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Abstract. Most of the literature on natural history is hidden in millions of pages stacked 
up in our libraries. Various initiatives aim now at making these publications digitally ac-
cessible and searchable, applying xml-mark up technologies. The unique biological names 
play a crucial role to link content related to a particular taxon. Thus discovering and 
marking them up is extremely important. Since their manual extraction and markup is 
cumbersome and time-intensive, it needs be automated. In this paper, we present compu-
tational linguistics techniques and evaluate how they can help to extract taxonomic names 
automatically. We build on an existing approach for extraction of such names (Koning et 
al. 2005) and combine it with several other learning techniques. We apply them to the 
texts sequentially so that each technique can use the results from the preceding ones. In 
particular, we use structural rules, dynamic lexica with fuzzy lookups, and word-level 
language recognition. We use legacy documents from different sources and times as test 
bed for our evaluation. The experimental results for our combining approach (FAT) show 
greater than 99% precision and recall. They reveal the potential of computational linguis-
tics techniques towards an automated markup of biosystematics publications. 

 

INTRODUCTION 

The Mass Digitization of biosystematics literature 
is becoming a major issue (e.g., Biodiversity Heri-
tage Library, www.bhl.si.edu; American Museum 
of Natural History Digital Library; antbase.org). 
This body of literature with well over 10 Million 
pages contains all the descriptions of the world’s 
biological taxa, that is the names and formal de-
scriptions of the estimated 1.7 Million species 
known today and their higher categories (Maze 
2004). The scientific names, Latinized binomen 
composed of a generic and a specific name (ICZN 
2000: Article 5.1), are important. This is because 
they are unique within animals, plants, bacteria, 
virus and fungi, and their applications are ruled by 
respective codes (e.g., International Code of Zoo-
logical Nomenclature for animals). Each of these 
names belongs in a specific position within the 
taxonomic hierarchy. Within the life sciences, 
these scientific names are used to report the iden-
tity of the organisms upon which a study has been 

conducted. This potentially allows finding and 
linking all information on a particular species. 
Thus, recognizing taxonomic names is highly rele-
vant for the digitization process, since no complete 
list of all the names of living organisms exists yet. 
Manual extraction of these names is time-
consuming, e.g., 80 hours of manual extraction 
versus 330 seconds automatic extraction (Koning 
et al. 2005), and thus expensive. Automated name 
recognition and extraction is the ultimate solution. 
This article describes a combining approach for 
taxonomic name extraction, i.e., it combines sev-
eral existing techniques from machine learning etc. 
We have dubbed our approach FAT, which is short 
for ‘Finds all taxonomic names’. By reducing the 
average error of the base techniques by over 90%, 
our technique comes close to meeting the claim 
behind its name. 

NAME EXTRACTION (TECHNIQUES) 

Taxonomic names have some basic structural 
commonalities. The combination of its elements 



(see Table 1) is not very restrictive and includes 
many optional parts and combinations. Some of 
these are no longer used, such as quadrinomen, a 
variety of a subspecies of a species of a genus. But 
nevertheless it is part of the history of names (see 
ICZN 2000 for legalistic aspects). 

Part Example 1 Example 2 
Genus Prenolepis Dolichoderus 
(Subgenus) (Nylanderia)  
Species vividula decollatus 
(Author) Nylander  
(Subspecies) subsp. guatemalensis  
(Author) Forel  
(Variety) var. itinerans  
(Author) Forel  

Table 1: The parts of taxonomic names 

For example, both “Prenolepis (Nylanderia) 
vividula Nylander subsp. guatemalensis Forel var. 
itinerans Forel“ and “Dolichoderus decollatus“ 
are taxonomic names. There are only two manda-
tory parts in such a name: the genus and the spe-
cies name. Table 1 shows the deconstruction of the 
two examples. The parts with their names in 
brackets are optional. Formally, the rules of the 
Linnaean (Binominal) nomenclature define the 
structure of taxonomic names as follows, exempli-
fied using animal names: 

• The genus is mandatory. It is a capitalized 
word, often abbreviated by its first one or two 
letters, followed by a dot. In enumerations of 
several species of the same genus, the genus 
tends to appear explicitly only with the first 
species in the sequence. 

• The subgenus is optional. It is a capitalized 
word. In most cases, it is enclosed in brackets, 
but not always. 

• The species is mandatory. It is a lower case 
word, often followed by the name of the scien-
tist who first described the species. 

• The subspecies is optional. It is a lower case 
word as well, preceded by an indicator word 
like subsp. or subspecies. It is often followed 
by the name of the scientist who first de-
scribed the subspecies. In newer publications, 
the species is often abbreviated if a subspecies 
is given. In this case, the author name of the 
species is omitted. In addition, the indicator 
word can be omitted as well. 

• The variety is optional. It is a lower case 
word, preceded by an indicator word like var. 
or variety. It is often followed by the name of 

the scientist who first described it. Since 1960, 
however, the indicator word var. or variety is 
not permitted anymore (ICZN 2000). 

