE, MISS and FP
We first explain how the function pairing() can be imple-

mented to obtain the set PE. Obtaining sets FP and MISS fol-

lows in a straightforward manner.
Finding the optimal matching between events from ED(X)

and ED(T(X)) is not trivial. One reason is that matching two
events can affect the matching of other events. As an example,
suppose that we match two events x ∈ ED(X) and y ∈ ED(T(X))
incorrectly. This means that the correct match y′ for x can-
not be matched correctly any more either. This also holds for
y and its match x′ and may cascade. The incorrect matching
of two events may thus impact the entire matching process.
The matching process therefore needs to consider all possi-
ble matching combinations of events. Another reason is that
the optimal matching may not include all events in ED(X) or
ED(T(X)), as there may be new events (false positives) and
removed ones (misses). The matching process may therefore
need to skip events. However, it is not clear how many events it
should skip.

Due to Requirement R2, our measure must take into account
both the delay and difference in score (importance) between
two events. Moreover, it should be possible to weight these dif-
ferences depending on the application scenario. For example,
in the compression scenario (Section 2.1), the difference in time
has a higher weight than the difference in score. We therefore
first define these weights: Let x = (tx, sx) be an event of ED(X)
and y = (ty, sy) one of ED(T(X)). We define fTIME : R 7→ R+

as a function of the normalized difference in time (∆t) between
x and y and fSCORE : R 7→ R+ as a function of the normal-
ized difference in score (∆s) between x and y. The normaliza-
tion can be performed differently. We have chosen to normalize
shifts in time using the length of the original time series. This
makes sense as the longer the time series is, the smaller the
shifts are relative to its length. We have normalized the score
using the maximum score of an event in the original time se-
ries. This is meaningful since scores with some event-detection
techniques are unbounded. The functions fTIME and fSCORE are
application-dependent, as explained above. The distance be-
tween two events then is a function g of fTIME and fSCORE:

dist(x, y) = g(fTIME(∆t(x, y)), fSCORE(∆s(x, y))) (1)

In the remainder of this paper, we fix g as the sum of the con-
tributions fMISS and fSCORE:

dist(x, y) = fTIME(∆t(x, y)) + fSCORE(∆s(x, y)) (2)

In our experiments, we have tested other distances, such as the
maximum between the two contributions: max(fTIME(∆t(x, y)),
fSCORE(∆s(x, y))). This has not lead to substantially different
results.

Based on the above-defined distance, one trivial way to find
the correspondence between events ED(X) and ED(T(X)) is to
calculate all possible one-to-one combinations of events which
maintain the original succession of events and choose the one
with the smallest total distance. However, this is computation-
ally expensive; the number of such combinations grows expo-
nentially with the number of events in ED(X) and ED(T(X)).
Next, at first sight, the setting may resemble the one of the
well-known Hungarian Algorithm. However, this is not a solu-
tion either: The difference is that we in our case must maintain

5

the original order of events for the matching. Several publi-
cations however have studied this specific problem or closely
related ones [13, 32]. We use the Optimal Subsequence Bijec-
tion (OSB) algorithm introduced in [13] as starting point, which
fulfills the matching prerequisites:

• the matching should consider all distances between
matched events

• the matching should allow for events remaining un-
matched (misses and false-positives)

However, OSB as is does not solve our problem. This is
because, after performing the matching, it does not take un-
matched events into account. OSB matches two sequences
ED(X) and ED(T(X)) of (possibly different) lengths m and n:

ED(X) = {(tx1 , sx1), (tx2 , sx2), . . . , (tx1 , sxm)}

ED(T(X)) = {(ty1 , sy1), (ty2 , sy2), . . . , (tyn , syn)}

Its goal is to find best-matching subsequences ED(X)′ of ED(X)
and ED(T(X))′ of ED(T(X)). Thus, it may skip events. The
authors of OSB motivate having unmatched events with the
fact that the sequences may contain outliers that should be
skipped. In our case, these outliers correspond to false-positive
and missed events. However, skipping too much may result in
random matches. To avoid this, OSB uses a penalty C for skip-
ping.

The algorithm requires the two sequences, a distance mea-
sure and a penalty for skipping events as input. To find the
optimal matching, OSB minimizes the sum of the distances
between matched events and the penalties for events skipped.
It thus considers all distances between matched events, as re-
quired. OSB finds the optimal matching by performing a short-
est path algorithm on a directed acyclic graph (DAG). The
nodes of the DAG are index pairs (i, j) ∈ {1, . . . ,m} × {1, . . . , n}
of ED(X) and ED(T(X)), and the cost w of an edge between
nodes (i, j) and (k, l) is:

w((i, j), (k, l)) =
√

(k − i − 1)2 + (l − j − 1)2 ·C + dist((txk , sxk), (tyl , syl))

if i < k ∧ j < l

∞ otherwise

where dist((txk , sxk), (tyl , syl)) is the distance between elements
(events) (txk , sxk) ∈ ED(X) and (tyl , syl) ∈ ED(T (X)). [13] uses
the Euclidean distance. We adapt OSB to our case by using
the distance from Equation (2), next to some other adaptations,
described next.

There are many possibilities to set the penalty C. From our
experiments, we have found that the standard penalty recom-
mended in [13] produces correct matchings and rarely results
in mismatches between events. We therefore used the standard
penalty, which is defined as follows:

C(ED(X), ED(T(X))) = mean
i

(min
j

(dist(xi, y j)) +

std
i

(min
j

(dist(xi, y j))

where xi ∈ ED(X), i = 1, . . . ,m and y j ∈ ED(T(X)), j =

1, . . . , n.

Algorithm 1 Algorithm computing PE, MISS and FP

1: Let MISS = {}

2: Let FP = {}

3: PE = OSB(ED(X), ED(T(X)), C)
4: for x ∈ ED(X) do
5: if x < PE then
6: MISS = MISS ∪ x
7: end if
8: end for
9: for x ∈ ED(T(X)) do

10: if x < PE then
11: FP = FP ∪ x
12: end if
13: end for

In our case, OSB outputs a one-to-one pairing between
events in ED(X) and ED(T(X)), which makes up the set PE.
To identify the events which have disappeared as a result of the
transformation (MISS), we loop over events in ED(X) and se-
lect those which do not have a match in ED(T(X)), i.e., are not
in PE. Similarly, to obtain new events (FP) we loop over the
events in ED(T(X)) and select those without a match in ED(X).
See Algorithm 1 and the example below.

Example 2. Consider the time series ED(X) of original
events, each represented as X, and the one of events after ap-
plying a transformation T , ED(T (X)), each represented as +,
in Figure 1. Here, applying the matching algorithm provides
the set PE containing the pairs of events within circles. The
set MISS contains the third event from the left from ED(X),
while the set FP contains the fourth event from the left from
ED(T (X)).

s
c
o
r
e

time

Figure 1: Paired events

3.3. Measure Definition

As explained in the previous subsection, having sets PE,
MISS and FP, we can construct a general-purpose measure that
satisfies Requirements R1, R2 and R3. We first consider the
impact of each set separately, followed by the total impact.

