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ABSTRACT 
With more and more natural language text stored in databases, 
handling respective query predicates becomes very important. 
Optimizing queries with predicates includes (sub)string estim-
ation, i.e., estimating the selectivity of query terms based on small 
summary statistics before query execution. Count Suffix Trees 
(CST) are commonly used to this end. While CST yield good 
estimates, they are expensive to build and require a large amount 
of memory to be stored. To fit in the data dictionary of database 
systems, they have to be severely pruned. Existing pruning 
techniques are based on suffix frequency or tree depth. In this 
paper, we propose new filtering and pruning techniques that 
reduce both the size of CST over natural-language texts and the 
cost of building them. The core idea is to exploit features of the 
natural language data, i.e., regarding only the suffixes that are 
useful in a linguistic sense. The most important innovations are 
(a) a new aggressive approximate syllabification technique to fil-
ter out suffixes, (b) a new affix and prefix stripping procedure that 
conflates more terms than conventional stemming techniques, (c) 
the deployment of state-of-the-art trigram techniques and a new 
syllable-based mechanism to filter out non-words (i.e., misspel-
lings and other language anomalies like foreign words), which 
would cause an over-proportional growth of the CST otherwise. – 
Our evaluation with large English text corpora shows that our new 
mechanisms in combination decrease the size of a CST by up to 
80% and shorten the build phase significantly. From a different 
perspective, if storage space remains unchanged, the accuracy of 
selectivity estimates computed from the CST increases by up to 
70%. 
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1. INTRODUCTION 
With more and more natural language data stored in databases, 
query processing for this data type becomes highly important. To 
optimize such queries, the (sub)string estimation problem is 
essential, i.e., estimating the selectivity of natural language query 
predicates (usually terms) based on small summary statistics 
before the actual query execution. The selectivity of a term (or 
substring) is the number of documents in the underlying 
collection containing it. Count Suffix Trees (CST) are commonly 
used for this estimation. According to [7], each CST node V 
stores the selectivity of the string corresponding to the path from 
the root to V, retrievable in a time linear to the string length. 
Therefore, CST built over text data can efficiently solve the 
selectivity-estimation problem. 

However, CST have high memory requirements and are 
expensive to build. The space complexity of a CST is proportional 
to the number of strings stored in it. A CST built over a large 
amount of text data may well exceed 1,000,000 nodes, i.e., 8.5 
MB in the currently optimal implementation [20]. Since the 
statistics used by query optimizers have to fit in the data 
dictionary (a very limited amount of memory), CST used for 
query optimization need to be reduced in size [3]. To make the 
tree meet memory requirements, a common solution is pruning, 
i.e., discarding some nodes to save space, e.g., the ones with the 
lowest selectivities [6, 7]. But this also affects estimation 
accuracy: The selectivities of strings not present in the Pruned 
CST (PST) any more have to be estimated using algorithms like 
KVI or MO [7, 6]. This incurs considerable estimation 
inaccuracies. Pruning becomes even more problematic with non-
static document collections, e.g., forums or the Blogosphere, 
because it makes updates impossible [1]. The only solution 
currently known is to rebuild the CST over the updated collection. 
Even though algorithms exist that reduce space and time 
complexity [17, 18], CST construction remains expensive. 

The goal of our work is to find other ways of reducing the CST 
size, i.e., filtering out suffixes. We focus on natural-language 
texts. Our core idea is to find linguistic criteria that decide if a 
string or suffix is likely to be queried, prior to insertion in the 
CST. We insert only the suffixes that are likely to be queried and 
deal with the rest separately. This reduces the size of the data 
structures during construction already, before the actual pruning. 
In particular, we apply syllabification, stemming, and non-word 
detection. The combination of these mechanisms yields a CST 
that requires significantly less memory than state-of-the-art ones. 
More specifically, our contributions are as follows: (1) Because 
suffixes that do not start at a syllable border carry little semantic 
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meaning, we filter out these suffixes using a fast approximate 
syllabification routine based on morphological structure of words. 
To avoid filtering too many suffixes, our routine identifies 
syllable boundaries more aggressively than conventional ones. (2) 
Stemming, i.e., conflating different inflections of a term to the 
same root form, reduces the number of suffixes. Traditional 
stemming algorithms, like Porter’s stemmer [14], are rather 
conservative, i.e., omit conflations to avoid errors. We propose a 
new, more aggressive stemming procedure, which conflates more 
terms and thus reduces the number of suffixes to store. Though 
linguistic errors may occur, we show that their effect on 
estimation quality is likely to be insignificant. (3) Non-words and 
foreign words incur an over-proportional number of nodes in the 
CST. We therefore deploy a q-gram based non-word detection 
algorithm to prevent inserting non-words in the CST. To estimate 
the selectivity of non-words, we use a variant of the q-gram 
estimator [3] instead. The combination of our mechanisms 
reduces the size of the CST by up to 70% without significantly 
affecting estimation accuracy. With the same tree size on the 
other hand, it reduces the relative estimation error by up to 80%. 