The main problem for the automated recognition 
of these names is to distinguish them from the sur-
rounding text, including other Named Entities 
(NE). Named Entity Recognition (NER) tech-
niques can be employed to automatically identify 
scientific names (Chieu & Ng 2002). NER uses a 
variety of methods. Most common are gazetteers, 
grammars, rules, and statistical methods like Sup-
port Vector Machine (Bikel et al. 1997; Cuerzan & 
Yarowsky 1999; Mikheev et. al., 1999; Isozaki et 
al. 2002; Koning et al. 2005). Tjong et al. (2003) 
introduce two typical NER tasks: The names of 
locations, persons, and organizations are to be ex-
tracted. One may perceive taxonomic names as a 
special case of NE. But their structure is more 
complex and more variable than the one of ‘typi-
cal’ NE, e.g., location names, despite some basic 
shared elements, such as a Latin binomen sur-
rounded by text in another language, the Latin bi-
nomen often not being part of existing dictionaries. 
Hence, common NER techniques tend to be too 
general to recognize taxonomic names. Newer 
tasks like the one presented by Carreras et al. 
(2005) do not consider more complex entities, but 
start dealing with relationships and semantic roles. 
Therefore, we do not have the hope that general 
NER research will turn to the extraction of com-
plex entity names in the near future. Another prob-
lem of existing NER techniques is that they usually 
require pre-annotated training data (several hun-
dred thousand words) to achieve good results 
(about 97 % precision and recall). – Besides NER, 
the following techniques are used to extract taxo-
nomic names. 

List-based NER techniques.  Palmer & Day  
(1997) perform a lookup to determine whether a 
word is a NE of the category sought. The sole use 
of a thesaurus as a positive list is not an option for 
taxonomic names. All existing thesauri are incom-
plete. Nevertheless, such a list allows recognizing 
known parts of taxonomic names. 

The inverse approach would be a list-based exclu-
sion technique, e.g., a common English thesaurus 
like WordNet serves as a list of known negatives. 
This in isolation is not an option either. It would 
not exclude proper names reliably. Next, it would 
exclude parts of taxonomic names that also happen 
to be used in common English. This was the reason 
for the majority of errors in the evaluation of 
TaxonGrab (Koning et al. 2005), which combines 



list-based exclusion with some rules. However, 
exclusion of sure negatives, i.e., words that are 
never part of taxonomic names, simplifies the clas-
sification process. 

Rule-based techniques do not require any training 
data. Instead, they try to find words or word se-
quences with a certain structure, e.g., regarding 
punctuation. Yoshida et al. (1999) presents a tech-
nique that extracts the names of proteins and their 
abbreviations based on regular expressions. It 
makes use of the very distinctive syntax of protein 
names, e.g., “NG-monomethyl-L-arginine”. 

The syntax of taxonomic names is subject to cer-
tain rules as well, but they are less restrictive. Due 
to the wide range of optional parts (see Tab. 1), it 
is impossible to find a regular expression that 
matches all taxonomic names and at the same time 
provides a satisfactory degree of precision. Koning 
et al. (2005) present an approach based on regular 
expressions and lexica. This technique (called 
TaxonGrab) performs satisfactorily compared to 
common NER approaches. But the conception of 
what is a positive is restricted. For instance, it sim-
ply leaves aside taxonomic names that do not spec-
ify a genus. However, the general idea of using 
rules to filter the phrases of documents is helpful. 

Bootstrapping. Jones et al. (1999) describe an 
approach to training classifiers without large 
amounts of labeled training data. Some labeled 
seed data and a large unlabeled training corpus is 
taken as input. Learning from the seed data yields 
automatic labeling of the corpus. Jones et al. 
(1999) have shown that the performance of this 
approach is equal to the one of other techniques 
that require large amounts of labeled training data. 
Bootstrapping is not readily applicable to our par-
ticular problem, however. Niu et al. (2003) use an 
unlabeled corpus of 88,000,000 words to bootstrap 
a named entity recognizer. For our purpose, even 
unlabeled training data is not available in this order 
of magnitude, at least right now. 

Active Learning. The intention behind Active 
Learning (Day et al. 1997) is to speed up the crea-
tion of large labeled training corpora from unla-
beled documents. In particular, the system uses all 
of its knowledge during all phases of the process-
ing. In this way, it can label many data items 
automatically, and the user has to label only patho-
logic cases. To increase data quality, such a user-
interactive approach should be part of a taxo-
nomic-name extractor as well. We make use of this 
approach in two ways: First, the output of each 
step serves as base data for the subsequent ones. 

Second, the user manually classifies the few re-
maining cases after these automated steps. Follow-
ing the general idea of active learning, we feed 
these manual classifications back into the base 
data. The algorithm can then use them later when 
processing other documents. This improves the 
performance of the algorithm at runtime. In our 
evaluation, we will use a measure that quantifies 
the number of user interactions. This is to enable 
comparison to other components. 

Word Language Recognition.  Language Recog-
nition is intended to determine the language a 
given text is written in. (Sautter & Böhm 2006) 
have shown that these techniques can be used to 
extract parts of taxonomic names from English 
text. In particular, modifications have been made 
to the standard techniques so that little training 
data is required and becomes applicable on word 
level. The technique is based on two statistics con-
taining the N-Gram distribution of taxonomic 
names and of common English. Both statistics are 
built from examples from the respective languages. 
It applies Active Learning to reduce the need for 
annotated training data. The classifier is tunable 
towards precision or recall, as needed. In optimal 
configurations, both reach a level of 96%. This is 
the typical level of common up-to-date NER com-
ponents. The Active Learning requires the user to 
classify about 3% of the words manually. Al-
though this is relatively low, compared to manu-
ally annotating an entire text, the absolute number 
of user interactions is still high. In addition, some 
training data is needed. Thus, other techniques are 
used to (a) gather the required training examples 
and to (b) reduce the input to this classifier as far 
as possible. In particular, it should be used only to 
deal with word sequences that cannot be labeled 
safely with the other techniques. 