6

3.3.1. Paired Events
Paired events may differ in the time when they occur and

in their score. As just explained, we quantify this difference
using the distance defined in Equation (2). To quantify the total
impact of such events, we sum up the distances between paired
events. This yields the following term, which is part of our
measure:

errPE =
∑

(x,y)∈PE

dist(x, y) =

∑
(x,y)∈PE

fTIME(∆t(x, y)) + fSCORE(∆s(x, y))

The intuition is that, the more events are shifted in time and
score, the bigger the difference between the original time series
and the transformed one. In case separate information on the
impact of shifts in time and the one of the score was necessary,
errPE could be split into two terms calculated separately:

errPE = errTIME + errSCORE

where

errTIME =
∑

(x,y)∈PE

fTIME(∆t(x, y))

and

errSCORE =
∑

(x,y)∈PE

fSCORE(∆s(x, y))

3.3.2. Misses
Depending on the application scenario considered, we may

want to deal with misses in a differentiated manner according
to their score. For example, we may choose to completely ig-
nore missed events with a low score and conversely assign a
bigger weight to ones with a high score. We therefore introduce
a weighting function on missed events fMISS which depends on
their score. We normalize the score of events by dividing them
by the maximum score of the original events. We discuss how
we define this function in the following subsection. To quan-
tify the total impact of missed events, we sum up their individ-
ual impacts weighted by fMISS, yielding the second term of our
measure:

errMISS =
∑

(t,s)∈MISS

fMISS(s) (3)

3.3.3. False Positives
As in the case of missed events, we may want to handle false

positives in a differentiated manner depending on their score.
For this, we introduce a weighting function on false positives
fFP. As in the previous cases, we sum up the individual impacts
weighted by fFP and arrive at the last term of our measure:

errFP =
∑

(t,s)∈FP

fFP(s) (4)

Weight function Argument
fTIME shift in time
fSCORE shift in score
fMISS missed events
fFP false-positive events

Table 2: Notation Summary

3.3.4. Total Impact
To quantify the total impact of the different terms intro-

duced above, MILTON sums them up. However, there is an-
other issue, which MILTON should take into account, namely,
the number of events in the original time series |ED(X)| =

|PE| + |MISS|. We explain the rationale using an example:

Example 3. Suppose that, for a time series X1, ED detects 2
events, while for another time series X2, it detects 100. Let us
further assume that applying transformation T on X1 introduces
a shift in time and score of the original events ED(X1) and the
summed-up impact is equal to 0.5. We also assume that apply-
ing the same transformation T on X2 leaves all but two events
intact and introduces a shift in time and score of the two events
resulting in the same impact of 0.5. Intuitive, the total impact
between the two cases should be significantly different. This is
because in the case of X2, T leaves 98% of the events intact,
in contrast to 0% of the events in the case of X1. We therefore
need to normalize the total impact and divide it by the number
of events ED detects in the original time series.

Using the above results, we define MILTON as follows:

MILTON(X, T, ED) =
errPE + errMISS + errFP
|PE| + |MISS| + 1

(5)

We add 1 to the denominator to cope with the case when PE
and MISS are both empty.

Table 2 lists the functions presented above. We have ex-
plained the need to use weights within MILTON, and we have
provided some intuition on how to set them.

3.4. Parametrization
MILTON has four parameters: fSCORE, fTIME, fMISS and fFP.

The first two are crucial for the matching process, while the lat-
ter two do not influence it. fMISS and fFP facilitate a weighting
of missed and false-positive events according to the require-
ments of the application scenario. The definition of all parame-
ters is up to the user of MILTON. To discuss the right choice of
parameter values, we present two cases in the following, which
we deem useful for the interpretation and definition of the pa-
rameters. The first one corresponds to a general use of MILTON
with a basic parametrization, while the second one features pa-
rameter tuning for recurrent situations.
Basic case: In the so-called basic case, fTIME and fSCORE are
set equal to the normalized absolute values of the difference
between the time of occurrence and, respectively, the score of
matched events:

fTIME(∆t(x, y)) = |∆t(x, y)|
fSCORE(∆s(x, y)) = |∆s(x, y)|

7

where x and y are matched events. Thus, in this case the match-
ing algorithm is the OSB algorithm, which we do not modify
otherwise. In this case errTIME and errSCORE will calculate
the sum of shifts in time and score between original and trans-
formed events. fMISS and fFP can be set equal to the scores of
the missed and, respectively, false-positive events:

fMISS(s) = s

fFP(s) = s

Given this, errMISS and errFP are the sums of the scores of the
missed and false-positive events. We also see another meaning-
ful instantiation of these functions, in which fMISS and fFP are
set equal to 1. In this case, errMISS and errFP are the num-
bers of missed and false-positive events occurring due to the
transformation.
Tuned case: This case includes additional refinements of the
parameters for situations that we deem recurring. For instance,
this case covers the following situations:

1. The score of an event often is secondary, and only the fact
that the event has occurred is crucial. To account for this,
fSCORE can be set equal to zero, and MILTON will thus
ignore alterations of the score.

2. In many use cases, measurements are approximate. Thus,
only estimates of the time an event has occurred and its
score are given. In such cases, small variations in time and
score can be ignored by setting fTIME and fSCORE equal to
zero for small values:

fTIME(∆t(x, y)) =

 0 if |∆t(x, y)| < δ
|∆t(x, y)| otherwise

where δ corresponds to the maximum measurement error.

3. In some situations, if a shift in time of an event is big-
ger than a given threshold, it should not be matched, but
treated as a missed or a false-positive event. An example
of such a situation is when an action should take place as a
response to an event immediately after it or within a given
period of time R. Here, fTIME can be defined as follows:

fTIME(∆t(x, y)) =

 |∆t(x, y)| if |∆t(x, y)| < R

N otherwise

where N is a value big enough to prevent the matching of
the events.

We have used fTIME and fSCORE to illustrate the situations
above. fMISS and fFP can be defined in a similar manner. As an
example, they can be set to 0 if missed or false-positive events
should be ignored if their score is small.

In the following we say how we set the parameters for each
application scenario described in Section 2. We start with the
compression scenario. Here, we must penalize missed changes
significantly more than false positives. We therefore assign a
larger weight to fMISS than to fFP. See Table 3. Concerning

fTIME(∆t) fSCORE(∆s) fMISS(s) fFP(s)
Compression |∆t | 0 s2 + 1 s
Estimation e|∆t | − 1 e|∆s | − 1 es − 1 s

Anonymization 1
2 · |∆t |

1
2 · |∆s| s s

Assisted Living |∆t | |∆s| s s2 + 1
Activity Hiding |∆t | |∆s| s s

Table 3: Measure parametrization

shifts in time and score, we set fTIME proportional to the size of
the shift, and we set fSCORE to zero. This is in order to ignore
alterations of the importance of changes.