Paper outline: Section 2 reviews related work. Section 3 describes 
the design of the Syllable CST, Section 4 the estimation model 
based on the Syllable CST. Section 5 features our evaluation. 
Section 6 concludes. 

2. RELATED WORK 
The Count Suffix Tree (CST) [7] is the data structure commonly 
used to estimate the selectivity of string predicates. Given a 
collection of documents, the CST stores all terms and their 
suffixes. Each node represents a suffix and has a counter that 
stores the number of occurrences in the collection. Since CST 
built over large text datasets are huge, pruning strategies are 
essential to keep it in memory. Pruning requires estimating the 
selectivity of the terms whose nodes have been discarded. [7] 
proposes three estimation methods. Among these, the KVI 
algorithm is the most accurate one. The MO (Maximal Overlap) 
algorithm [6] outperforms KVI. It parses the searched pattern in 
overlapping (when existing) substrings, which are considered to 
be statistically dependent. Since both KVI and MO tend to 
underestimate selectivities, [3] proposes a new estimation model 
based on q-gram tables and a regression tree. [1] describes which 
estimation inaccuracies may arise in the presence of pruning and 
tries to overcome the problem by building a Count Q-gram tree. 
While it is useful for DNA data (alphabet size 5), [1] also shows 
that it is worse when the alphabet size increases. It is hardly 
applicable for natural language data (alphabet size 26). – We refer 
to further related work in Sections 3 and 4, in particular to 
computational linguistics algorithms, which we adapt and deploy 
in our context. 

3. SYLLABLE COUNT SUFFIX TREE 
This section proposes a new variant of the CST, the Syllable CST, 
suited for selectivity estimation on natural-language data. Section 
3.1 explains how syllabification reduces the tree size. Section 3.2 
introduces a new aggressive stemming routine. Section 3.3 says 
how we deal with non-words. 

3.1 Syllabification 
According to the original definition of suffix tree [19], inserting 
an index term in the tree implies generating all of its suffixes and 
inserting them as well. Given a string σ of length n, defined over 
the alphabet Σ and a string terminator symbol $ (not in Σ and lexi-
cographically subsequent to any symbol in it), the i-th suffix is the 
substring starting with the i-th character of σ and terminated by $. 

According to the definition of the suffix tree [17], inserting an 
index term in the tree implies inserting all of its suffixes as well. 
Let s be a string of length n over an alphabet S ∪ $ ($ is the 
termination symbol, $ ∉ S, $ > s ∀ s ∈ S). Example: Given s = 
information$, its suffixes are: information$, nformation$, 
formation$, ormation$, rmation$, mation$, ation$, tion$, ion$, 
on$, n$, and $. Some of these suffixes are unlikely to be ever 
queried by a user, e.g., -rmation$. Syllables are natural word 
building blocks in many languages. Using syllabification points to 
compute suffixes leaves only those carrying an enhanced 
semantic meaning. Example: Given the syllabified string s = in-
for-ma-tion-$, its syllable suffixes are in-for-ma-tion-$, for-ma-
tion-$, ma-tion-$, tion-$, $. 

The Syllabification Routine. The problem of syllabification is 
strictly tied to the hyphenation task [12]. Syllabification 
algorithms can be rule-based or dictionary-based. The latter ones 
look up the syllable division points in a dictionary. But a 
dictionary would be too large for our purpose, and, no matter its 
actual size, will never contain all words (foreign language words, 
proper names, etc.). Rule-based hyphenation systems (e.g., the 
one in LATEX [12]) are typically faster and require less memory, 
but are inherently error prone. Most of the rules are based on the 
sound of the spoken word and are not easy to implement, e.g., the 
VV rule [4]. Since our goal is exploiting syllabification to reduce 
the size of the CST, we nevertheless adopt a rule-based solution. 