Gene and Protein Name Extraction. The major 
focus of NER in biomedicine is the extraction of 
gene and protein names. Tanabe & Wilbur (2002) 
give a wide overview of the techniques used for 
this purpose. The most frequently used approaches 
are Hidden Markov Models, lexicon lookups and 
structural rules. Many of the techniques also in-
clude a Part-Of-Speech tagger and use its output as 
additional evidence. However, there are significant 
differences between gene and protein names on the 
one hand and taxonomic names on the other hand: 
First the nomenclature rules for the latter are by far 
less restrictive and include a wide range of op-
tional parts. For instance, they may include the 
names of the discoverer/author of a given part. 
Second, there are parts of gene and protein names 



which are easy to distinguish from the surrounding 
text because of their structure. For the extraction of 
taxonomic names, we cannot rely on this type of 
evidence. Consequently, the techniques for gene or 
protein name recognition are not feasible for the 
extraction of taxonomic names. 

An individual technique in isolation thus might not 
be sufficient for taxonomic name extraction. Mik-
heev et al. (1999) have shown that a combining 
approach, i.e., one that integrates the results of 
several different techniques, is superior to the indi-
vidual techniques for common NER. For this rea-
son, we combine approaches for taxonomic name 
extraction. 

Due to the active learning, the word-level language 
recognizer needs little training data. In addition, 
the manual effort induced by user interactions is 
high. Thus, other techniques need be applied be-
forehand, for the following two reasons: First, to 
find sufficient training examples for the word-level 
classifier. Second, to reduce the input to the classi-
fier to as few words as possible. This last aspect is 
based on the idea to prevent as many words as pos-
sible from being prompted to the user to further 
reduce the manual effort. 

Usage of the typical structure of taxonomic names 
allows achieving both goals. Syntax-based rules 
are used to extract training examples from the 
documents. This leads to a reduction of the number 
of words the classifier has to deal with. However, 
it is not possible to find rules that extract taxo-
nomic names with both high precision and recall, 
as we will show later. But we have found rules that 
fulfill one of these requirements very well. In what 
follows, we refer to these as precision rules and 
recall rules, respectively. 

MATERIAL AND METHODS 

The Classification Process 

The general idea of our approach is first to extract 
or exclude those parts of the text for which we can 
be sure about that they are either taxonomic names 
or not (Precision and Recall Rules in Fig. 1). We 
then use the parts already classified to build lexica 
and statistics, which we use to classify the rest of 
the text (Data Rules and Word Classifier in Fig. 1). 
If there are still uncertain parts left after this step, 
we present them to the user for manual classifica-
tion (User Feedback in Fig. 1). In more detail, our 
approach works as follows: 

1. In a first pass through the document, we apply 
the precision rules. Every word sequence from 
the document that matches such a rule is a 
sure positive. 

2. In a second pass, we apply the recall rules to 
the phrases that are not sure positives. A 
phrase not matching one of these rules is a 
sure negative. 

3. Third, we build lexica from the sure positives 
and sure negatives, and apply them in several 
ways to the phrases that are still uncertain. For 
instance, we filter out word sequences that 
contain at least one known negative word. 

4. We collect a set of names from the set of sure 
positives. We then use these names to both in-
clude and exclude further word sequences. 

5. We train the word-level language recognizer 
with the surely positive and surely negative 
words. We then use the language recognizer to 
classify word/phrases that are still uncertain. 

 
Figure 1: The Classification Process 

Figure 1 visualizes the classification process. Red 
areas mark the flow of words/phrases which are 
uncertain at several stages, blue areas mark sure 
positives, while yellow areas mark sure negatives. 
The boxes with round corners represent sets of 
words/phrases, colored according to their state. 
Initially, all words in the text (Documents) are un-
certain. After FAT has finished, all words/phrases 
are classified as sure positives (Tax. Names) or 
sure negatives (Not Tax. Names). The gray boxes 
represent the different steps of the FAT algorithm; 



the arrows depict the data flow. More specifically, 
the meaning of the arrows also depends on where 
an incoming arrow meets a box: An arrow meeting 
the box at its top represents data the step has to 
process. Arrows going to the side of a box stand 
for words/phrases already classified and now serv-
ing as additional input. The state of the 
words/phrases after a step is visualized at the bot-
tom of a box: + indicates that a word/phrase has 
matched the rule, - indicates the opposite, and ? 
indicates that the particular step could not classify 
the word or phrase with certainty. The background 
color of the area behind the outgoing arrows also 
emphasizes this. An arrow that splits indicates that 
data goes two ways. As data comes out of the User 
Feedback step and is finally classified, for in-
stance, it goes into the sets of sure positives and 
sure negatives, respectively. Additionally, the 
Word Classifier receives it as additional training 
data. Two joining arrows signal that data comes 
from two sources. The training data for the Word 
Classifier, for example, comes from the sure posi-
tives and negatives as well as from the words/ 
phrases classified in the User Feedback step. 