We now turn to the estimation scenario. As mentioned, shifts
and modifications of the scores are critical to the subsequent
application. Thus, we let fTIME and fSCORE grow exponentially
with increasing shifts in time and score (Table 3). Regarding
fMISS and fFP, we use a similar reasoning as for the previous
scenario where we penalize missed changes substantially more
than false-positive ones.

Next, we consider the anonymization scenario. As stated,
this is the general case of data publishing. This means that little
or no information on the subsequent use of the data is available.
We therefore use the average of shifts in time and score (impor-
tance) between two changes as distance, with no differentiation
between the types of shift (Table 3). We thus set errFP and
errMISS equal to the sum of the scores of changes in the re-
spective sets (MISS and FP).

For the assisted living scenario, as explained earlier, we let
fMISS and fFP grow with the magnitude of the shifts. This is
because the more events shift in time or score, the more the
corresponding pattern may seem anomalous. We also penalize
missed and false-positive events accordingly.

Lastly, for the activity hiding scenario we use the parame-
ters of the basic case described above. This is because we
assume that the energy provider does not have any initial re-
quirement regarding the impact of perturbation/anonymization
on patterns.

4. Evaluation

MILTON operates as intended if it fulfills the requirements
from Subsection 2.6. We have covered the flexibility and
robustness requirements by design, as explained in Subsec-
tion 2.6. In addition, we experimentally evaluate the robustness
of our measure with our five different parametrizations (Ta-
ble 3). To cope with generalizability, we evaluate MILTON
using our five scenarios. For the compression scenario, we have
performed a further experiment with different change-detection
methods on one dataset, in combination with compression (end
of Section 4.3.1). We have made the code of MILTON avail-
able on our website1. In the following, we describe the datasets
used, the setup of our experiments and their results.

1https://dbis.ipd.kit.edu/2411.php

8

4.1. Datasets
To evaluate MILTON, we use five datasets, as follows.

We use the first two for the evaluation of the compression,
anonymization, assisted living and activity hiding scenarios.
We use the other three for the estimation scenario.

The Reference Energy Disaggregation Dataset (REDD)
comes from the field of energy disaggregation and is pub-
licly available [16]. It contains measurements of smart me-
ters from several buildings. For our experiments, we use a part
of it, namely data measured second-wise from four individual
houses.

The Smart Home Dataset (Smart) includes data collected
from real homes and is publicly available [33]. Its goal is to
facilitate further research on home-energy consumption. We
use the second-wise measurements of aggregate electricity con-
sumption from one building for our experiments.

The following three datasets consist of measurements we had
carried out at our institute. They contain real and estimated
energy-consumption data from three computer systems. We had
used a digital multimeter Wattsup PRO [34] (accuracy: 1.5%)
to record the reference energy consumption. We have used a
dynamic estimator and a calibration-based one [8] to obtain es-
timates of energy consumption.

The Desktop Dataset contains measurements of three weeks
of real and estimated energy consumption from an office com-
puter with a sampling frequency of one second. Its workload is
the result of typical secretarial tasks, e.g., MS Office, Internet
Explorer and a number of custom-made administrative appli-
cations. The workload rarely reaches the maximal computing
capacity, and the computer is active only during office hours.

For the Laptop Dataset we have measured the real and es-
timated energy consumption of a laptop over a period of two
weeks with a sampling frequency of one second. We had used
the laptop [8] for research purposes, i.e., in contrast to the desk-
top computer, the system load does not follow any regular pat-
tern and shows both idle periods and maximum load conditions.

The Server Dataset is about a mail server filtering spam by
constantly executing SpamAssassin. Its workload is a daily pat-
tern with low usage during the night and high usage in the morn-
ing and afternoon hours [8]. Load peaks occur when the server
checks bulks of e-mails sent to large mailing lists. We had mea-
sured and estimated the energy consumption every minute over
a period of three weeks.

4.2. Setup
For the evaluation of all scenarios involving change de-

tection, we have used CUSUM [1], an established change-
detection method. We have configured it to detect changes of
the mean of a data sequence of at least 5% of its range. For
the assisted living and activity hiding scenarios we used the
method from [30] to identify motifs in time series. An example
of such a motif would be the consumption pattern of an elec-
trical device. Given these motifs, we localize their occurrences
in the time series. We set the parameters (weights) of MILTON
according to each application scenario (Table 3), cf. Subsec-
tion 3.4. In the following we present the lossy transformation
methods used for each scenario.

Compression Scenario: We use compression techniques
based on different classes of models:

a) Adaptive Piecewise Constant Approximation (APCA) uses
constant functions to approximate segments of data of
varying length [35].

b) Piecewise Linear Histogram (PWLH) compresses the data
in a similar manner as APCA, using straight-line functions
instead of constant ones [36].

c) Adaptive Polynomial Piecewise Compression (APP) com-
bines polynomial functions of different degrees to approx-
imate the data piecewisely in an incremental manner [7].

All these methods compress the data so that the maximum de-
viation between the original and decompressed data under the
uniform norm is smaller than an error threshold ε.
Estimation Scenario: As mentioned, we use a dynamic and
a calibration-based estimator to obtain the energy-consumption
estimates, cf. [8].
Anonymization Scenario: We use two data perturba-
tion/anonymization methods: one using the Fourier transform
and one using the Wavelet transform [9].
Assisted Living Scenario: For this scenario we use the com-
pression techniques from the compression scenario.
Activity Hiding Scenario: For this scenario we use the data
perturbation techniques from the anonymization scenario.

4.3. Scenario Evaluation
We now present our evaluation of MILTON.

4.3.1. Compression Scenario
In this scenario, the energy provider wants to identify the

method which delivers the best compression ratio with a good
parameter set, while the maximal impact on the changes in the
data is given. To this end, we have first computed MILTON
for all three compression techniques for different values of the
threshold ε, from 0.2% to 5% of the range of the time series
used. Figure 2 shows the average results for the Smart Dataset.
They are similar to those we obtained with the REDD Dataset.
We observe that the measure generally increases with a growing
threshold value. This is because some changes disappear as a
result of the rougher compression. We also observe that, for
large values of ε, compression using APCA has a worse impact
on the subsequent change detection than the other two methods.