The hyphenation routine of LATEX [12] is not applicable to our 
problem right away, however. The representation of its 5,000 
rules alone would consume half of the memory available for the 
CST, and applying them all causes too much computational effort. 
In addition, the LATEX hyphenation algorithm favors missing 
some division points rather than erroneously dividing terms. We, 
on the other hand, prefer faulty hyphenation to missed division 
points to some extent. This is because we remove suffixes not 
starting at syllable boundaries, and missing division points would 
sort out too many suffixes. 

To minimize the computation effort, we use a very small set of 
rules. To miss as few division points as possible, our rules are 
more aggressive than the ones in [4]. The core idea behind our 
syllabification routine is to determine syllabification points 
matching regular expressions over the consonant-vowel structure 
of the word. In particular, we split blocks of consonants between 
two vowels in the middle (even number of consonants), or right 
before the middle (odd number of consonants). To prevent 
dividing consonant blends and digraphs (couples of consonants 
that sound together, e.g., th), we use exception rules. Finally, we 
do not syllabify words shorter than four characters (e.g., box, cat). 
The word information, for instance, would be syllabified like this: 
information  VCCVCCVCVVC  VC-CVC-CV-CVVC  in-
for-ma-tion. 



Discussion. This approach is not limited to English; it is 
applicable to any character-based language, provided that there is 
a syllabification routine. Clearly, syllable-based filtering affects 
selectivity estimation for substrings that do not start at syllable 
boundaries: A Syllable CST on the word information$ would not 
provide a selectivity estimate for the predicate LIKE ‘%nfo%’. 
This is not a severe drawback: Queries over natural language text 
are very likely to contain “natural” text fragments, e.g., LIKE 
‘%info%’ or LIKE ‘%inform%’, as opposed to ‘%nfo%’. Traces 
of web-search engines confirm this [21]. 

Compound words are a potential source of errors: They should be 
divided between the words they consist of, but the sole analysis of 
the word structure cannot locate the exact division point. The 
word sandbox, for instance, will be erroneously divided into san-
dbox. Our experiments however show that these inaccuracies do 
not affect estimation accuracy by much. 

3.2 Stemming 
Morphological variants of the same term (plural, past tense, third 
person singular, etc.) let the CST grow considerably. A Syllable 
CST built on the string ‘connect’, for instance, has 4 nodes. It 
increases to 14 nodes when past tense and continuous forms are 
included. Stemming conflates inflected terms to their root form 
and thus reduces the number of suffixes. Conflating connected 
and connecting with connect is reasonable since they convey the 
same semantic message. Several stemming algorithms have been 
proposed in literature [8, 14, 13]; Porter’s stemmer [14] probably 
is most popular. However, the number of stems can be further 
reduced: Porter’s algorithm does not deal with some common 
suffixes (e.g., -less, -ution, -ary, etc.). [8] features a detailed 
description of errors and wrong conflations. Furthermore, it does 
not deal well with compound suffixes. The adverb increasingly, 
for instance, is not stemmed because the suffix –ly is removed 
only when it inflects adjectives ending with -ent or -al. Not con-
flating increasingly with its stem incurs more suffixes, i.e., nodes. 

Stemming Routine. Our algorithm invokes Porter’s algorithm as 
a preprocessing step. It then removes common English suffixes 
that may not have been stripped by Porter iteratively, until it finds 
no more suffixes, or the rest of the term would be shorter than 
three characters. 

Prefix Stripping. Traditionally, stemming only deals with 
inflectional or derivational suffixes, but rarely attempts to remove 
prefixes [10]. However, we observe that removal of prefixes 
would further reduce the number of nodes of a suffix tree. If we 
conflate disconnect with its stem connect, we save the space 
required by the additional suffix dis-con-nect. However, removing 
prefixes would incur a significant loss of information because 
they add a specific connotation to the meaning of the word. 
Instead, we move prefixes behind the stem, which further reduces 
the size of the CST. Example: From the word undoubtedly, the 
algorithm would produce doubt-un-ed-ly. The number of nodes of 
a CST built on un-doubt-ed-ly decreases from 8 to 7 thanks to this 
strategy: We can omit the tree branch generated by the prefix un. 
Moving prefixes behind the stem shows another benefit: In case 
of pruning, the stem is last to be pruned, preserving its distinctive 
semantics as long as possible. 