The order of application enables the different tech-
niques to profit from each other: The Precision and 
Recall Rules extract the base data for the subse-
quent steps, so there is no need for training data at 
all. Using the Data Rules and the Word Classifier 
before them would require manual preparation of 
lexica and training data for the classifier. So in-
verting our proposed order of application is not 
feasible. When processing a document, the FAT 
algorithm does one pass applying the precision and 
recall rules. At the same time it collects the sure 
positives, candidates, and sure negatives. All fur-
ther steps base on this initial trisection of the text. 
Only the recall rule using the set of scientist names 
(see below) requires one further pass over the 
document. 

This approach is somewhat similar to the boot-
strapping algorithm proposed by Jones et al. 
(1999). The difference is that this process works 
solely with the document it actually processes. In 
particular, it does not need any external data or a 
training phase. The 107 documents forming the 
A.M.N. (American Museum Novitates) part of our 
test bed count about 8,100 words on average, 
which is less than 0.02% of the data used by Niu et 
al. (2003). The entire test bed has less than 
2,500,000 words, still less than 2% of the corpus 
used by Niu et al. (2003). On the other hand, with 
the classification process proposed here, the accu-
racy of the underlying classifier must be very high 

from the start. This is because we do not have a 
training phase, but start from scratch with the first 
document we process. 

Rules for Structure of Taxonomic Names 

In order to make use of the structure of taxonomic 
names, we use rules that refer to this structure, see 
Tab. 2. The syntax used here is the one of the 
JAVA programming language, documented in the 
JAVA online documentation (JAVA 1.4.2). We 
use regular expressions for the formal representa-
tion of the rules. In this section, we develop a regu-
lar expression matching any word sequence that 
conforms to the Linnaean rules of nomenclature 
(see 3.3). 

_ one white space character 
<LcW> [a-z](3,) 
<LcA> [a-z](1,2). 
<CapW> [A-Z][a-z](2,) 
<CapA> [A-Z]{[a-z]}?. 
<Name> {<CapA>_}(0,2)<CapW> 

Table 2: Abbreviations.  

The taxonomic names are modeled as follows: 

• The genus part of a taxonomic name is a capi-
talized word, often abbreviated by its first one 
or two letters, followed by a dot. We denote it 
as <genus>, which stands for 
{<CapW>|<CapA>}. 

• The subgenus part of a taxonomic name is a 
capitalized word, optionally surrounded by 
brackets. We denote it as <subGenus>, which 
stands for <CapW>|(<CapW>). 

• The species part of a taxonomic name is the 
name of the species, a lower case word, op-
tionally followed by a name. In newer publi-
cations, on the other hand, the species is often 
abbreviated if a subspecies is given. In this 
case, the name is omitted. We denote this 
structure as <species>, which stands for 
{<LcW>{_<Name>}?|<LcA>}. 

• The subspecies part of a taxonomic name is a 
lower case word, preceded by the indicator 
word subsp. or subspecies, and optionally fol-
lowed by a name. In newer publications, how-
ever, the subspecies is often abbreviated if a 
variety is given. In this case, the name is omit-
ted. In addition, the indicator word subsp. or 
subspecies can be omitted as well. We denote 
this structure as <subSpecies>, standing for 
{{{{subsp.|subspecies}_}?<LcW>{_<Name>}?}| 
<LcA>}. 



• The variety part of a taxonomic name is a 
lower case word, preceded by the indicator 
word var. or variety, and optionally followed 
by a name. In newer publications, however, 
the indicator word var. or variety can be omit-
ted. We denote this structure it as <variety>, 
which stands for {{{var.|variety}_}?<LcW> 
{_<Name>}?}. 

A taxonomic name is now modeled as follows. We 
refer to the pattern as <taxName>: 
 <genus> {_<subGenus>}? 
 _<species>{_<subSpecies>}? 
 {_<variety>}? 

Precision Rules 

Because <taxName> matches any sequence of 
words that conforms to the Linnaean rules, it is not 
very precise. The simplest match is a capitalized 
word followed by one or more in lower case. Any 
two words at the beginning of a sentence are a 
match! Thus, to have less false positives, we need 
more precise regular expressions. To accomplish 
this, we rely on the optional parts of taxonomic 
names. In particular, we classify a sequence of 
words as a sure positive if it contains at least one 
of the optional parts <subGenus>, <subSpecies> and 
<variety>. For the last two, we additionally demand 
the subspecies or variety to be explicitly labeled or 
the part before them to be abbreviated. The second 
restriction is as secure as the first one. The reason 
is that normal text rarely continues in lower case 
after a dot. The hope is to exclude almost all 
phrases that are not taxonomic names. Even 
though our regular expressions may classify a se-
quence of words as a sure positive erroneously, our 
evaluation will show that this happens very rarely. 
Our set of precise regular expressions has three 
elements: 

• <taxName> with subgenus in brackets, 
<subspecies> and <variety> optional:  
 <genus>_(<CapW>) 
 _<species>{_<subSpecies>}? 
 {_<variety>}? 

• <taxName> with <subspecies> given, 
<subGenus> and <variety> optional:  
 <genus> {_<subGenus>}? 
 _<species>_<subSpecies> 
 {_<variety>}? 

• <taxName> with <variety> mandatory, 
<subGenus> and <subSpecies> optional:  
 <genus>{_<subGenus>}? 
 _<species>{_<subSpecies>}? 
 {_<variety>} 

To classify a word sequence as a sure positive if it 
matches at least one of these regular expressions, 
we combine them disjunctively and call the result 
<preciseTaxName>. It matches any sequence of 
words we can classify as a taxonomic name simply 
because of its structure. When applying the preci-
sion rules, we test phrases of up to 10 words, plus 
punctuation. 