To understand the reasons behind the results in Figure 2, we
list and inspect the number of changes in sets PE, MISS and FP,
as well as MILTON components errPE, errMISS and errFP for
one time series of the Smart Dataset (Table 4). We first no-
tice that PWLH and APP preserve existing changes better than
APCA when ε > 0.2%. This accounts for their lower values
of MILTON. Second, in comparison to both PWLH and APCA,
APP introduces considerably more false-positive changes. We
assume that this is due to the use of polynomials of degree
higher than 1. These may introduce “bumps” in the time se-
ries, which CUSUM interprets as changes. However, they do
not impact the value of MILTON significantly, as we have set

9

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Threshold ε (%)

M
IL

TO
N

0.02 0.05 0.1 0.2 0.5 1 2 5

APCA
PWLH
APP

Figure 2: MILTON vs. Threshold (ε) - Smart Dataset

the weight fFP for false-positive changes significantly smaller
than for misses (fMISS).

ε PE MISS FP errPE errMISS errFP
0.02 170 0 0 0.000 0.000 0.000

A
PC

A

0.05 167 3 3 0.006 3.000 0.015
0.1 160 10 7 0.007 10.000 0.036
0.2 156 14 7 0.010 14.000 0.038
0.5 153 17 2 0.007 17.000 0.013
1 145 25 1 0.010 25.001 0.000
2 110 60 0 0.008 60.002 0.000
5 89 81 0 0.000 81.003 0.000

0.02 170 0 0 0.000 0.000 0.000

PW
L

H

0.05 164 6 6 0.002 6.000 0.031
0.1 164 6 6 0.005 6.000 0.031
0.2 162 8 8 0.006 8.000 0.041
0.5 160 10 9 0.014 10.000 0.046
1 157 13 10 0.019 13.000 0.053
2 148 22 6 0.031 22.001 0.032
5 110 60 2 0.091 60.002 0.012

0.02 148 22 15 0.013 22.001 0.345

A
PP

0.05 147 23 10 0.011 23.001 0.310
0.1 165 5 4 0.006 5.000 0.021
0.2 165 5 3 0.022 5.000 0.015
0.5 159 11 8 0.020 11.000 0.041
1 154 16 7 0.022 16.000 0.040
2 154 16 6 0.026 16.000 0.032
5 138 32 52 0.226 32.001 0.373

Table 4: MILTON Components by Threshold ε – homeB –
Smart Dataset

We next compute the compression ratio for all three methods
for the same values of ε as in our previous experiment. We use
the following formula:

compression ratio =
size of compressed data

size of initial data
(6)

Figure 3 shows the average results for the Smart Dataset. We
notice that the results of the different compression methods di-
verge significantly for small values of ε (ε < 0.2%) and con-
verge to similar ones when ε grows (ε > 1%). For small values
of ε, compression with PWLH is worst, followed by APCA and
APP. For very small values of ε, PWLH does not achieve any

0.
0

0.
4

0.
8

1.
2

Threshold ε (%)

C
om

pr
es

si
on

 R
at

io

0.02 0.05 0.1 0.2 0.5 1 2 5

APCA
PWLH
APP

Figure 3: Compression Ratio vs. Threshold (ε) – Smart Dataset

compression at all. This is because it needs more space for the
piecewise segments that approximate the data than for the orig-
inal data.

Using the results above, the provider can identify a good
compression method with a good parameter set if a bound on
the impact on the changes is given. To this end, he first needs to
identify, for each method, the value of ε which gives way to an
impact within the bound. Then, using the results on compres-
sion ratios, he can select the best method.
Summary: We have shown that MILTON can help the provider
decide which compression method suits his needs best. In this
use case, for the specific settings used here, no compression
method is generally superior to the other ones.

Evaluation with Further Change-Detection Schemes. We have
performed one further experiment regarding the compression
scenario. We have fixed the dataset (REDD) and the com-
pression method (APCA) and have calculated MILTON with
the same parametrization as above for two additional change-
detection schemes. In the following we first describe these
schemes and then present the results of this experiment.

We have used two established change-detection schemes pro-
vided by the cpm R-package [37]. The first uses the Student-t
test statistic to determine if two sets of data are significantly
different from each other. We call this scheme “Student” in
the following. The second one uses the Cramer-von-Mises test
statistic to detect arbitrary changes in a stream of data. We refer
to this scheme as “Cramer” in the following.

Table 5 shows the results for one random day of House 3
of the REDD dataset. Results are similar in the case of the
other houses. We make the following observations: First, for
both schemes, the number of changes missed, together with the
value of MILTON, increases with ε. This is in line with the
results of the compression scenario above. Second, the Student
scheme detects more changes overall than the Cramer scheme.
Third, the Student scheme is less sensitive to compression than
Cramer for small values of ε. All this means that MILTON can
be used to analyze how compression affects different change-
detection schemes.

10

ε PE MISS FP errPE errMISS errFP
0.02 92 0 0 0.000 0.000 0.000

St
ud

en
t

0.05 92 0 0 0.000 0.000 0.000
0.1 92 0 0 0.000 0.000 0.000
0.2 91 1 1 0.000 1.000 0.000
0.5 91 1 1 0.000 1.000 0.000
1 90 2 0 0.003 2.000 0.000
2 86 6 12 0.155 6.000 0.002
5 79 13 14 0.129 13.000 0.002

0.02 81 3 3 0.004 3.000 0.000

C
ra

m
er

0.05 81 3 3 0.010 3.000 0.000
0.1 79 5 8 0.010 5.000 0.001
0.2 81 3 3 0.029 3.000 0.000
0.5 82 2 3 0.046 2.000 0.000
1 80 4 2 0.061 4.000 0.000
2 78 6 5 0.103 6.000 0.001
5 78 6 4 0.143 6.000 0.001

Table 5: MILTON Components by Threshold ε – Student-t
and Cramer-Von-Mises Change Detection Schemes – house 3
– REDD Dataset

4.3.2. Estimation Scenario
In this scenario, a data-center manager wants to identify

which estimation method at which aggregation level (e.g., per
minute or hourly) has the smallest impact on changes in the
data. To this end, we aggregate the energy-consumption time
series to time intervals from one minute to 60 minutes. We
then calculate our measure for both estimators on all datasets
for these intervals. Table 6 shows the average value of MIL-
TON for time series in each dataset tested. We first notice
that the calibration-based estimator has a smaller impact on
changes than the dynamic one for almost all datasets and in-
terval lengths. For the laptop dataset for instance, MILTON is
30% smaller on average. Furthermore, the value of MILTON
generally increases with the interval length. This means that,
while using a longer time interval for aggregation may improve
accuracy as shown in [8], it has a bigger impact on changes in
the data.