3.3 Non-Word Detection 
Typographical errors are a serious problem. They result in 
undesirable suffixes, i.e., CST nodes. The CST built on the sting 
development, for instance, has 12 nodes; adding the incorrect term 
developement inflates it to 21 nodes. Thus, not inserting mistyped 
variants of index terms in the CST saves space. According to 
preliminary experiments, the benefit of non-word detection grows 
with the amount of noise in the text: The more misspellings, the 
more nodes there are. As long as misspellings are not repeated, 
these nodes are useless because they are pruned after the CST is 
built. Thus, it is beneficial to exclude them right away. 

A common technique for detecting misspellings is n-gram 
analysis [10]. n-gram analysis requires a set of training words, 
which must be sufficiently representative of the language. From 
these words, n-grams are extracted and inserted into a table 
(Dictionary Table). We investigate four techniques to detect non-
words. Two of them, Trigram Analysis (TA) and Positional 
Trigram Analysis (PTA), use conventional trigram analysis, the 
other two, Syllable Analysis (SA) and Positional Syllable 
Analysis (PSA), are more recent and are similar to [2]. In order to 
determine if a given term is a non-word, we extract its trigrams 
(in TA, PTA) or syllables (in SA, PSA), and look up these parts in 
the dictionary table. We consider a term a non-word if it contains 
at least one trigram (or syllable, respectively) that is not present in 
the table. Table 1 illustrates which strings are inserted in the 
dictionary table for the word inform according to each strategy. 

Table 1: n-grams generated from the stem inform 

Trigram 
analysis 
(TA; n=3) 

Positional 
trigram 
analysis 

(PTA; n=3) 

Syllable 
analysis 

(SA) 

Positional 
syllable 
analysis 

(PSA) 

inf, nfo, 
for, orm 

inf_0, nfo_1, 
for_2, 
orm_3 

in, form in_0, 
form_1 

N-grams characterize the morphological structure of a language 
well [18]. However, out-of-dictionary n-grams do not necessarily 
identify a mistyped word. Foreign language words, for instance, 
show a different morphological structure and could go as errors. 
Terms such as Albuquerque or Afghanistan, which contain the 
uncommon trigrams uqu and fgh respectively, are considered 
invalid and are not inserted in the CST, no matter their selectivity. 
We therefore introduce a so-called Invalid N-gram Table to 
store invalid n-grams and their selectivity. This table lets us 
estimate the selectivity of non-words, as we will explain in 
Section 4. Memory requirements of this additional structure are 
significantly lower than the overhead of storing non-words and 
their suffixes in the CST. Note that the dictionary is a temporary 
data structure for testing the validity of index terms and is 
discarded after the CST has been completely built. 

4. SYLLABLE CST CONSTRUCTION AND 
SELECTIVITY ESTIMATION 
This section describes how to build the Syllable CST and the 
Invalid N-gram Table, how to estimate selectivity based on them, 
and how to prune them. 



Building the Syllable CST. Prior to the insertion in the SylCST, 
we decompose every term in its trigrams or syllables, according to 
one of the strategies described in Section 3.3, and check if it is a 
non-word using the Dictionary Table. If it is, we store all invalid 
n-grams in the Invalid N-gram Table, together with their 
selectivity. The rationale is that we can identify a non-word with 
its invalid n-grams and use their selectivity to estimate the 
selectivity of the entire word. This is similar to the data structure 
[3] refers to as a q-gram estimator. As opposed to [3], however, 
we do not expect severe overestimations because we deem the 
invalid n-grams distinctive. In particular, the more characteristic 
the n-grams of a non-word, the more accurate is the estimation: 
The out-of-dictionary trigram fgh, for instance, strongly identifies 
Afghanistan. We can reasonably assume that its selectivity is 
close to the one of the word itself. If a word is valid, in turn, we 
stem and syllabify it and finally insert the syllable suffixes in the 
CST. 