In many taxonomic publications, new genera, spe-
cies, etc. are explicitly labeled. If Dolichoderus 
decollatus is described for the first time, for in-
stance, it is likely to labeled as a new species 
somewhere. The title of the description would be 
Dolichoderus decollatus, new species. We use spe-
cial forms of the precision rules to make use of 
these labels. In particular, we consider a match of 
<taxName> a sure positive if it directly precedes a 
label in the text. Because they rely on explicit la-
bels, we refer to these special precision rules as 
Label Rules. 

A notion related to that of a sure positive is the one 
of a surely positive word. A surely positive word is 
a part of a taxonomic name that is not part of a 
scientist’s name. For instance, the taxonomic name 
Prenolepis (Nylanderia) vividula Erin subsp. gua-
temalensis Forel var. itinerans Forel contains the 
surely positive words Prenolepis, Nylanderia, 
vividula, guatemalensis, and itinerans. Further 
steps of our process assume that surely positive 
words exclusively appear as parts of taxonomic 
names. 

Recall Rules 

The recall rules basically consist of <taxName>, 
which matches any sequence of words that con-
forms to the Linnaean rules. When applying it, we 
again test phrases of up to 10 words, plus punctua-
tion. But there is a further issue: Enumerations of 
several species of the same genus tend to contain 
the genus only once. For instance, in Pseudo-
myrma (Minimyrma) arboris-sanctae Emery, lati-
noda Mayr and tachigalide Forel we want to ex-
tract latinoda Mayr and tachigalide Forel as well. 
To address this, we make use of the surely positive 
words: We use them to extract parts of taxonomic 
names that lack the genus. 

We also extract the names of the scientists from 
the sure positives and collect them in an extra list 
(name lexicon). We regard a capitalized word in a 
sure positive as a name if it comes after the second 
position. In the example, we would extract Pseu-
domyrma, Minimyrma and arboris-sanctae from 



the sure positive Pseudomyrma (Minimyrma) ar-
boris-sanctae Emery. We would also add Emery to 
the set of names. 

We cannot be sure that the list of sure positive 
words suffices to find all species names in an 
enumeration. Hence, we additionally collect all 
lower-case words followed by a capitalized word 
contained in the set of names. In the example, we 
need to have Mayr and Forel in the set of names to 
extract latinoda Mayr and tachigalide Forel. 

Data Rules 

Because we want to achieve close to 100% in re-
call, the recall rules are minimally restrictive. Con-
sequently, many word sequences that are not taxo-
nomic names are considered uncertain. Before the 
word-level language recognizer deals with them, 
we explore some more ways to find negatives. Be-
cause the precision rules are very restrictive, they 
match only a fraction of the taxonomic names in a 
text. Making use of the sure positive words, we 
can also find additional sure positives. 

Sure Negatives. As previously mentioned, 
<taxName> matches any capitalized word followed 
by a word in lower case. This includes the start of 
any sentence. But making use of the sure nega-
tives, we can recognize these phrases. In particular, 
we classify any word sequence as negative that 
contains a word which is also in the set of sure 
negatives. For instance, in sentence “Additional 
evidence results from …”, “Additional evidence” 
matches <taxName>. Another sentence contains “… 
an additional advantage …”, which does not 
match <taxName>. Thus, the set of sure negatives 
contains “an”, “additional”, and “advantage”. 
Knowing that “additional” is a sure negative, we 
exclude the phrase “Additional evidence”. 

Names of Scientists. Though the names of scien-
tists are valid parts of taxonomic names, they may 
also cause false matches. A misclassification oc-
curs when they are matched with the genus or sub-
genus part – <taxName> cannot exclude this. In 
addition, they might appear elsewhere in the text 
without belonging to a taxonomic name. Similarly 
to sure negatives, we exclude a word sequence if 
the first or second word is contained in the set of 
names. For instance, in “…, and Forel further con-
cludes …”, “Forel further” matches <taxName>. If 
the set of names contains “Forel”, we can exclude 
“Forel further”. This is because we know that 
“Forel” is not the name of a taxonomic genus. 

Sure Positives. Making use of the sure positives 
we have extracted with the precision rules, we can 
find additional sure positives. In particular, we 
mark an uncertain word sequence as a sure positive 
if it consists of surely positive words or abbrevia-
tions. If the precision rules have extracted Pre-
nolepis (Nylanderia) vividula Erin subsp. guate-
malensis Forel var. itinerans Forel, for instance, 
we conclude that Prenolepis vividula is a sure 
positive as well. 