Time interval length (min.)
1 2 5 15 30 60

Dynamic 0.01 0.01 0.03 0.00 0.00 0.04

A
T

IS

Calibr. 0.00 0.01 0.02 0.00 0.00 0.05

Dynamic 0.01 0.03 0.04 0.06 0.11 0.33

D
es

kt
op

Calibr. 0.00 0.00 0.01 0.01 0.03 0.27

Dynamic 0.01 0.01 0.01 0.04 0.06 0.17

L
ap

to
p

Calibr. 0.00 0.01 0.01 0.02 0.04 0.09

Table 6: MILTON by Time Interval Length

To find out why MILTON behaves in this way in this case,

we list the number of changes in the sets PE, MISS and FP,
as well as errPE, errMISS and errFP for one time series of
the Desktop Dataset. We see that the dynamic estimator usu-
ally produces more missed and false positive changes than the
calibration-based one. This lets the values of MILTON grow
significantly due to the definition of fMISS and fFP. Moreover,
the pairing matches changes better for small interval lengths
than for longer ones. This accounts for the big impact of aggre-
gation on changes for long intervals.

Interval
PE MISS FP errPE errMISS errFPlength

(min)

D
yn

am
ic

1 76 37 75 0.614 0.057 0.351
2 43 1 33 1.191 0.022 0.284
5 19 1 20 0.472 0.053 0.208

15 8 0 6 0.431 0.000 0.142
30 3 0 4 0.312 0.000 0.129
60 1 2 0 1.055 0.000 0.000

C
al

ib
r.-

ba
se

d 1 86 27 0 0.152 0.032 0.012
2 34 10 1 0.123 0.021 0.003
5 11 9 0 0.031 0.033 0.000

15 5 3 0 0.065 0.033 0.000
30 3 0 0 0.189 0.000 0.000
60 1 2 0 0.061 0.134 0.000

Table 7: Number of Changes and Measure Components by In-
terval Length – Desktop Dataset

Summary: MILTON lets a data-center manager assess the
impact of an estimation method on change detection. The
calibration-based estimator impacts changes significantly less
than the dynamic one.

4.3.3. Anonymization Scenario
In this scenario, an energy provider needs to quantify the im-

pact of anonymization methods on the changes in the data. The
goal is to identify the method which protects privacy best while
keeping the data useful for subsequent analyse. To study this,
we computed MILTON for both anonymization methods. We
vary the value of the perturbation σ these methods add, as de-
scribed in [9].

0 10 20 30 40 50

0.
00

0.
10

0.
20

σ

M
IL

TO
N

Wavelet
Fourier

Figure 4: Milton vs. perturbation added σ – House 4 – REDD
Dataset

Figure 4 shows the average values of MILTON for House 4

11

of the REDD dataset when the perturbation σ goes from 0.001
to 50. In this case, these values of σ correspond to the in-
terval [0.01%, 58%] of the standard deviation of the energy-
consumption time series of House 4. We obtained similar re-
sults for all other REDD and Smart time series.

We observe that MILTON increases if we add more pertur-
bation when using the Wavelet transform, while it stays prac-
tically constant when using Fourier. To understand why this
happens, we show the number of changes in the sets PE, MISS
and FP, as well as MILTON components errPE, errMISS and
errFP for one time series of House 4 in Table 8. The number
of paired changes and missed ones varies only slightly in both
cases. However, adding a bigger perturbation when using the
Wavelet transform introduces more false-positive changes (FP),
which makes MILTON grow. We believe that this is due to the
nature of the Haar-Wavelet, which the Wavelet-based method
uses. Adding perturbation in the form of Haar-Wavelets of
significant magnitude introduces changes which have not been
present in the data originally.

σ PE MISS FP errPE errMISS errFP

Fo
ur

ie
r

1 160 0 0 0.001 0.000 0.000
2 160 0 0 0.002 0.000 0.000
5 156 4 4 0.004 0.394 0.394

10 159 1 1 0.011 0.209 0.209
25 158 2 3 0.033 0.148 0.168
50 157 3 5 0.071 0.213 0.257

W
av

el
et

1 153 7 9 0.025 1.109 1.164
2 157 3 6 0.065 0.370 0.434
5 149 11 120 0.044 1.965 4.931

10 152 8 336 0.048 1.171 11.606
25 148 12 469 0.038 2.158 26.093
50 152 8 498 0.047 0.984 38.317

Table 8: Number of Changes and Measure Components by Per-
turbation σ – House 4 – REDD Dataset
Summary: Using MILTON, an energy provider can quantify the
impact of anonymization methods on subsequent change detec-
tion. In this case, the evaluation of the two methods (Fourier-
based and Wavelet-based) shows that they have a significantly
different impact on the changes. This is even though they pro-
tect the privacy on most of the datasets tested to a similar extent
according to [9].

4.3.4. Assisted Living Scenario
In this scenario, the energy provider wants to identify the

method which delivers the best compression ratio for a given
impact on the consumption patterns together with a good pa-
rameter set for a household-surveillance application. Before we
present results, we exemplarily illustrate the impact of a com-
pression method on a consumption pattern. Figure 5 shows the
original (top) and decompressed sequence of House 1 of the
REDD dataset using APCA with two error thresholds (middle
and bottom). The repeated pattern present in the figure corre-
sponds to the consumption of the refrigerator. As we can see,
for ε = 1% the compression smoothen out details of the data
but does not alter the occurrences of the pattern significantly.

On the other hand, for ε = 10%, the compression does have a
big impact on them.

50
0

10
00

15
00

E
ne

rg
y

(W
s)

Original

50
0

10
00

15
00

E
ne

rg
y

(W
s)

ε=1%

50
0

10
00

15
00

E
ne

rg
y

(W
s)

ε=10%

0 5000 15000 25000 35000
Time (seconds)

Figure 5: Original and decompressed data for different values
of ε using APCA

As a next step, we computed MILTON for all three com-
pression techniques for different values of the threshold ε, from
0.1% to 5% of the range of the time series used. Figure 6 shows
the average results for the Smart Dataset. These are similar
to those we obtained with the REDD Dataset. As expected in
line with the illustration above, we also actually observe that
MILTON generally increases with a growing value of ε. The
reason is that patterns are altered significantly and cannot be
matched as an effect of the rougher compression. We notice
that, in some cases, MILTON decreases when the compression
becomes rougher (e.g., when going from 0.5% to 2%). This
means that a rougher compression (increase in error threshold
ε) does not always correspond to a larger distance between the
original and decompressed pattern.

Interestingly, APP has an almost overall worse impact on pat-

12

tern detection than the other two methods. Given the results
from Figure 3 regarding compression ratios, we see that there
is a trade-off in this case. Using APP, we achieve better com-
pression ratios. This however comes at the cost of a bigger
impact on patterns in the time series.

0
5

10
15

Threshold ε (%)

M
IL

TO
N

0.1 0.2 0.5 1 2 5

APCA
PWLH
APP

Figure 6: MILTON vs. Threshold (ε) - Smart Dataset Motif

To understand why the effects above occur, we study the
number of changes in sets PE, MISS and FP as well as errPE,
errMISS and errFP for one time series of the Smart dataset
(Table 9). We see that the rougher compression causes more
patterns to be unmatched and thus increases the number of
misses. Another interesting fact is that compressing the data
does not tend to cause false positives. Using the results above,
the provider can identify the compression method with the best
compression ratio given a bound on the impact it may cause.
Summary: We have shown that MILTON can help the provider
decide which compression method suits his needs best. In this
use case, the results show a trade-off between compression per-
formance and impact on patterns.