Selectivity Estimation. Once the CST has been built, it can be 
used for selectivity estimation. The string in question is first 
decomposed in its n-grams. This is to determine if its structure 
respects the morphological profile described by n-gram analysis. 
This means searching for the presence of any of its n-grams in the 
Invalid N-gram Table. If no match is found, then the string, if 
present, must have been stored in the CST. The tree is traversed 
from the root to the node labeled with the string, and its count 
stores the selectivity sought. Conversely, if the string contains at 
least one invalid n-gram, then its selectivity estimate is the 
minimum of the selectivities of its invalid n-grams. 

Pruning. Since both the Invalid N-gram Table and the Syllable 
CST built over large text corpora have high memory 
requirements, we cannot do without pruning. We use common 
frequency-based pruning. Given the maximum size of a CST (in 
nodes), we iteratively remove nodes whose count is less than a 
threshold T. We increase T until the CST has the desired size. To 
estimate the selectivity of a valid string s that is not in the PST, 
we introduce a syllable-based variant of the MO estimator [6]. If s 
is syllabified as sA-sB-sC, its estimated selectivity (ESel) is: ESel = 
Sel(sAB) × (Sel(sBC) / Sel(sB)), where sAB = sAsB, sBC = sBsC. If any 
of the previous terms is not in the CST because it has been 
pruned, then the selectivity of the string is estimated as the value 
of the pruning threshold T. Given a non-word, if the Invalid Table 
has to be pruned as well, and none of its invalid n-grams is found, 
its selectivity is set to the pruning threshold. 

Table 2: Corpora statistics 

 Documents Distinct 
Terms CST size 

Reuters 21578 32554 86772 
APW 239576 207616 558633 
XIE 479433 243932 633899 
NYT 314452 352404 979383 

5. EXPERIMENTAL EVALUATION 
We evaluate the performance of our Syllable CST both in terms 
of memory reduction and of selectivity-estimation accuracy. For 
our experiments we use four English newswire text corpora, 
Reuters-21578 (Reuters) [11] and three datasets of the Aquaint 
Corpus (APW, XIE, NYT) [5]. We tokenize the text to extract 

single words, filter out stop words, and convert all terms to 
lowercase. Table 2 contains statistics of our test data. 

5.1 Effect of Syllabification 
The Syllable CST requires significantly less memory than the 
CST. Table 3 shows that the size is roughly halved. The figures 
quantify size as the number of nodes. The actual memory 
footprint is implementation-specific; the currently optimal 
implementation [20] takes 8.5 KB per node. However, the size 
reduction means that we need less memory to build the tree, and 
that we can prune it at a lower threshold, resulting in higher 
estimation accuracy. 

Table 3: CST size reduction (in nodes) 

 CST’s size SylCST’s size 

Reuters 86772 41565 (52,1%) 

APW 558633 308764 (44,7%)

XIE 633899 307001 (51,6%)

NYT 979383 526955 (46,2%)

5.2 Effect of N-gram Analysis 
We initialize n-gram analysis with a small reference dictionary of 
common English words (69004 terms, 650 KB). We Porter stem 
each dictionary entry, compute its n-grams according to one of 
the strategies from Section 3.3 and store them in the Dictionary 
N-gram Table. We then process each index term, inserting out-of-
dictionary n-grams in the Invalid N-gram Table. Table 4 lists the 
number of entries of each table. 

Table 4: Dictionary and Invalid N-gram Table size 
 

 TA SA PTA PSA 
Dictionary 5888 10305 22880 15101

Invalid Table Reuters 3954 9240 11868 11071
Invalid Table APW 6873 39728 41803 51726
Invalid Table XIE 7517 49179 45601 62277
Invalid Table NYT 8421 68914 63951 88623