Stemming Lookup Catch. Koning et al. (2005) 
used a common English dictionary to exclude 
negatives. As mentioned in the introduction, this 
leads to the exclusion of taxonomic names contain-
ing a common English word. For instance, this 
would exclude the taxonomic name Formica minor 
because of minor. On the other hand, such a dic-
tionary-based exclusion can help to catch the (very 
few, but still existing) erroneous matches of the 
regular expressions in <preciseTaxName>. Our ob-
servation shows that if a common English word is 
part of a taxonomic name, it is always used in its 
base form. Thus, if we find a stemmed form of a 
word in a dictionary, we conclude that it is not part 
of a taxonomic name. Consider the following sen-
tence from an essay on dangerous insects: … In 
Chaguanas (Trinidad) another subspecies poi-
soned Forel. Except for the word In, this sentence 
matches the regular expression from 
<preciseTaxName> where <subSpecies> is manda-
tory. But we can recognize it as a false match be-
cause of the conjugated verb poisoned in the sub-
species position. Similar pathologic cases can oc-
cur for the variety part.  But all these cases share a 
useful feature: They comprise modified forms of 
common English words. Thus, to exclude these 
errors, we combine the dictionary lookup with 
stemming: For all the words matched to a lower 
case part of a regular expression in 
<preciseTaxName> (<species>, <subSpecies> or 
<variety>), we check if it could be a conjugated 
verb given its ending (most common endings are -
s, -ed, and -ing). If so, we apply stemming in order 
to obtain the infinitive. If contained in a common 
English dictionary, we exclude the match. In the 
example, the ending rule applies to poisoned. Por-
ter’s (1980) stemming algorithm produces poison 
as the word stem. Because this word is contained 
in the dictionary, we can exclude the erroneous 
match. In In Chaguanas (Trinidad) another sub-
species poisoned Forel the stemming lookup catch 
is the only data rule that we also apply to the 
matches of the regular expression from 
<preciseTaxName>. 



Name Completion 

Making use of the scientists’ names, we also ex-
tract taxonomic names that lack the genus, e.g., 
from enumerations, such as Pheidole pallidula, 
orbula, xantra. In addition, the rules allow genus 
abbreviations like Ph. for Pheidole in Ph. cornu-
tula. In order to determine the meaning of a taxo-
nomic name, we need to complete the names with 
their full parts. 

If the genus part is missing, we have two options: 
First, we check if the species part appears else-
where in the document, together with the genus it 
belongs to. If this is not the case, we use the last 
genus that we have extracted before the position of 
the name to complete. This is useful especially in 
case of enumerations: If several species of the 
same genus are enumerated, the genus is often 
given only with the first one. We then transfer the 
genus part to the subsequent taxon names. 

If the genus is abbreviated, we also have two op-
tions: First, we again check if the species part ap-
pears elsewhere in the document, together with the 
full name of the genus it belongs to. If this fails, 
we check if we have recognized any genus name 
that starts with the given abbreviation. If there is 
exactly one such genus name, we insert it. If there 
is more than one, i.e., the abbreviation is ambigu-
ous, we use the one which appears closest before 
the abbreviation. 

Classification of Remaining Words 

After applying the various rules, uncertain word 
sequences still remain. To deal with them, we use 
word-level language recognition (Sautter & Böhm 
2006), a technique to classify words as parts of 
taxonomic names or as common English, respec-
tively. It is based on two statistics containing the 
N-Gram distribution of taxonomic names and of 
common English, that is how often short sequences 
of letters occur in a group of words in a text (e.g., 
4-Gram for Formica = {Form, ormi, rmic, mica}). 
Both statistics are built from examples from the 
respective languages. This technique achieves 
about 96% in precision and recall. It involves the 
user in the classification process to back up narrow 
decisions with the human expert knowledge. To 
train the classifier, we use the surely positive and 
surely negative words as the training data. Instead 
of classifying every word separately, we compute 
the word-level classification score of all words of a 
sequence and then classify the sequence as a 
whole. This has several advantages: First, if one 

word of a sequence is uncertain, this does not 
automatically incur a user-feedback request. Sec-
ond, if a sequence of words is uncertain as a 
whole, the user gives feedback for the entire se-
quence. This results in several surely classified 
uncertain words at the cost of only one feedback 
request. In addition, a user can easier determine the 
meaning of a sequence of words than the one of a 
single word. 

Experimental Setup and Test Bed 

We run two series of experiments: We first process 
each document individually. We then process the 
documents incrementally, i.e., we do not clear the 
sets of known positives and negatives after each 
document. The same is true for the statistics of the 
word-level language recognizer. This is to measure 
the benefit of reusing data obtained from one 
document in the processing of subsequent ones. 
Finally, we take a closer look at the effects of the 
individual steps and heuristics. 

The platform is completely implemented in JAVA 
1.4.2, and we have used the java.util.regex package 
to represent the rules. 

All tests presented here are based on three groups 
of annotated documents. First, we use 107 issues 
of the American Museum Novitates (A.M.N.), a 
natural science periodical published by the Ameri-
can Museum of Natural History. The second group 
is a recent publication representing a widely used 
standard in ant systematics (F.2000, Fisher  2000), 
and the third one is the Birds of Congo (C.1932: 
Chapin 1932, 1939, 1953, 1954), partitioned into 
four parts of similar size, which was used by 
Koning et al, 2005. Koning et al.’s test bed has 
been extended to include additional groups of pub-
lications with different ways of combining and 
abbreviating names. Table 3 contains the relevant 
numbers on our test bed (rounded), the numbers on 
the A.M.N. and F.2000 parts are the result of man-
ual counting, those on C.1932 originate from 
(Koning et al. 2005). 