ε PE MISS FP errPE errMISS errFP

A
PC

A

0.1 16 0 0 0.084 0 0
0.2 16 0 0 0.252 0 0
0.5 13 3 0 0.304 87.792 0
1 13 3 0 0.529 87.792 0
2 13 3 0 0.427 87.792 0
5 4 12 0 0.577 344.774 0

PW
L

H

0.1 16 0 0 0.084 0 0
0.2 16 0 0 0.374 0 0
0.5 13 3 0 0.541 87.792 0
1 15 1 0 1.257 29.179 0
2 13 3 0 0.445 87.792 0
5 2 14 0 0.841 402.747 0

A
PP

0.1 16 0 0 0.004 0 0
0.2 16 0 0 0.461 0 0
0.5 16 0 0 0.484 0 0
1 15 1 0 1.441 29.46 0
2 13 3 0 0.320 87.792 0
5 4 12 0 0.919 344.585 0

Table 9: Number of Patterns and Measure Components in Com-
pressed Data for Threshold ε – homeB – Smart Dataset

4.3.5. Activity Hiding Scenario
In this scenario the energy provider wants to investigate data

perturbation methods and identify which methods with which
parameter set can better conceal private daily activities. As
with the previous scenario, we present an illustrative example
of how the perturbation methods affect patterns. Figure 7 shows
the perturbed sequences of House 1 of the REDD dataset using
the Fourier (left) and Wavelet (right) transforms for two val-
ues of the noise added σ. For illustration purposes, we again
choose the pattern corresponding to the consumption of the re-
frigerator. As expected, the perturbation is bigger and visually
observable for growing values of σ. However, for the Wavelet
transform, we can visually notice a more significant impact on
patterns than with the Fourier transform. For σ = 50, patterns
are visually difficult to detect for the Wavelet transform, while
for the Fourier transform they can be matched with the original
ones in a straightforward manner.

0
50

0
10

00
15

00
E

ne
rg

y
(W

s)
σ=10

0
50

0
10

00
15

00
E

ne
rg

y
(W

s)

σ=50

0 10000 20000 30000
Time (seconds)

σ=10

σ=50

0 10000 20000 30000
Time (seconds)

Figure 7: Comparison of anonymized data using Fourier (left)
and Wavelet (right)

We now present more detailed results. We first calculated the
average values of MILTON for the energy-consumption time-
series of each individual household of the REDD and Smart
datasets. Figure 8 shows the average values of MILTON for
House 4 of the REDD dataset when the perturbation σ goes
from 1 to 50. The results are similar to the other REDD
and Smart time series. We notice that, as in the case of the
anonymization scenario, the impact of the Wavelet-based per-
turbation on patterns grows significantly with the amount of
noise added in comparison to the Fourier-based method.

To understand the reasons behind this, we investigated the
number of changes in the sets PE, MISS and FP, as well as
errPE, errMISS and errFP for different values of σ. We show
the results for one time series of House 4 in Table 10. Here, we

13

0 10 20 30 40 50

2
4

6
8

10
12

Perturbation σ

M
IL

TO
N

Wavelet
Fourier

Figure 8: Milton vs. perturbation added σ – House 4 – REDD
Dataset

see that for the Wavelet-based method, the number of missed
pattern occurrences is significant for values of σ above 25,
while it stays almost constant for the Fourier-based method. We
also see a result that may seem counter-intuitive at first sight –
in some cases, the impact is smaller for a bigger σ. This hap-
pens due to the random nature of the noise added. It may hap-
pen that for a bigger σ a bigger part of the noise has been added
to parts of the time series not containing the patterns.

σ PE MISS FP errPE errMISS errFP

Fo
ur

ie
r

1 17 0 0 0.001 0.000 0.000
2 16 1 1 0.06 28.211 28.217
5 16 1 1 0.06 28.211 28.217
10 17 0 0 0.006 0.000 0.000
25 16 1 1 0.612 27.940 28.043
50 17 0 1 0.637 0.000 28.231

W
av

el
et

1 17 0 0 0.513 0.000 0.000
2 17 0 1 2.248 0.000 27.778
5 17 0 1 2.248 0.000 27.778
10 17 0 1 2.282 0.000 27.587
25 15 2 0 2.105 56.058 0.000
50 8 9 0 1.085 252.306 0.000

Table 10: Number of Changes and Measure Components by
Perturbation σ – House 4 – REDD Dataset

Summary: Using our measure, the energy provider can quantify
the impact of anonymization methods on consumption patterns.
In this case, the methods (Fourier-based and Wavelet-based)
have a significantly different impact on the patterns. Thus the
energy provider can choose the one that better conceals con-
sumption patterns with an adequate set of parameters.

5. Related Work

We now review modern change-detection methods, time-
series similarity measures and lossy transformation tech-
niques. We are aware of three classes of lossy transformation
techniques, namely lossy time-series compression, computer
energy-consumption estimation and time-series anonymization.

5.1. Change Detection

The goal of change detection is identifying significant
changes of the data or of its parameters. Research has produced
numerous methods for different types of change to be detected.

Some methods compare the probability distributions of (sub-
sequent) sequences of data. [38] features a test which checks if
two datasets are sampled from the same underlying distribution
using a Gaussian kernel density estimator. [3] uses a density es-
timator to instead calculate the ratio of the distributions of two
consecutive subsequences of data and to detect if they come
from different distributions. Another research direction is de-
tecting changes in parameters of a data sequence (e.g., mean or
variance). CUSUM is an established sequential analysis method
for change detection of the parameters of a probability distribu-
tion [1]. It calculates a cumulative sum for the segment cur-
rently considered and issues a change alert once this sum ex-
ceeds a given threshold. [39] describes a method which adjusts
the size of the sliding window once a change is detected, such
that the parameter of the data in the current window (e.g., mean)
is constant. A further research area is detecting changes using
models describing the data. [2] uses polynomials to describe
a time series piecewisely and to detect a change once the ap-
proximation error of the current model crosses a threshold. As
another example, [40] uses an auto-regressive model to detect
and remove outliers before detecting changes in the data. [41]
uses Gaussian Processes to model and predict the current run
length – the length of a time segment between two consecutive
changes.