We retain the Invalid Table since we use it to estimate the 
selectivity of non-words. Table 5 shows that the greater the 
corpus size, the larger is the Invalid N-gram Table, and its 
memory requirements may become non-negligible. To limit its 
size, we set its maximum number of entries to an eighth of the 
tree size. This is roughly the acceptable size ratio proposed in [3] 
for the n-gram table. We follow the frequency-based approach 
proposed in [3] to prune the Invalid Table. This increases the 
estimation error only insignificantly because the pruning 
threshold is very low, compared to that of the CST. It turns out 
that n-gram analysis alone reduces the size of the CST 
considerably. The size reduction increases with the number of 
non-words in the corpus. Thus, non-word filtering is particularly 
beneficial if the data is not very clean. We omit the numbers for 
n-gram analysis alone due to lack of space. Table 5 gives the size 
of the Syllable CST built exclusively over valid words. These 
results show that syllable analysis filters out more words and 
yields a smaller CST than state-of-the-art techniques in the non-
positional case. In the positional case, it does not improve the 



results obtained with positional trigram analysis. Table 5 further 
shows that positional non-word filtering and syllabification 
together shrink the CST to at most 35% of its original size. This 
means that, compared to existing techniques, (a) building the CST 
requires significantly less memory, and (b) for a given memory 
size, we can significantly lower the pruning threshold. The latter 
lets the MO algorithm better estimate the selectivity of pruned 
suffixes. 

Table 5: Syllable CST size in nodes 

Corpus Non-Word 
Detection SylCST 

TA 34538 (-60,2%) 
SA 29191 (-66,4%) 

PTA 26454 (-69,5%) 
Reuters 

PSA 25847 (-70,2%) 
TA 239898 (-57,1%) 
SA 197059 (-64,7%) 

PTA 153005 (-72,6%) 
APW 

PSA 154910 (-72,3%) 
TA 216907 (-65,8%) 
SA 179375 (-71,7%) 

PTA 126221 (-80,1%) 
XIE 

PSA 132886 (-79,0%) 
TA 419359 (-57,2%) 
SA 340327 (-73,9%) 

PTA 255629 (-65,3%) 
NYT 

PSA 261281 (-73,3%) 

5.3 Accuracy of Estimations 
We now report on experimental results on the selectivity-
estimation accuracy of the Syllable CST. We follow the approach 
adopted in [7, 6, 3] and evaluate positive queries (i.e., terms that 
are contained in the corpus) and negative queries (i.e., terms with 
a 0 selectivity). Finally, we demonstrate that estimation inaccu-
racies due to pruning are less severe on the Syllable CST. 

Evaluation Metrics. For positive queries, we use the average 
relative error (ARE) to measure estimation accuracy, as suggested 
in [3]. It is defined as: ARE = |ESel – Sel| / Sel, where ESel is the 
estimated selectivity and Sel the actual selectivity of a string. We 
correct this metric, as suggested in [3], to overcome the 
penalizing effect on low selectivity strings: Given a corpus of 
size C, if the actual selectivity of a string is smaller than 100/|C|, 
then the denominator is set to 100/|C|. Following again [3], we use 
the average absolute error and its percentage of the corpus size as 
evaluation metric for negative queries. 

Positive Queries. We evaluate the accuracy of our estimator for 
positive queries by estimating the selectivities of corpus terms as 
described in Section 4. The average relative error for the Syllable 
CST, without non-word filtering, is minimal for Reuters (3.5%) 
and maximal for NYT (11%). These results indicate that 
conflations due to our stemming algorithm do not introduce 
significant errors. Non-word detection in turn does incur some 
errors: For all test corpora but Reuters, the average relative error 
increases to 13-17%. Further, there are more errors with n-gram 

analysis. Overestimations, due to multiple invalid words iden-
tified by the same invalid n-gram, penalize the estimation of non-
words, especially with the non-positional techniques: Consider 
the terms Albuquerque and the German word Unterbau-
querträger. They both are identified as non-words due to trigram 
uqu. Non-positional trigram analysis conflates these terms in the 
uqu bucket. In consequence, their selectivity is over-estimated, as 
the sum of their selectivities. Positional trigram analysis avoids 
this by taking the in-word position into account. However, the 
average relative error is always under 20%. 