 A. M. N. F. 2000 C. 1932 
Words 857,000 58,000 1,100,000 
Taxonomic 
Names 12,000 175 21,000 

Table 3: The Test Bed 

Evaluation Measure 

In NLP, the f-Measure is popular to quantify the 
performance of a word classifier, but we also need 
to measure the advantage the system gains from 
asking the user for feedback on narrow classifica-



tions. In particular, we use three measures to quan-
tify our test results. As mentioned, the first one is 
the f-Measure: 
P(P) := positives classified as positive  
N(P) := positives classified as negative  
P(N) := negatives classified as positive  
N(N) := negatives classified as negative 
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But our combined technique has three possible 
outputs. If the decision between positive or nega-
tive is narrow, a word is classified as uncertain, 
and the user is prompted. This prevents misclassi-
fications and thus induces a considerable advan-
tage over fully automated techniques. In order to 
enable comparison to fully automated techniques, 
we use two further measures: 
U(P) := positives not classified (uncertain)  
U(N) := negatives not classified (uncertain) 

Given this, Coverage C is defined as the fraction 
of all classifications that are not uncertain: 

)N(U)N(N)N(P)P(U)P(N)P(P

)N(N)N(P)P(N)P(P
:C

+++++

+++
=  

To combine these two measures to a single meas-
ure for overall classification quality, we multiply f-
Measure and coverage and define Quality Q as 

CfMeasure:Q ×=  
This measure treats all uncertain votes as misclas-
sifications, thus punishing every user interaction as 
if it was an error. This enables comparison to tech-
niques that do not involve the user. It is very re-
strictive because a random guess might result in at 
least half of the uncertain words classified cor-
rectly. On the other hand, a correct vote from the 
user avoids misclassifications. In learning compo-
nents, this keeps statistics clean because no errors 
are fed back. 

EVALUATION AND DISCUSSION 

A combining approach gives rise to many ques-
tions in the context of taxonomic name extraction, 
e.g.: How does a word-level classifier perform 
with training data automatically generated? How 
does rule-based filtering affect precision, recall, 
and coverage? What is the effect of extending the 
lexica dynamically? Which kinds of errors remain? 

Tests with Individual Documents 

First, we test the combined classifier with each 
document individually. We omit Fisher (2000) 
here because it consists of only one document. The 
results for this part of the test bed will be presented 
in the next section. Table 4 contains the average 
results for the A.M.N. and C.1932. The combina-
tion of rules, dynamic lexica, and word-level clas-
sification provides very high precision and recall. 
The former is 99.7% on average, the latter 98.2%. 
The need for manual intervention is very low: The 
average coverage is 99.7%. 

A. M. N. C.1932 
 

Doc Sum Doc Sum 
Words 857,000 1,100,000 
Taxonomic 
Names 12,600 22,500 

Sure Pos. 24 2,528 2,833 11,331 
Uncertain 356 38,177 11,545 46,179 
Data Rules SP 85 9148 4983 19933 
Data Rules UC 42 4475 674 2,697 
Scorings 17 1,836 181 723 
Precision 93.1% 97.5% 92.7% 99.7% 
Recall 55.2% 93.3% 97.8% 99.8% 
f-Measure 56.8% 95.4% 95.0% 99.7% 
Coverage 87.8% 99.0% 96.6% 99.8% 
Quality 54.4% 94.4% 91.9% 99.6% 

Table 4: Test with Individual Documents 

The average results with individual issues of the 
A.M.N. (Column Doc in Table 4) are significantly 
worse than with the other two parts of the test bed. 
A more detailed look at the results reveals signifi-
cant differences between the individual documents. 
For more than half of the documents, the results 
are equal to those of the other two parts of our test 
bed. The rest of the A.M.N. issues points out a 
weakness of our combined technique: If the preci-
sion rules do not extract a sufficient number of 
sure positives, we run into two problems. We nei-
ther have enough data to successfully apply the 
data rules, nor do we have enough positive exam-
ples to train the word level classifier. The Sum 
Column in Table 4 contains the summed up results 
for the A.M.N. It turns out that precision, recall 
and coverage are far better for the total numbers 
than the average per document. This is because the 
documents with few taxonomic names in them 
produce the poor results, while our combined tech-
nique performs better with the bigger documents. 
For C.1932, this effect is almost non-existent. The 
individual parts are big enough and contain suffi-
ciently many sure positives for our technique to 
succeed. 



Tests with Entire Corpus 

In the first test the classifier did not transfer any 
experience from one document to later ones. We 
now process the documents one after another, de 
facto concatenating all the documents to one big 
super-document, which is then analyzed as a 
whole. Table 5 shows the results. As expected, the 
classifier performs better than with individual 
documents. This is true for both the A.M.N. and 
C.1932 test documents. The average recall in-
creases to 99.9%, coverage improves to 99.8% on 
average. Precision increases to an average of 
99.5%. 

 A. M. N. F. 2000 C. 1932 
Words 857,000 58,000 1,100,000 
Taxonomic 
Names 12,600 175 22,500 

Sure Pos. 3,059 172 13,827 
Uncertain 37,028 2,368 42,180 
Data Rules SP 11,819 175 2,2084 
Data Rules UC 1,132 2 583 
Scorings 618 1 295 
Precision 99.2% 100% 99.8% 
Recall 99.9% 100% 99.9% 
f-Measure 99.6% 100% 99.8% 
Coverage 99.5% 100% 99.9% 
Quality 99.1% 100% 99.7% 

Table 5: Test with Corpora 

The effect of the incremental learning is obvious, 
especially for the A.M.N. part of the test bed: The 
false positives are less than 2% of those in the first 
test shown by a comparison of the recall values in 
Tables 4 and 5. The effect on precision is signifi-
cant as well: The number of false negatives is only 
a third of that in the first test. Finally, the number 
of words for which the technique has to ask for 
feedback is halved (compare coverage values). 