5.2. Time-Series Similarity Measures

Time-series similarity is a well-researched area. The Eu-
clidean Distance is a frequently used distance. Another mea-
sure, Dynamic Time Warping (DTW), is commonly used to
align sequences [10, 11]. The DTW between two sequences is
the sum of distances of their corresponding elements. The clas-
sic DTW algorithm employs dynamic programming to iden-
tify corresponding elements so that this distance is minimal.
The Longest Common Subsequence (LCSS) is another mea-
sure used to solve the alignment problem and to detect outliers
in time series [12]. LCSS determines the longest common sub-
sequence between two sequences. The Optimal Subsequence
Bijection (OSB) [13] is yet another measure which, in contrast
to DTW, creates a one-to-one correspondence between two sub-
sequences. Another difference to DTW is that OSB allows skip-
ping of elements.

5.3. Lossy Time-Series Compression

Many modern lossy compression methods divide time series
into pieces which they approximate with mathematical mod-
els [17]. Thus, [18] uses constants to approximate fixed-length
intervals. [19] presents two methods which produce connected
and disconnected piecewise straight-line segments of variable
length. [42] proposes using several models in parallel and
choosing the one which best compresses the current segment.
[7] uses the same idea and proposes an incremental approach

14

using polynomials of different degrees for compressing energy-
consumption time series.

To quantify the loss of data due to approximation and to guar-
antee a certain quality of the compressed data, the methods
consider the error between the original and the approximated
data. To this end, the uniform norm (L∞-norm) is commonly
used [17]. To additionally evaluate the quality of approxima-
tion, [17] uses the root mean square error (RMSE). None of the
proposals otherwise considers how lossy compression might af-
fect subsequent change detection.

5.4. Computer Energy-Consumption Estimation

Smart meters are commonly used to monitor the energy con-
sumption of computers [43]. As monitoring a large number
of computing systems in this way comes at high costs, re-
cent research has developed methods to characterize and esti-
mate computer energy consumption. Some of this work has
built models based on collecting micro-architectural events us-
ing hardware registers [44]. Such models are not very portable
and not applicable to large heterogeneous deployments of com-
puters, as they are hardware-specific. Other methods create
black-box models using high-level statistical information ob-
tained from the operating system. [25] for instance estimates
the power consumption of a large group of servers by matching
it with CPU utilization. [45] compares several models which
use CPU and disk utilization and shows that these attain good
accuracies over many workloads.

The accuracy of the above-mentioned estimation methods is
measured using common measures, such as the mean absolute
percentage error [44, 45]. Recent work has identified appli-
cation scenarios where estimation methods are useful. The
authors of [26] use their model to detect energy hotspots in
software. [8] presents several use cases which make use of
computer energy-consumption data, e.g., energy-aware man-
agement of data centers. We are not aware of any work which
considers the impact of computer energy-consumption estima-
tion on subsequent change detection.

5.5. Time-Series Anonymization

Research has produced a multitude of anonymization tech-
niques. See [46] for an overview. Differential Privacy is an
intuitive measure of the risk of one’s privacy when having per-
sonal data in a database [47]. [48] is an example of a privacy-
preserving system compliant with differential privacy. Other
work has addressed time-series anonymization. [9] proposes
several schemes for time-series anonymization in a streaming
context. [49] studies the problem of smart-meter time-series
anonymization by filtering out low-power frequency compo-
nents.

Others have analyzed the effect of anonymization on subse-
quent use of the data. As an example, the framework developed
in [29] allows to quantify the economic and environmental ef-
fects of anonymization on local energy markets. [50] argues
that the quality of anonymized data should be measured based
on the workload the data would be used for. We however are
not aware of any work which explicitly investigates this effect.

5.6. Time-Series Pattern Detection
Time-series pattern detection is a well-researched area with

many applications, e.g., clustering, summarization or rule dis-
covery in time series. Some of the work has focused on find-
ing recurring subsequences (motifs) in one dimensional time-
series [30, 51]. Such approaches usually discretize the time
series and use the Euclidean Distance to detect similar subse-
quences of equal length. Several approaches have addressed the
detection of motifs of variable length [52, 53]. [54] proposes an
extension to mining multidimensional time-series motifs. An-
other part of recent research has focused on the detection of
anomalous or surprising patterns [6]. We have not found any
work which investigates the effect of lossy transformations on
time-series patterns.

6. Conclusions

Recent research has proposed numerous lossy transformation
techniques for time-series data. While transforming the data,
they may impact characteristics of the data, such as events con-
tained in the data, which are important for further analyses. To
address this issue, we have developed a generalizable and flexi-
ble measure which quantifies the impact of a lossy transforma-
tion on subsequent event detection. Our evaluation shows that
it is useful for various application scenarios. It can be used to
identify adequate parameters of a lossy transformation so that
its advantages are maximized while the impact on subsequent
event detection is bounded.

7. References

[1] E. S. Page, Continuous inspection schemes, Biometrika.
[2] V. Guralnik, J. Srivastava, Event detection from time series data, in: ACM

SIGKDD International Conference on Knowledge Discovery and Data
Mining, 1999.

[3] S. Liu, M. Yamada, N. Collier, M. Sugiyama, Change-point detection in
time-series data by relative density-ratio estimation, Neural Networks.

[4] P. Patel, E. Keogh, J. Lin, S. Lonardi, Mining motifs in massive time
series databases, in: International Conference on Data Mining (ICDM),
2002.

[5] E. Keogh, Efficiently finding arbitrarily scaled patterns in massive time
series databases, in: Knowledge Discovery in Databases: PKDD 2003,
Springer Berlin Heidelberg, 2003.

[6] E. Keogh, S. Lonardi, B. Y.-c. Chiu, Finding surprising patterns in a time
series database in linear time and space, in: ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2002.

[7] F. Eichinger, P. Efros, S. Karnouskos, K. Böhm, A time-series compres-
sion technique and its application to the smart grid, The VLDB Journal.

[8] P. Efros, E. Buchmann, K. Böhm, FRESCO: A framework to estimate
the energy consumption of computers, in: IEEE Conference on Business
Informatics, 2014.

[9] S. Papadimitriou, F. Li, G. Kollios, P. S. Yu, Time series compressibil-
ity and privacy, in: International Conference on Very Large Data Bases,
2007.

[10] D. J. Berndt, J. Clifford, Using dynamic time warping to find patterns in
time series., in: KDD workshop, 1994.

[11] C. A. Ratanamahatana, E. Keogh, Three myths about dynamic time warp-
ing data mining, in: SIAM International Conference on Data Mining,
2005.

[12] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, E. Keogh, Indexing
multi-dimensional time-series with support for multiple distance mea-
sures, in: ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, 2003.

15

[13] L. Latecki, Q. Wang, S. Koknar-Tezel, V. Megalooikonomou, Optimal
subsequence bijection, in: IEEE International Conference on Data Min-
ing, 2007.

[14] P. Efros, E. Buchmann, A. Englhardt, K. Böhm, How to quantify the im-
pact of lossy transformations on change detection, in: International Con-
ference on Scientific and Statistical Database Management, 2015.