Table 6: Average Relative Error and Pruning Threshold 
for different CST sizes 

CST Size (Nodes) 
Corpus 

CST 
Type / 
Non-

Words
32000 16000 8000 4000 

CST 21,5% 
(7)

38,0% 
(29) 

83,5% 
(109)

143,6% 
(332)

CST / NW 19,7% 
(5) 

31,9% 
(23) 

55,8% 
(97) 

89,8% 
(310) 

SylCST 10,0% 
(1) 

10,0% 
(4) 

24,0% 
(14) 

46,2% 
(53) 

Reuters

SylCST / 
NW 

7,01% 
(0) 

7,01% 
(2) 

21,4% 
(10) 

40,9% 
(46) 

CST 52,4% 
(61) 

91,0% 
(214) 

173,1% 
(666) 

325,8% 
(1726) 

CST / NW 48,3% 
(44) 

76,8% 
(179) 

129,4% 
(607) 

228,8% 
(1635) 

SylCST 16,6% 
(8) 

52,6% 
(31) 

104,4% 
(113) 

164,2% 
(355) 

APW 

SylCST / 
NW 

19,9% 
(4) 

42,4% 
(22) 

91,2% 
(95) 

143,2% 
(319) 

CST 33,3% 
(22) 

50,5% 
(90) 

98,4% 
(313) 

186,8% 
(863) 

CST / NW 36,5% 
(14) 

49,0% 
(68) 

73,0% 
(266) 

126,8% 
(779) 

SylCST 12,0% 
(3) 

14,7% 
(11) 

40,6% 
(44) 

76,6% 
(152) 

XIE 

SylCST / 
NW 

17,7% 
(1) 

18,8% 
(6) 

40,3% 
(31) 

72,6% 
(127) 

CST 80,5% 
(122) 

150,2% 
(413) 

278,0% 
(1220)

562,4% 
(3016)

CST / NW 71,8% 
(101) 

124,8% 
(364) 

223,5% 
(1142) 

428,8% 
(2917) 

SylCST 49,4% 
(16) 

125,3% 
(65) 

208,3% 
(223) 

307,4% 
(663) 

NYT 

SylCST / 
NW

32,6% 
(10) 

110,0% 
(54) 

186,6% 
(199)

276,4% 
(628)

Negative Queries. The selectivity of negative patterns should be 
estimated as close to zero. We generate negative strings by 
introducing random errors into corpus words. The error ranges 
between 0,02% (Reuters) and 0.15% (NYT). This is one fourth of 
the 0.6% worst case reported in [4]. This shows that our model 
does not induce significant errors. We omit the result graphs here. 



5.4 Pruning 
Despite all reductions, the Syllable CST still occupies a lot of 
memory and thus requires pruning. Our experiments show that the 
pruning threshold is lower for a Syllable CST, compared to the 
standard CST, due to its inherently reduced size. As a result, 
estimations are significantly more accurate. We iteratively prune 
the CST and the Syllable CST to meet the same final size of 4000 
nodes. Table 6 lists the average relative error and the respective 
pruning threshold (in brackets) for each tree size. For Reuters, the 
Syllable CST provides good estimates even with the minimum 
required size: about 40% average relative error. In general, the 
Syllable CST always gives the better estimations, due to the lower 
pruning thresholds: The value of the latter decreases by up to 
80%, compared to standard CST. This leaves a more accurate 
basis for the MO algorithm: The relative estimation error is 
reduced by up to 70%, compared to the technique from [4]. 

6. CONCLUSIONS 
Estimating the selectivity of query terms is essential for query 
optimization. For string predicates, estimation frequently relies on 
Count Suffix Trees (CST) [3, 6, 7]. While CST provide good 
estimates, their memory consumption is prohibitively high. 
Pruning tries to solve this problem, by trading in estimation 
accuracy. So far, pruning strategies are mostly based on 
frequency and tree depth. In this paper, we have proposed new 
techniques that reduce the size of CST over natural-language 
texts. We exclude suffixes that do not make sense from a lin-
guistic point of view, regardless of their frequency. 
Syllabification is suitable to filter out suffixes with little semantic 
meaning. Aggressive stemming further reduces the CST size. 
Finally, a very concise n-gram data structure allows for 
(a) filtering out non-words during CST construction, and for (b) 
estimating their selectivity well. The various filtering techniques 
are independent from each other. They are applicable to other 
languages as well, provided that there is a stemming procedure, a 
syllabification routine, or a dictionary for the n-gram filtering. 
Since all the filtering takes place during CST construction, 
building the tree requires significantly less memory. For English 
text, the combination of the filtering mechanisms yields a CST 
35% the size of the classical one, with the same estimation 
accuracy. From another perspective, with the same number of 
nodes, the new techniques reduce the average estimation error by 
up to 70%. 
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