The reason for the improvement is obvious from 
documents where the number of word sequences in 
<preciseTaxName> is low: data from other docu-
ments compensates the lack of positive examples. 
This reduces the number of false positives and 
false negatives as well as the user interactions. 

The Data Rules 

The Lines Uncertain in Tables 4 and 5 contain the 
number of uncertain phrases after the application 
of the regular expressions, the Lines Data Rules 
UC display how many phrases remain uncertain 
after the data rules were applied. The exclusion of 
word sequences containing a sure negative turns 
out to be effective to filter the matches of 

<taxName>. On average, this step reduces the num-
ber of uncertain word sequences by about 75%. 

The Lines Sure Pos. and Data Rules SP., in turn, 
provide the number of sure positives after the regu-
lar expressions and after the data rules, respec-
tively. The data rules based on the sure positives 
are very effective as well: they reduce the uncer-
tain word sequences by another 15 %, and at the 
same time enlarge the set of sure positives by 50% 
on average. In particular, they do not only reduce 
the uncertain sequences, but also obtain additional 
training data for the word level classifier. 

The lines labeled Scorings display the number of 
distinct phrases that were classified by the statisti-
cal component. Our experiments show that the 
manual effort incurred by uncertain statistical clas-
sifications and subsequent user feedback decreases 
significantly. All four data rules decrease the num-
ber of words the language recognizer has to deal 
with. This is because they produce additional train-
ing data and reduce the number of words classified 
as uncertain. 

Comparison to Word-Level Classifier and 
TaxonGrab 

A word-level classifier (WLC) is the core compo-
nent of FAT. We compare it in standalone use to 
the combining technique (Comb) and to the 
TaxonGrab (T-Grab) approach (Koning et al., 
2005), which is based on a set of regular expres-
sions and lists. The results for TaxonGrab were 
obtained from the C.1932 part of our test set used 
for this evaluation (see Tab. 6). FAT is superior to 
both TaxonGrab and standalone word-level classi-
fication. The improved precision and recall results 
are due to the usage of greater variety of evidence. 
The better coverage results from the lower number 
of words that the word-level classifier has to deal 
with. On average, it has to classify only 0.1% of 
the words in a document. This also significantly 
reduces the user feedback and the number of po-
tential errors of the word-level classifier. 

 Precision Recall f-Measure Coverage 
T-Grab 96% 94% 95% - 
WLC 97% 95% 96% 95% 
Comb 99.7% 99.9% 99.8% 99.8% 

Table 6: Comparison to Related Approaches 

All these positive effects result in about 99.8% f-
Measure and 99.8% coverage. This means the er-
ror is reduced by 90% compared to word-level 
classification, and by 93% compared to Taxon-
Grab. 



Misclassifications 

Although FAT achieves very high performance, 
some errors remain. In this section, we take a 
closer look at the latter and discuss how we can 
prevent them in the future. 

False Negatives. False negatives can occur in the 
language recognition step. Most of them contain 
two words the first of which is a genus. Xenomyr-
mex varies … , for instance, could induce such an 
error: The word level classifier (correctly) recog-
nizes the first word as a part of a taxonomic name. 
The second word is not typical enough to change 
the overall classification of the sequence. To avoid 
this type of false negatives, one might use POS-
tagging, which would label varies as a verb. We 
could exclude word sequences containing words 
with a meaning that cannot occur in taxonomic 
names. A related problem results from literature 
references in arbitrary languages. Chapin (1932, 
1939, 1953, 1954), for instance, cites Systema 
naturae (Linnaeus 1758), a book written in Latin. 
The word level classifier correctly recognizes  the 
language as Latin. The problem is that our assump-
tion that the taxonomic names are the only parts of 
the text in Latin does not always hold. Other publi-
cations cite complete paragraphs from documents 
written in Italian. Sulla posizione sistematica is an 
excerpt from such a paragraph that happens to 
match <taxName>. Because Italian is closer to 
Latin than to English, the word level classifier rec-
ognizes this phrase as a taxonomic name. German 
citations raise yet another problem: Because the 
capitalization rules of this language differ from the 
English ones, the regular expressions happen to 
match such text parts. In particular, all nouns are 
capitalized in German. This lets them match the 
genus and subgenus part of our regular expres-
sions. 

False Positives. The <taxName> regular expression 
matches any word sequence that is a taxonomic 
name. But the subsequent exclusion mechanisms 
may misclassify a sequence of words. In particular, 
the word-level classifier does not always recognize 
taxonomic names if they have been formed from 
proper names of persons. This is because these 
words consist of N-Grams that are typical for 
common English. Wheeleria rogersi Smith, for 
instance, is a fictitious but valid taxonomic name. 
To overcome this problem, we can construct these 
genera and species from the names we have ex-
tracted from the sure positives. 

CONCLUSIONS 

This paper has shown how combined computer 
linguistic techniques can be applied to automati-
cally extract taxonomic names from English text 
documents. FAT yields a precision of up to 99.7% 
as opposed to TaxonGrab (96%).  

A promising future avenue is to study those names 
which have not been detected, and to start to inte-
grate other languages. This is in fact necessary, 
since a large part of the heritage literature is writ-
ten in languages different from English. 
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