[15] R. Ramanathan, R. Engle, C. W. Granger, F. Vahid-Araghi, C. Brace,
Short-run forecasts of electricity loads and peaks, Cambridge University
Press, 2001.

[16] J. Z. Kolter, M. J. Johnson, Redd: A public data set for energy disaggre-
gation research, in: SIGKDD Workshop on Data Mining Applications in
Sustainability, 2011.

[17] N. Q. V. Hung, H. Jeung, K. Aberer, An evaluation of model-based ap-
proaches to sensor data compression, IEEE Transactions on Knowledge
and Data Engineering.

[18] I. Lazaridis, S. Mehrotra, Capturing sensor-generated time series with
quality guarantees, in: International Conference on Data Engineering,
2003.

[19] H. Elmeleegy, A. K. Elmagarmid, E. Cecchet, W. G. Aref,
W. Zwaenepoel, Online piece-wise linear approximation of numerical
streams with precision guarantees, VLDB Endowment 2.

[20] G. Ristanoski, W. Liu, J. Bailey, A time-dependent enhanced support vec-
tor machine for time series regression, in: ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2013.

[21] Y. Tao, M. T. Ozsu, Mining data streams with periodically changing dis-
tributions, in: ACM Conference on Information and Knowledge Manage-
ment, 2009.

[22] W. Vereecken et al., Overall ICT Footprint and Green Communication
Technologies, in: International Symposium on Communications, Control
and Signal Processing, 2010.

[23] M. Poess, R. O. Nambiar, Power based performance and capacity estima-
tion models for enterprise information systems., IEEE Data Engineering
Bulletin.

[24] A. Kansal, F. Zhao, J. Liu, N. Kothari, A. A. Bhattacharya, Virtual ma-
chine power metering and provisioning, in: ACM Symposium on Cloud
Computing, 2010.

[25] X. Fan, W.-D. Weber, L. A. Barroso, Power provisioning for a warehouse-
sized computer, in: Annual International Symposium on Computer Archi-
tecture, 2007.

[26] A. Noureddine, A. Bourdon, R. Rouvoy, L. Seinturier, Runtime monitor-
ing of software energy hotspots, in: IEEE/ACM International Conference
on Automated Software Engineering, 2012.

[27] E. Buchmann, K. Böhm, T. Burghardt, S. Kessler, Re-identification of
smart meter data, Personal and Ubiquitous Computing.

[28] A. Molina-Markham, P. Shenoy, K. Fu, E. Cecchet, D. Irwin, Private
memoirs of a smart meter, in: ACM Workshop on Embedded Sensing
Systems for Energy-Efficiency in Building, 2010.

[29] E. Buchmann, S. Kessler, P. Jochem, K. Böhm, The costs of privacy in lo-
cal energy markets, in: IEEE Conference on Business Informatics, 2013.

[30] A. Mueen, E. Keogh, Q. Zhu, S. Cash, B. Westover, Exact discovery of
time series motifs, in: SIAM International Conference on Data Mining,
2009.

[31] F. Eichinger, D. Pathmaperuma, H. Vogt, E. Müller, Data analysis chal-
lenges in the future energy domain, Computational Intelligent Data Anal-
ysis for Sustainable Development.

[32] Y. Wang, T. Pavlidis, Optimal correspondence of string subsequences,
IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33] S. Barker, A. Mishra, D. Irwin, E. Cecchet, P. Shenoy, J. Albrecht,
Smart*: An open data set and tools for enabling research in sustainable
homes, SustKDD Workshop on Data Mining Applications in Sustainabil-
ity.

[34] Watts up? Meters, https://www.wattsupmeters.com (Accessed 2 June
2016).
URL https://www.wattsupmeters.com/secure/
products.php?pn=0&wai=638&spec=8

[35] E. Keogh, K. Chakrabarti, M. Pazzani, S. Mehrotra, Locally adaptive di-
mensionality reduction for indexing large time series databases, ACM
SIGMOD Record.

[36] C. Buragohain, N. Shrivastava, S. Suri, Space efficient streaming algo-
rithms for the maximum error histogram, in: IEEE International Confer-
ence on Data Engineering, 2007.

[37] R. Killick, I. Eckley, changepoint: An r package for changepoint analysis,
Journal of Statistical Software 58 (2014) 1–19.

[38] X. Song, M. Wu, C. Jermaine, S. Ranka, Statistical change detection for
multi-dimensional data, in: ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2007.

[39] A. Bifet, R. Gavaldà, Learning from Time-Changing Data with Adaptive
Windowing, Ch. 42.

[40] J. Takeuchi, K. Yamanishi, A unifying framework for detecting outliers
and change points from time series, IEEE Transactions on Knowledge
and Data Engineering.

[41] Y. Saatci, R. D. Turner, C. E. Rasmussen, Gaussian process change point
models, in: International Conference on Machine Learning, 2010.

[42] T. G. Papaioannou, M. Riahi, K. Aberer, Towards online multi-model ap-
proximation of time series, in: IEEE International Conference on Mobile
Data Management, 2011.

[43] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, K. Cameron, Powerpack:
Energy profiling and analysis of high-performance systems and applica-
tions, IEEE Transactions on Parallel and Distributed Systems.

[44] W. L. Bircher, L. K. John, Complete system power estimation using pro-
cessor performance events, IEEE Transactions on Computers.

[45] S. Rivoire, P. Ranganathan, C. Kozyrakis, A comparison of high-level
full-system power models., HotPower.

[46] B. C. M. Fung, K. Wang, R. Chen, P. S. Yu, Privacy-preserving data pub-
lishing: A survey of recent developments, ACM Computing Surveys.

[47] C. Dwork, Differential privacy, in: Automata, languages and program-
ming, Springer, 2006.

[48] G. Acs, C. Castelluccia, I have a dream!(differentially private smart me-
tering), in: Information Hiding, 2011.

[49] S. Rajagopalan, L. Sankar, S. Mohajer, H. Poor, Smart meter privacy: A
utility-privacy framework, in: IEEE International Conference on Smart
Grid Communications, 2011.

[50] K. LeFevre, D. J. DeWitt, R. Ramakrishnan, Workload-aware anonymiza-
tion, in: ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, 2006.

[51] B. Chiu, E. Keogh, S. Lonardi, Probabilistic discovery of time series mo-
tifs, in: ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, 2003.

[52] Y. Li, J. Lin, T. Oates, Visualizing variable-length time series motifs., in:
SIAM International Conference on Data Mining, 2012.

[53] A. Mueen, Enumeration of time series motifs of all lengths, in: IEEE
International Conference on Data Mining, 2013.

[54] A. McGovern, D. Rosendahl, R. Brown, K. Droegemeier, Identifying
predictive multi-dimensional time series motifs: an application to severe
weather prediction, Data Mining and Knowledge Discovery.

16

